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We investigate a hierarchy of eddy-viscosity terms in proper orthogonal decomposition
(POD) Galerkin models to account for a large fraction of unresolved fluctuation
energy. These Galerkin methods are applied to large eddy simulation (LES) data for
a flow around a vehicle-like bluff body called an Ahmed body. This flow has three
challenges for any reduced-order model: a high Reynolds number, coherent structures
with broadband frequency dynamics, and meta-stable asymmetric base flow states.
The Galerkin models are found to be most accurate with modal eddy viscosities as
proposed by Rempfer & Fasel (J. Fluid Mech., vol. 260, 1994a, pp. 351–375; J.
Fluid Mech. vol. 275, 1994b, pp. 257–283). Robustness of the model solution with
respect to initial conditions, eddy-viscosity values and model order is achieved only
for state-dependent eddy viscosities as proposed by Noack, Morzyński & Tadmor
(Reduced-Order Modelling for Flow Control, CISM Courses and Lectures, vol. 528,
2011). Only the POD system with state-dependent modal eddy viscosities can address
all challenges of the flow characteristics. All parameters are analytically derived
from the Navier–Stokes-based balance equations with the available data. We arrive at
simple general guidelines for robust and accurate POD models which can be expected
to hold for a large class of turbulent flows.
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1. Introduction
In this work, we address important enablers for low-dimensional proper orthogonal

decomposition (POD) models for complex high-Reynolds-number flows. Reduced
order models (ROMs) are widely used in fluid mechanics. The purposes range from
understanding of the physical mechanisms, to computational inexpensive surrogate
models for optimization, to low-dimensional plants for control design. In this study,
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we focus on reduced-order Galerkin models, as they have a convenient mathematical
structure for the above-mentioned purposes. The Galerkin expansions may arise from
mathematical completeness considerations (Busse 1991; Noack & Eckelmann 1994),
from eigenfunctions of Navier–Stokes related equations (Joseph 1976; Boberg &
Brosa 1988) or empirical data (Holmes et al. 2012). The majority of low-dimensional
Galerkin models in engineering applications are of an empirical nature and utilize
one or another variant of POD. The first dynamical POD model was presented in the
pioneering work of Aubry et al. (1988). Their ROM describes the coherent structures
in the turbulent boundary layer, particularly sweeps or ejections. Other examples are
the vortex shedding flow behind a circular cylinder at low Reynolds number (Deane
et al. 1991; Noack et al. 2003), transitional and turbulent boundary layers (Aubry
et al. 1988; Rempfer & Fasel 1994b), a turbulent jet and the mixing layer (Rajaee,
Karlsson & Sirovich 1994; Ukeiley et al. 2001) and lid-driven cavity flow (Cazemier,
Verstappen & Veldman 1998).

POD models have been presented for myriad flow configurations, ranging from
laminar, to transitional and turbulent states. However, the construction of POD
models for broadband turbulence still constitutes a challenge. A rich set of subscale
turbulence representations in POD models have been proposed. Aubry et al. (1988)
and Podvin (2009) employ a single eddy-viscosity term, thus effectively modelling a
Navier–Stokes equation (NSE) at lower Reynolds number. Rempfer & Fasel (1994a,b)
have proposed mode-dependent refinement of eddy viscosities, inspired by spectral
eddy viscosities of homogeneous isotropic turbulence. All these subscale turbulence
representations constitute linear terms in the mode coefficients. Galletti et al. (2004)
add an additional linear term to the Galerkin system, calibrating the parameters
with a solution matching technique. Several authors have also proposed nonlinear
terms. Noack, Morzyński & Tadmor (2011) derive a nonlinear eddy-viscosity model,
based on a finite-time thermodynamics (FTT) closure (Noack et al. 2008). Nonlinear
models based on the Galerkin projection of filtered NSE have been pursued by
Wang et al. (2011, 2012). An approach of a completely different nature is suggested
by Balajewicz, Dowell & Noack (2013). Here, no auxiliary subscale turbulence
terms have been introduced in the Galerkin system, but the dissipative effects are
incorporated in a generalized POD.

In the present work, we present for the first time a ROM for the highly turbulent
flow around a three-dimensional vehicle bluff body, the so-called Ahmed body. The
Ahmed model is used in vehicle aerodynamics as a generic test case that reproduces
the important flow structures around passenger vehicles (Ahmed, Ramm & Faltin
1984; Duell & George 1999; Spohn & Gillieron 2002; Lienhart & Becker 2003).
Recently, the model has been subjected to intensive research for the pursuit of flow
control methods capable of reducing the aerodynamic drag on the model, both passive
control (Beaudoin & Aider 2008; Krajnović 2013) and active control (Brunn et al.
2008; Pastoor et al. 2008; Aider, Beaudoin & Wesfreid 2010; Krajnović & Fernandes
2011). In the present study, we focus on the square-back variant of the Ahmed body,
which is essentially a bluff body with curved front edges placed in proximity to the
ground. This flow poses a severe challenge for the ROM, due to the bi-modal states
of the wake that were discovered in the recent study by Grandemange, Gohlke &
Cadot (2013), i.e. the flow switches from one semi-stable asymmetric state to another
over time scales, TS, which is of the order of TS ≈ 100H/U∞, where H is the height
of the body and U∞ is the velocity of the oncoming flow.

In the proposed POD models, we employ the modal eddy-viscosity refinement
by Rempfer & Fasel (1994b) and the nonlinear eddy-viscosity scaling based on the
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FTT framework proposed by Noack et al. (2011) to stabilize the long-term solution
behaviour. The POD model utilizes a dataset of time-resolved flow fields of the
flow around the bluff body. The dataset has been produced by numerical simulations
employing the large eddy simulation (LES) technique. The LES data capture the
semi-stable asymmetric states and departures from these states. The flow around a
similar bluff body was simulated with a LES by Krajnović & Davidson (2003) over
one decade ago. The standard Smagorinsky (1963) subgrid stress model was used
both in that study and is used in the present study. Although there have been many
more intricate subgrid-stress models developed since the days of Smagorinsky half a
century ago, his nonlinear model has proved to be robust, highly applicable and very
capable of producing unsteady solutions to complex bluff-body flow cases with high
accuracy that are able to yield further physical understanding of the flow dynamics.
For instance, the same LES technique was used to simulate the flow around an
Ahmed body with a 25◦ angle of the rear slanted surface by Krajnović & Davidson
(2005a,b), the flow around high-speed trains at low Reynolds numbers by Hemida &
Krajnović (2008, 2010), the flow around freight trains by Hemida, Gil & Baker (2010)
and Östh & Krajnović (2014), and the flow around a finite tall circular cylinder by
Krajnović (2011).

This paper is organized as follows. First, the flow configuration with a car model
and the LES that was used to produce the dataset of time-resolved flow are presented
(§ 2). Next, the employed Galerkin models with a hierarchy of subscale turbulence
representations are outlined (§ 3). Then, the performance of these POD Galerkin
models is studied (§ 4) and conclusions and future directions are provided (§ 5).

2. Configuration
This section presents the LES that produced the dataset of flow snapshots serving as

input to the empirical Galerkin models. It begins with the description of the geometry
of the vehicle model (§ 2.1), followed by the set-up and a brief outline of the LES
technique and numerical details of the simulation (§ 2.2). The main features of the
flow are lastly presented (§ 2.4).

2.1. The Ahmed body model

The employed LES reproduces a companion experiment at Institute PPRIME (Östh
et al. 2013). A description of these experiments and a comparison of the LES and
particle image velocimetry (PIV) data are included in appendix A. The vehicle model
has a square-back geometry. The model length, L, is 0.893 m, the width, W, is
0.35 m and the height of the body, H, is 0.297 m. All four front edges are rounded
with a radius of r= 0.285H. The model is placed on four cylindrical supports with an
oval-shaped cross-section and the ground clearance, h, is 0.168H (0.05 m). Similar
square-back models with curved fronts were used in the numerical investigation using
LES reported in Krajnović & Davidson (2003) and in the joint experimental and
numerical study by Verzicco et al. (2002). In the present study the Reynolds number
based on the height of the model, the free-stream velocity, U∞, and the kinematic
viscosity of air at room temperature, ν, is ReH = 3× 105.

2.2. Flow configuration
We consider an incompressible flow of the Ahmed body in a steady finite domain,
Ω ∈ R3. The flow is described in a Cartesian coordinate system x = (x, y, z) with
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unit vectors ex, ey, ez, respectively. The unit vectors are oriented such that the
x-direction corresponds to the streamwise direction. The y-direction corresponds
to the wall-normal direction in which the lift force is acting on the bluff body and
the z-direction is aligned with the axis of action of the side force on the body. The
origin is located at the midpoint of the base face of the Ahmed body. The plane
z = 0 thus corresponds to the only symmetry plane of the configuration. The time
is represented by t. The velocity vector u = (u, v, w), has u, v and w as its x-, y-
and z-components, respectively. The pressure field is denoted by p. In the following,
all quantities are normalized with respect to the oncoming velocity U∞, the Ahmed
body height H and the constant density ρ of the fluid. The flow is described by the
incompressible NSE with corresponding initial and boundary conditions, uIC and uBC,
respectively:

∂tu+ u · ∇u+∇p− ν∇2u = 0, (2.1a)
∇ · u = 0, (2.1b)

u(x, 0) = uIC(x) ∀x ∈Ω, (2.1c)
u(x, t) = uBC(x) ∀x ∈ ∂Ω, t ∈ [0, T]. (2.1d)

Here, ν = 1/ReH represents the non-dimensionalized kinematic viscosity, or,
equivalently, the reciprocal Reynolds number. The length of the investigated time
interval [0, T] is T = 500 time units, after the flow has converged to its post-transient
time. For later reference, we define the residual of the momentum equation,

R(u)= ∂tu+ u · ∇u+∇p− ν∇2u. (2.2)

This residual is considered as function of the velocity field, since the pressure can
be computed from the velocity field by the pressure Poisson equation.

2.3. Large eddy simulation (LES)
The database of the time-resolved flow around the Ahmed model that serves
as the input to the empirical ROMs was produced using numerical simulations
employing the LES technique. The governing filtered incompressible NSEs are
closed using the nonlinear subgrid-stress model originally proposed by Smagorinsky
(1963). The method has already been used in numerous scientific investigations
of vehicle aerodynamics bluff-body flows (see e.g. Krajnović 2002; Hemida 2008;
Krajnović 2009; Wassen & Thiele 2009; Östh & Krajnović 2012). The LES equations
are discretized by means of a commercial finite-volume code (AVL Fire 2013)
using a co-located grid arrangement and the discretized equations are solved for
the velocities. The pressure is obtained by a pressure-correction procedure. The
employed computational grid consists of 34 million grid points and the obtained
spatial resolution was fine enough to be considered a well-resolved LES according
to the common conventions in the field (Davidson 2010). The spatial resolution is
detailed in appendix B. The convective fluxes are approximated by a blend of 95 %
linear interpolation of second-order accuracy (Central Differencing Scheme) and of
5 % upwind differences of first-order accuracy (Upwind Scheme). The diffusive terms
containing viscous plus subgrid terms are approximated by a central differencing
interpolation of second-order accuracy. The time-marching procedure is done using
the implicit second-order accurate three-time level scheme. The computational domain
is shown in figure 1. On the inlet a uniform velocity profile in the streamwise
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FIGURE 1. The computational domain used in the LES.

direction (x direction) is applied with the free-stream velocity U∞. On the outlet the
homogeneous Neumann condition is used and on the sides the symmetry condition
is used. On the ground a slip condition is set on the first part from the inlet to the
body in order to prevent the boundary layer development here. On the rest of the
ground the no-slip condition is enforced. This no-slip condition on the ground is set
in order to match the experimental set-up, where the model is mounted on a plate
above the ground (see appendix A).

2.4. Flow characteristics
Figure 2(a) presents the time history of the normalized drag force signal, CD, from
the simulation. A spectral analysis of the signal reveals several low-frequency peaks
at Strouhal numbers St= f H/U∞ = 0.036, 0.054, 0.085, 0.12, 0.17 and 0.21, but no
dominant peak is found, indicating a broadband spectrum of the flow structures in the
wake. Figure 2(b) shows the side force signal, CS. The aerodynamic coefficients are
defined as

CD = Fx
1
2ρU2∞Ax

; CS = Fz
1
2ρU2∞Ax

. (2.3a,b)

Here, Fx and Fz are the total force (pressure and viscous) integrated over the body
in the streamwise and transverse direction, respectively, and Ax = HW is the cross-
sectional area of the Ahmed body.

The switch between one bi-modal state to the other is clearly indicated in
figure 2(b). The time interval used to plot the forces in figure 2 corresponds to
the time-domain that is covered by the snapshots used for the POD and the Galerkin
models.

Figure 3 shows a small selection of the flow results in the wake in the plane y= 0
(indicated in figure 3(e)) to help give an appreciation of the flow behaviour in the
wake. In the POD we have used the method described by Sirovich (1987b) to split
the original data into two sets: one set that is symmetric with respect to the symmetry
plane (z= 0), and one which is anti-symmetric. This procedure will be described in
detail in § 3.1.



On the need for a nonlinear subscale turbulence term 523

(a) (b)

0 100 200 300 400 500
0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

t

CD

0 100 200 300 400 500
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t

CS

FIGURE 2. Time history of the force signals from the LES of the natural flow: (a) drag
force; (b) side force.

(a) (b)

(d)

(e)

(c)

y

z x

2.4H

1.1

0

–0.4

0.2

0

–0.2

1.
7H

FIGURE 3. (Colour online) Visualizations of the wake flow: (a) time-averaged
symmetrized flow; (b) one instantaneous realization; (c) the symmetric part of the
instantaneous realization; (d) the anti-symmetric part of the instantaneous realization; (e)
the Ahmed model and the plane used to visualize the flow.
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Figure 3(a) shows the symmetrized mean flow, u(x). Figure 3(b) shows one
instantaneous realization of the flow and figures 3(c) and 3(d) show the corresponding
symmetric and anti-symmetric decomposition of that snapshot, respectively. Here, the
mean flow has been subtracted from the symmetric snapshot (the anti-symmetric
mean is zero) so that it corresponds to the input of the POD.

3. Reduced order modelling

In this section, the path to the POD model is outlined. In § 3.1, the employed LES
data and its symmetrization is outlined. In § 3.2, the POD expansion is described.
Finally in § 3.3, the refined subscale turbulence representations are discussed.

3.1. LES snapshots
The POD is based on M= 1000 snapshots of the LES. The sampling frequency is two,
i.e. 500 convective time units are covered. The convective time unit is based on H and
U∞. Statistical symmetry with respect to the z=0 plane is enforced following Sirovich
(1987b). This symmetrization increases the accuracy of the POD decomposition.

Each velocity field is decomposed into a symmetric and antisymmetric contribution
with respect to the plane z= 0,

u(x, y, z)= us(x, y, z)+ uas(x, y, z). (3.1)

Here, the symmetric part us is defined by

us(x, y, z) = 1
2(u(x, y, z)+ u(x, y,−z)), (3.2a)

vs(x, y, z) = 1
2(v(x, y, z)+ v(x, y,−z)), (3.2b)

ws(x, y, z) = 1
2(w(x, y, z)−w(x, y,−z)) (3.2c)

while the anti-symmetric component uas reads

uas(x, y, z) = 1
2(u(x, y, z)− u(x, y,−z)), (3.3a)

vas(x, y, z) = 1
2(v(x, y, z)− v(x, y,−z)), (3.3b)

was(x, y, z) = 1
2(w(x, y, z)+w(x, y,−z)). (3.3c)

Thus, M = 1000 snapshots create equal numbers of symmetric and anti-symmetric
snapshots. The POD is performed on each of the symmetrized sets separately. The
resulting two PODs are combined in a single POD and sorted according to their
energy level. Thus, we have in total 2000 POD modes. This procedure has already
been recommended by Sirovich (1987b) and guarantees the expected statistical
symmetries of the snapshot ensemble. In addition, the POD modes are either
symmetric or anti-symmetric, as derivable from theory.

In principle, the same results can be achieved by a simpler method: the more
commonly employed inclusion of M mirror-symmetric snapshots in the snapshot
ensemble. However, in practice, pure symmetric and anti-symmetric POD modes are
guaranteed only in their corresponding subspace. We observed that some symmetric
and anti-symmetric POD modes with very similar energy levels in the first approach
yield two non-symmetric (mixed) modes in the second approach due to numerical
errors.
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3.2. Proper orthogonal decomposition
We perform a POD expansion (Lumley 1970) of M temporally equidistantly sampled
velocity snapshots um := u(x, tm) at times tm = m1t, m = 1, . . . , M with the time
step 1t. The averaging operation of any velocity-dependent function F(u) over this
ensemble is denoted by angular brackets,

〈F(u)〉 := 1
M

M∑
m=1

F (um) . (3.4)

The colon in front of the sign emphasizes that the left-hand side is defined by the
right-hand side of the equation. The observation region ΩROM ⊂Ω is a wake-centred
subset of the computational domain

ΩROM = {(x, y, z) ∈Ω : 0 6 x 6 5 H,−0.67 H 6 y 6 1.12 H, |z|6 1.21 H} . (3.5)

This domain is large enough to resolve the recirculation region and the absolutely
unstable wake dynamics, but small enough to keep the model dimension affordable.
The corresponding inner product for two velocity fields v,w ∈L 2(ΩROM) reads

(v,w)ROM :=
∫
ΩROM

dxv ·w. (3.6)

This inner product defines the energy norm ‖v‖ROM :=
√
(v, v).

The averaging operation and inner product uniquely define the employed snapshot
POD (Sirovich 1987a; Holmes et al. 2012). First, the velocity field is decomposed
into a mean field, u0= 〈u〉, and a fluctuating contribution, u′, following the Reynolds
decomposition. Then, the fluctuating part is approximated by a Galerkin expansion
with space-dependent modes ui, i= 1, 2, . . . and the corresponding mode coefficients
ai(t):

u(x, t) = u0(x)+ u′(x, t), (3.7a)

u′(x, t) =
∞∑

i=1

ai(t)ui(x)≈
N∑

i=1

ai(t)ui(x)+ ures(x, t). (3.7b)

POD yields the minimal average squared residual
〈‖ures‖2

〉
as compared to any

other Galerkin expansions with N modes (Lumley 1970). Note that the snapshot POD
method limits the number of POD to N 6M− 1. When summing up over i= 1, 2, . . . ,
without bound, we consider the original formulation of POD with an accountable
infinity of modes.

We re-write the POD expansion more compactly, following the convention of
Rempfer & Fasel (1994a,b):

u(x, t)= u0(x)+
N∑

i=1

ai(t)ui(x)=
N∑

i=0

ai(t)ui(x), (3.8)

where a0≡ 1, For later reference, we recapitulate the first and second moments of the
POD mode coefficients:

〈ai〉 = 0, 〈aiaj〉 = λiδij. (3.9)
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The energy content in each mode is given by Ki(t) = (1/2)ai(t)2. The total
turbulence kinetic energy (TKE) resolved by the Galerkin expansion KΣ(t) reads

KΣ(t)=
N∑

i=1

Ki(t). (3.10)

The limit limN→∞ KΣ for POD yields the TKE K of the velocity field. From here
onwards in the paper, the time-averaged value of the quantity K,Ki and KΣ is implied
when the t dependence is dropped, e.g. K = 〈K(t)〉, Ki = 〈Ki(t)〉 and KΣ = 〈KΣ(t)〉.
Note that by (3.9), the modal energy and POD eigenvalues are synonymous:
Ki = λi/2.

The Galerkin expansion (3.8) satisfies the incompressibility condition by construction.
The evolution equation for the mode coefficients ai is derived by a Galerkin
projection onto the NSE (2.1), i.e. from (ui, R(u))ΩROM

= 0. Details are provided
in the textbooks of Noack et al. (2011) and Holmes et al. (2012). For large domains
and three-dimensional fluctuations, the pressure term can generally be neglected as
in Deane et al. (1991), Ma & Karniadakis (2002) and Noack, Papas & Monkewitz
(2005). Here, the Galerkin projection of the pressure term was found to be negligible
and it is thus omitted from the model. Thus, the Galerkin system describing the
temporal evolution of the modal coefficients, ai(t), reads

dai

dt
= ν

N∑
j=0

lνijaj +
N∑

j,k=0

qc
ijkajak. (3.11)

The coefficients lνij and qc
ijk are the Galerkin system coefficients describing the viscous

and convective Navier–Stokes terms, respectively.

3.3. Hierarchy of low-dimensional Galerkin systems
In this section, subscale turbulence representations for truncated Galerkin systems are
revisited. We have to account for the dynamic effect of ures in (3.7). First, the exact
form of the Galerkin system (propagator) residual is detailed (§ 3.3.1). Then, four
eddy-viscosity terms for this residual are outlined based on a single constant eddy
viscosity (§ 3.3.2), a modal constant eddy viscosity (§ 3.3.3), a single nonlinear eddy
viscosity (§ 3.3.4), and a combination of the last two models (§ 3.3.5).

3.3.1. Exact representation of the propagator residual
The dynamical system (3.11) predicts the evolution of all modal coefficients. By

integrating the Galerkin system in time we can obtain further long-term information
about the dynamical behaviour of the original system. However, the aim is to
simulate the dynamical behaviour of the ‘large’ scales that presumably govern the
global physics of the flow in the wake of the Ahmed body. This is desirable since
the time to compute the convective term, qc

ijk, and the integration time of the system
scales as ∼N3, so that the computational effort soon exceeds that of the original
LES. Thus, we want to build a ROM that contains the important physics, but with
a computational effort to build and to integrate in time that is much less than the
time to perform the original LES. We therefore choose a small number of modes N,
accounting for the unresolved POD modes at i = N + 1, N + 2, . . . with a subscale
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turbulence representation. Let a= (a1, a2, . . .,) represent the mode coefficients. Then
the accurate dynamical system takes the following form:

dai

dt
= fi(a)+ gi(a), (3.12a)

fi(a) = ν

N∑
j=0

lνijaj +
N∑

j,k=0

qc
ijkajak, (3.12b)

gi(a) = ν

∞∑
j=N+1

lνijaj +
∞∑

j,k=0
max{j,k}>N

qc
ijkajak. (3.12c)

Here, the propagator fi represents the resolved part of the dynamics while gi represents
the residual of the truncated Galerkin system. This residual contains the viscous and
convective terms, with at minimum one unresolved mode i>N.

In the Kolmogorov description of the turbulence cascade (Kolmogorov 1941a,b;
Pope 2000), the large, energy-carrying scales transfer energy to successively smaller
scales where most of the dissipation of the kinetic energy to internal energy (heat)
of the molecules takes place. Therefore, any attempt to solve the reduced system in
(3.12b) not accounting for the residual, gi(a), will lead to excessive energy levels, or
even divergence of the system.

3.3.2. Single constant eddy viscosity (Galerkin system A)
In the ground-breaking work by Aubry et al. (1988) on the dynamics of coherent

structures in the turbulent boundary layer, the residual was modelled by a constant
‘eddy viscosity’ term, resulting in a linear subscale turbulence representation gi(a)= νT

0∑N
j=1 lνijaj. Here νT

0 is generally obtained by solution matching techniques. In this study,
the eddy viscosity is derived from the TKE power balance. The resulting model (3.12)
will be called Galerkin system A and abbreviated as GS-A.

3.3.3. Modal constant eddy viscosity (Galerkin system B)
Rempfer & Fasel (1994a) refined the linear model by reasoning that the eddy

viscosity should be scale-dependent, resulting in modal eddy viscosities νT
i ,

i= 1, . . . , N. The resulting linear subscale turbulence representation reads gi(a)= νT
i∑N

j=1 lνijaj. Here νT
i can be obtained by solution matching. In this study, νT

i is derived
from the modal power balance (Noack et al. 2005). We refer to the resulting model
as Galerkin system B, or GS-B.

3.3.4. Single nonlinear eddy viscosity (Galerkin system C)
Noack et al. (2011) remark that the subscale turbulence representations of GS-A and

GS-B are linear while the energy transfer is caused by nonlinear mechanisms. We start
with a single eddy-viscosity ansatz

gi(a)= νT
0 (a)

N∑
j=1

lνijaj, (3.13)

but allow the eddy viscosity to be state-dependent. On the other hand (3.13) is written
as

gi(a)= ν
∞∑

j=N+1

lνijaj +
∞∑

j,k=0
max{j,k}>N

qc
ijkajak. (3.14)
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Evidently, both terms cannot be exactly matched. However, the energy transfer rate
effect should be similar. In the modal power balance, this energy loss is quantified by
〈aigi〉. Equality of the energy transfer rate yields

νT lνiiλi =
∞∑

j,k=0
max{j,k}>N

Tijk, where Tijk = qc
ijk〈aiajak〉, (3.15)

exploiting 〈aiaj〉 = λiδij (3.9). The triadic power terms on the right-hand side may be
approximated with a FTT closure (Noack et al. 2008)

Tijk = αχijk

√
KiKjKk

(
1− 3Ki

Ki +Kj +Kk

)
, (3.16)

where α and χijk are determined from the Galerkin system (see Noack et al. 2008).
In the next step, we introduce relative modal energy contents κi via Ki= κiKΣ , with∑N
i=1 κi = 1. Then, (3.15) becomes

2νT lνiiκi =
√

KΣ

∞∑
j,k=0

max{j,k}>N

αχijk
√
κiκjκk

(
1− 3κi

κi + κj + κk

)
. (3.17)

This closure relation suggests that νT scales with
√

KΣ , assuming that the κi remain
approximately constant with KΣ . The resulting nonlinear eddy-viscosity model used
in the present work thus takes the form:

gi(a)= νT
0

√
KΣ(t)

KΣ

N∑
j=1

lνijaj. (3.18)

Thus, large (small) fluctuation levels KΣ(t) > KΣ (KΣ(t) < KΣ) lead to a higher
(smaller) damping than predicted by the corresponding linear subscale turbulence
representation. In particular, boundedness of the new Galerkin system C (GS-C) can
be proved, if the energy preservation of the quadratic term is enforced (Cordier et al.
2013).

3.3.5. Modal nonlinear eddy viscosity (Galerkin system D)
Combining the nonlinear eddy viscosity of GS-C (3.18) and the modal eddy

viscosities of GS-B yields the following nonlinear subscale turbulence representation:

gi(a)= νT
i

√
KΣ(t)

KΣ

N∑
j=1

lνijaj. (3.19)

The resulting dynamical system is referred to as Galerkin system D, or GS-D.

4. Results
In this section, we present results of the four Galerkin systems A–D from §§3.3.2–

3.3.5, respectively. First, the POD is presented (§ 4.1). Then, the solutions of Galerkin
systems A–D are compared (§ 4.2). Finally, the robustness of the Galerkin systems in
terms of model parameters is investigated (§ 4.3).
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FIGURE 4. Spectrum from the POD: (a) Normalized spectrum; (b) Normalized cumulative
spectrum. The first mode has by far the largest energy level. It resolves asymmetric base-
flow variations between positive and negative side forces.

4.1. POD
Figure 4 presents the cumulative spectrum from the POD eigenvalues of the dataset
of flow snapshots during the considered time interval. The convergence rate is quite
slow, and the first 100 modes contain some 35 % of the total kinetic energy in the
system. The first 500 modes resolve 60 % of the kinetic energy. We will not visualize
the POD modes here, as their structure contributes little to the understanding of the
subscale turbulence representations. It is only important to note that the first POD
mode u1 describes a slow base-flow change between positive and negative side forces.
This mode is called the shift mode (Noack et al. 2003), reflecting the analogous role
in resolving base flow changes.

4.2. Comparative study of the Galerkin systems
The key parameters of the subscale turbulence representation are the total and
modal eddy viscosities of Galerkin systems A and B, respectively. These parameters
have been determined by the total and modal power balance for GS-A and GS-B,
respectively. In other words, no solution matching is performed. Figure 5 shows
their values. The total eddy viscosity νT

0 lies between the extremal modal values,
as expected. The modal eddy viscosities νT

i are all positive and follow a nearly
monotonous trend with the mode index i. Such a nearly monotonous behaviour
indicates a good quality of the LES data. For other flow data, the authors frequently
observe a large scatter of these values with i.

Galerkin system C (GS-C) assumes the νT
0 of GS-A and rescales the value according

to the square-root law (3.18). Similarly, GS-D applies the same scaling to the modal
eddy viscosities νT

i of GS-B.
We start the comparison of the four Galerkin systems with the modal energy

spectrum Ki of their respective long-term solutions. From figure 6, the most simple
GS-A is seen to deviate farthest from the CFD values. Better spectra might be
obtained with solution matching techniques for νT

0 (see below), but such a procedure
indicates that the total power balance as a consistency condition is violated.

GS-B indicates an increased performance on replacing the total eddy viscosity by
the modal analogues. The increase in employed knowledge from the NSE, namely the
use of N modal power balances, pays off.
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FIGURE 5. (Colour online) Total and modal eddy viscosities of Galerkin systems A and
B.
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FIGURE 6. (Colour online) Comparison of the modal kinetic energies Ki between the LES
and the four Galerkin system solutions (GS-A. . .D).

GS-C tends to outperform both Galerkin systems, particularly for large mode
indices. This indicates that the nonlinearity of the eddy-viscosity ansatz is a crucial
physical enabler and should not be ignored. The correct TKE-dependent scaling of
the eddy viscosity appears to be more important than the modal refinement of their
values. However, one should note that the deviation of the modal eddy-viscosity
values from the total analogue is less than a factor two for this particular flow. The
energy levels in mode one (the shift mode) and the oscillatory modes i= 2, . . . , 11
are over-predicted by GS-C as compared to the levels of the LES. One reason
for this over-prediction is a shortcoming of the total eddy viscosity: the physically
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correct modal values for these modes are almost two times larger. Similarly, the next
(large-scale) oscillatory POD modes i= 2, . . . , 7 are over-predicted.

Galerkin system D has larger eddy viscosities for the most dominant first POD
modes and cures the over-prediction of the corresponding modal amplitudes of GS-C.
The modal energies of the higher-order modes of GS-B and GS-D are comparable.
The modal refinement of the nonlinear eddy-viscosity term has a price: the higher-
order (less energetic) modes of GS-D tend to be more energetic than the those of
GS-C. We hypothesize that the cause is a broadband frequency time-variation of the
eddy viscosity due to KΣ(t). The modal eddy viscosities of the higher-order modes are
smaller than the total eddy viscosity (see figure 5). Hence, the higher-order modes
of GS-D are less damped and more energized by the unsteady subscale turbulence
term as compared to GS-C. A low-pass filter on KΣ(t) could cure this problem, if
the low-energy tail of the POD decomposition is of sufficient interest. We will not
incorporate this additional refinement here.

The temporal dynamics of the GS-D and the POD (from LES data) are presented
for selected modes in figure 7. The first coefficient a1 of the shift mode is the most
interesting one. This coefficient is depicted in figure 7(a) and describes the change
from one asymmetric base-flow state to the other. Its value follows exactly the side-
force signal from the LES in figure 2(b). Only Galerkin system D was found capable
of predicting the sudden switches from one side force state to the other with realistic
amplitudes at realistic time scales. Also GS-C exhibits such base-flow changes, but the
amplitude is over-predicted by a factor two and these time scales were over-predicted
by three orders of magnitudes. GS-A predicts a purely periodic solution for N = 100,
and GS-B does not predict the amplitude in a physical correct way. Summarizing,
both the modal refinement of the eddy viscosity (GS-B and GS-D) and their energy-
dependent scaling in (GS-C and GS-D) emerge as crucial enablers for the accurate
Galerkin systems.

4.3. Robustness study of the Galerkin systems
In this section, the robustness of the Galerkin systems with respect to their dimension
and the eddy-viscosity parameters is investigated.

In figure 8, the time-averaged total energy of all Galerkin systems is depicted for
different dimensions N of the ROM. GS-D has, on average, the best agreement with
the LES values for all four dimensions, i.e. N = 10, 20, 50 and 100. In contrast, the
most simple GS-A shows even the wrong trend with respect to N. We emphasize that
all eddy-viscosity values are derived from TKE power balances. The performance of
each Galerkin system could easily be improved with solution matching techniques for
these parameters. However, the price of such techniques is a potentially large residual
in the TKE power balance, i.e. the predicted modal energy distribution and energy
flows may be significantly distorted.

Finally, the role of the eddy-viscosity parameter is investigated in figure 9 for N =
100. For the simulations in this figure, we have varied the total viscosities νT

i in the
range 25, 50, 75, 150, 200, 250 and 300 % of the reference value νT

0 for GS-A and GS-
C. The modal eddy viscosities νT

i of GS-B and GS-D have been changed by the same
factor depicted on the abscissa. GS-A does not show monotonous behaviour in terms
of the parameter change. GS-B has a more monotonous physical behaviour but its
deviations are stronger than for GS-A. One may speculate that modal eddy viscosities
are ‘over-fitted’ for the physical reference level. GS-C is seen to be far less affected
by these changes, the nonlinear eddy viscosity compensates for too small or too large
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FIGURE 7. (Colour online) Evolution of the mode coefficients ai(t). Comparison between
LES (a,c,e) and GS-D (b,d,f ) for N = 100. (a,b) a1(t), describing asymmetric base flow
changes (shift mode); (c,d) a5(t), as an example of a dominant oscillatory POD mode;
(e,f ) a75(t), representing a higher-order POD mode.

reference values. Finally, GS-D follows GS-C but shows an even smoother curve, thus
indicating the largest robustness.

Finally, in figure 10 we present the temporal evolution of the total energy level
for all four Galerkin systems for dimensions N = 20, N = 50, N = 100. The systems
with dimensions N = 20 and N = 50 are pure truncations of the N = 100 reference.
This implies that the eddy viscosities of the N = 100 reference are kept constant in
this system reduction. We do not want to mix the effect of varying dimensions and
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FIGURE 8. (Colour online) Comparison of the total energy, KΣ , in the ROM for different
dimensions N of the ROM. The eddy viscosity is kept constant to the value of that for
N = 100.
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FIGURE 9. (Colour online) Comparison of the total energy, KΣ , in the ROM for different
values of νT

i and νT
0 .

varying eddy viscosity. Again, GS-C and GS-D with the nonlinear subscale turbulence
representation outperform GS-A and GS-B in terms of robustness.

Mean values and the variances of the signals from the N = 100 ROMs (see
figure 10) and LES are presented in table 1. GS-C predicts the mean value slightly
closer to LES than GS-D, but the variance of GS-C (0.0304) is overpredicted by a
factor of three compared to the LES (0.0095), while the variance of GS-D (0.0091)
is close to that of the LES. GS-A and GS-B overpredict the mean and variance
significantly.
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FIGURE 10. (Colour online) Comparison of instantaneous total energy KΣ(t)=∑N
i=1 Ki(t)

of the Galerkin systems: (a) GS-A; (b) GS-B; (c) GS-C; (d) GS-D. Note that the scaling
of the y-axis between figures (b) and (c) is different.
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GS-A GS-B GS-C GS-D LES

Mean 1.1693 1.2535 0.8740 0.9010 0.7671
Variance 0.1264 0.0606 0.0304 0.0091 0.0095

TABLE 1. Mean values and variances of KΣ(t) for the N = 100 ROMs and LES.

In summary, the accuracy and robustness of the Galerkin system is found to
improve by modal refinement of the eddy viscosities and by an energy-dependent
scaling. A similar observation for the energy-dependent scaling has been made for
the POD models of a mixing layer by Cordier et al. (2013).

5. Conclusions
We have investigated a hierarchy of linear and nonlinear eddy-viscosity terms for a

POD Galerkin model accounting for the unresolved velocity fluctuations. The chosen
configuration is a high-Reynolds-number flow over a square-back Ahmed body. This
flow exhibits three challenging features for reduced-order models. Firstly, the high
Reynolds number implies that a subscale turbulence representation is mandatory for
realistic fluctuation levels, or even boundedness, of the Galerkin system solution.
Secondly, the coherent structures of the Ahmed body have a broadband frequency
signature. The resulting frequency cross-talk implies that many modal interactions
exist and need to be correctly resolved. Thirdly, the base flow has two meta-stable
states with nearly constant non-vanishing side forces. Experiments on a similar
Ahmed body configuration (Grandemange et al. 2013) exhibit these asymmetric
quasi-attractors. Such quasi-attractors imply a complex interaction from small to
very large time scales and constitute a significant modelling challenge – even for
Navier–Stokes simulations.

The solutions of a POD Galerkin model with 100 modes or less converge to infinity,
underlining the need for a subscale turbulence presentation. Four corresponding
auxiliary models have been tested, using a single or modally refined eddy viscosities
with constant or energy-dependent values. These parameters are determined from the
total or modal TKE power balance. Solution matching techniques are excluded as
a parameter identification method, to avoid any inconsistency with the TKE power
balances. A single constant eddy viscosity, as used by Aubry et al. (1988) and others,
is already sufficient to stabilize the Galerkin solution. Modally refined viscosities,
as suggested by Rempfer & Fasel (1994b), are found to significantly improve the
accuracy of the modal fluctuation energies. However, both approaches rely on constant
eddy viscosities, leading to linear subscale turbulence representations for nonlinear
energy flow cascade. The resulting Galerkin solutions converge to infinity if the initial
conditions are far from the attractor. In addition, neither Galerkin system exhibits the
meta-stable asymmetric base flow states.

We corroborate the need for eddy viscosities which scale with the square root
of the resolved fluctuation energy. The single nonlinear eddy-viscosity model leads
to an accurate prediction for the fluctuation levels of higher-order modes, while
the amplitudes of the first seven modes are over-predicted. Arguably, the first seven
modes define the large-scale coherent structures and are the most important part of the
spectrum. The modally refined eddy viscosity cures this over-prediction at the expense
of a less accurate tail of the modal energy spectrum. These nonlinear eddy-viscosity
models are capable of resolving the flipping between asymmetric base flow states.
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Constant eddy viscosity (GS-A)
− blow up in finite time for certain initial conditions
− significant overprediction of fluctuation levels (with NSE inferred eddy viscosity)

Modal eddy viscosities (GS-B)
− blow up in finite time for certain initial conditions
+ more accurate prediction of fluctuation levels
+ reduced dependency on ROM dimension N

Nonlinear constant eddy viscosity (GS-C)
− significant overprediction of fluctuation levels
+ guaranteed boundedness of solution, independent of the initial condition
+ reduced dependency on ROM dimension N
+ reduced dependency on νT variation

Nonlinear modal eddy viscosity (GS-D)
+ guaranteed boundedness of solution, independent of the initial condition
+ more accurate prediction of fluctuation levels
+ reduced dependency on ROM dimension (N)
+ reduced dependency on νT variation

TABLE 2. Performance of the Galerkin systems A–D: ‘−’ refers to challenges, ‘+’ to
improvements with respect to the benchmark Galerkin system A.

In addition, the resulting Galerkin systems converge to their respective attractors
for initial conditions – even if these are far away from them. Global convergence
can be strictly ensured by enforcing energy preservation on the quadratic term. This
energy preservation is derivable from the NSE (Kraichnan & Chen 1989; Schlegel
& Noack 2013). In addition, Galerkin systems with nonlinear subscale turbulence
representations are shown to be much more robust with respect to changes of the
eddy-viscosity parameters and the dimension of the model.

The modally refined, nonlinear eddy-viscosity terms have significantly increased
accuracy and robustness of the Galerkin system as compared to traditional linear
subscale turbulence representations. The accuracy has been achieved with a parameter
identification, based purely on NSE-based constraints and without solution matching
techniques. The robustness is a key enabler for three ROM-based applications. Firstly,
the ROM may serve as a test-bed for understanding of the nonlinear dynamics.
One key question is the mechanism for the amplitude selection, i.e. what drives
the transients towards the attractor. Secondly, the ROM may be employed as a
computationally inexpensive surrogate model for multiple purposes, e.g. for the inlet
conditions of the flow around a following car model. In this case, it is desirable to
have a ROM which works over a certain range of operating conditions, e.g. slowly
varying oncoming velocity. This variability implies that the ROM employs a physically
correct robust amplitude selection mechanism, e.g. does not diverge for a small change
of the Reynolds number. Finally, model-based control design requires a ROM which
works robustly for a range of natural and forced transients. Moreover, the control
design is often based on a hierarchy of ROMs with different dimensions – ranging
from robust least-order models to more accurate higher-order models, which pose
greater challenges to state estimation. The nonlinear eddy-viscosity term serves all
three mentioned applications. Table 2 summarizes the benefits achieved from the
modal and nonlinear eddy-viscosity refinements.
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To conclude, the proposed nonlinear subscale turbulence term with modal eddy
viscosity of Rempfer & Fasel (1994b) and energy-dependent scaling of Noack
et al. (2011) is a recipe for accurate and robust POD models for a large class
of complex flows, comprising the flow over an Ahmed body as shown here, a
mixing layer (Cordier et al. 2013), and subsonic jet noise (Schlegel et al. 2009). The
study emphasizes the decisive role of a good structure identification of the Galerkin
system propagator – here in form of a nonlinear stabilizing term – before parameter
identification methods are to be applied.
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Appendix A. Comparison between experimental data and LES data
This appendix describes the companion experiment at Institute PPRIME, which

serves as a reference for the LES. PIV and hot-wire data are used only to validate
the data obtained from the LES.

A.1. Description of the experimental set-up
The experiments were conducted in a closed-loop wind tunnel with a test section
of 6.24 m2. The model was mounted over an elliptical leading-edge flat plate, as
illustrated in figure 11. At the end of the flat plate, an inclined flap was adjusted
in order to obtain an upstream flow aligned perpendicularly to its leading edge.
This procedure was done without the bluff body in the wind tunnel. Considering
the upper area above the plate, the blockage ratio is approximately 2 % and no
blockage corrections were performed. The upstream velocity, measured on the upper
surface of the wind tunnel (above the model), was kept constant at U∞ = 15 m s−1.
Particle image velocimetry (PIV) was performed on the near-wake (see detail in
figure 11). Streamwise and transverse (respectively x and y directions) components of
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FIGURE 11. Experimental set-up.

the velocity field were measured using two LaVision Imager pro X 4M (resolution
2000× 2000 pixels) cameras. A laser sheet was pulsed (with time delays of 120 µs)
in the symmetry plane of the configuration and image pairs were acquired at a
sampling frequency of 3 Hz. Velocity vector calculations are processed with an
interrogation window of 32×32 pixels (an overlap of 50 %) giving a spatial resolution
of approximately 1 % of the model height. Starting with an absolute displacement
error of 0.1 pixels, the maximum uncertainty on instantaneous velocity fields is
estimated to be 0.2 m s−1. The mean flow was computed using 500 independent
velocity fields and the estimated statistical error for time-averaged velocity is 0.09σrms

with 95 % of confidence level and σrms is the local root mean square of the velocity.

A.2. Velocity profiles
Figure 12 presents a comparison between the LES results and the experimental data
for the time-averaged streamwise velocity component, u, at different locations in the
symmetry plane of the wake. The shear layer profile slightly downstream (0.03 H) of
the top trailing edge of the PIV data and the LES data are presented in figure 12(a).
The two profiles are in good agreement. The slow recovery of the shear layer is due to
momentum loss in the separation on the front edges of the body. Such slow recovery
of the shear layer profile at the trailing edge was also found in the experimental study
by Grandemange et al. (2013). Figures 12(b)–(f ) present profiles along lines extending
from the ground to a position above the wake at five different streamwise locations
in the wake. None of the profiles shows any significant discrepancy between the LES
and the PIV data.

A.3. Streamlines of time-averaged velocity in the symmetry plane
Figures 13(a) and 13(b) present the time-averaged flow in the symmetry plane
from the PIV data and the LES. The upper centre of the time-averaged toroïdal
vortical structure in the wake is located closer to the base than the lower centre. The
organization of the flow in the wake is very sensitive to the set-up, in particular the
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FIGURE 12. Profiles showing comparison of the time-averaged streamwise velocity
component, u, for different locations in the wake. (a) Shear layer profile 0.03H
downstream of the top trailing edge. Here y∗= y+0.5H. (b) 0.17H downstream; (c) 0.34H
downstream; (d) 0.5H downstream; (e) 0.67H downstream; (f ) 0.84H downstream.

gap clearance between the body and the ground. Therefore, similar studies of the
geometry show different organization of the wake. In the study by Grandemange et al.
(2013), the location of the upper vortical centre is located further downstream, at the
same distance from the base as the lower centre. However, both the gap width and
the Reynolds number were less in that study than presented here. Figures 13(c) and
13(d) show one instantaneous realization from the PIV and LES data, respectively.
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FIGURE 13. (Colour online) Comparison between experimental PIV data and LES data in
the symmetry plane. (a) time-averaged PIV; (b) time-averaged LES; (c) one instantaneous
realization of PIV data; (d) one instantaneous realization of LES data. The length of the
planes is 1.7H and the height is 1.5H.

mean(1n+) mean(1x+) mean(1s+)

0.55 80 20

TABLE 3. Spatial resolution in the LES.

A.4. Spectra of the transverse velocity component

Spectra of velocity are presented in figure 14 at a point located downstream of the
separation region. Both the hot-wire data and the LES data show a signature at St≈
0.2, corresponding to the global shedding of the wake. This peak was also found in
the study by Lahaye, Leroy & Kourta (2014).

Appendix B. Spatial resolution in the LES

The time-averaged spatial resolution on the body expressed in viscous wall units,
1n+=1n/λ+, 1x+=1x/λ+ and 1s+=1s/λ+, is presented in table 3. Here 1n, 1x
and 1s refer to the sizes of the cells in the wall-normal direction, streamwise direction
and spanwise direction, respectively. Here λ+ is the viscous length scale, defined as
λ+ = ν/u∗, where u∗ is the wall friction velocity. The size of the cells in the normal
direction on the body, n+, is everywhere less than 1. The spatial- and time-average of
the viscous length scale on the body, λ+, was computed to be 0.0002 H. The values
presented in table 3 refer to the mean values on the body.
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FIGURE 14. Power spectral density (PSD) of the transverse velocity component, v, at the
point x= 2.25H, y= 0.34H, of LES data and the velocity magnitude of the hot-wire data.
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FIGURE 15. A plane cut from the LES in the fifth cell layer away from the roof at
approximately y/λ+ ≈ 5, showing regions of low- and high-speed streamwise velocities.
The length of the plane is approximately 13 000λ+ (2.7H).

Figure 15 shows the streamwise velocity component in a plane cut in the inner
boundary layer on the roof. The figure reveals low- and high-speed streaks in the
streamwise direction, indicating the high spatial resolution in the LES.
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ÖSTH, J. & KRAJNOVIĆ, S. 2014 A study of the aerodynamics of a generic container freight wagon
using Large-Eddy Simulation. J. Fluid. Struct. 44, 31–51.
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