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Abstract

A phenomenological model for the vortex-shedding process behind blu1 cylindrical bodies is proposed.
Relationships between Strouhal frequency St, drag coe4cient cD, Reynolds number Re and geometric wake
parameters are obtained from mass conservation, momentum conservation in the transverse direction and
energy considerations. For the 5rst time, Roshko’s (Technical Report TN 3169, NACA, US Government
Printing O4ce, Washington DC, 1954) experimental discovery of vortex-street similarity behind di1erent
cylinders is analytically derived. In addition, the empirically obtained Strouhal-frequency laws of Roshko
(Technical Report TN1191, NACA, US Government Printing O4ce, Washington DC, 1954) and Fey (Phys.
?uids A 10 (1998) 1547) are also reproduced. Measurements of St and cD including their Re dependency for
?ows around cylinders with circular, square, triangular, semi-circular and other cross sections agree favorably
with the proposed model. c© 2002 Published by The Japan Society of Fluid Mechanics and Elsevier Science
B.V. All rights reserved.

PACS: 47.27.Vf (wakes); 47.32.Cc (vortex dynamics); 47.32.Ff (separated ?ows)

Keywords: Wake; Drag; Vortex street

1. Introduction

Flows around blu1 bodies at a su4ciently large Reynolds number give rise to periodic shedding of
vortices with alternating circulation resulting in the familiar von KDarmDan vortex street. Vortex streets
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Nomenclature

‘∞’ This subscript refers to high-Re values of the speci5ed quantity
� non-dimensionalized wavelength (	=D)
�? aspect ratio (	=D?)
� vortex-size parameter (D?=D)
 non-dimensionalized circumferential velocity of the von KDarmDan vortex (U?=U )
� boundary-layer thickness
� proportionality constant in Eq. (7)
	 wavelength of the vortex street
� kinematic viscosity of the ?uid
� density of the ?uid
� wake-de?ection angle (see Eq. (39))
�diss vortex dissipation time scale
�prod vortex production time scale
At area of the wake river in one wavelength 	
Ae area of the two vortices in one wavelength 	
B reduced energy-mode number (k=211=2�)
b width of wake river
c constant of proportionality in N = c=

√
Re

cD drag coe4cient
D diameter of the cylinder
D? diameter of the vortex (2R?)
Ec coherence energy (pressure energy) of both von KDarmDan vortices

in one wavelength 	
Ek kinetic energy of a single von KDarmDan vortex
Er rotational energy of the wake in one wavelength (2Ek)
Et translational energy of the wake river in one wavelength
E	 total energy of the vortex street in one wavelength (Er + Ec + Et)
FD time-averaged drag force
f vortex-shedding frequency
k energy-mode parameter (E	=Er)
k? re-scaled energy-mode parameter (�k)
m constant in the Fey et al. (1998) frequency law
N vortex-di1usion parameter
R radius of the cylinder
R? radius of the vortex
Re Reynolds number (DU=�)
Re? non-dimensionalized di1usion parameter (�kN=4)
Rec critical Reynolds number for onset of vortex shedding
St Strouhal number (fD=U )
St? universal Strouhal number (fD?=U )
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T vortex-shedding period
U velocity of the oncoming ?ow
U? circumferential velocity of the von KDarmDan vortex
uw maximum streamwise velocity ?uctuation of the wake river
vw maximum transverse velocity ?uctuation of the wake river
W width of the cylinder
yw centerline of wake river

can be observed behind telephone wires, perceived as Aeolian tones, behind buildings, chimneys and
other blu1 bodies. Pronounced vortex shedding can also be observed behind bodies which are far
from cylindrical, for instance, near the mountains of the Madeira island (Berger and Wille, 1972)
and behind tankers after a collision where the tanker oil improves the ?ow visualization.

The blu1-body wake is utilized in industrial applications. The persistent periodicity of vortex
shedding is exploited in a vortex counter as mass-?ux meter. The good mixing properties of the
vortex street are used in heat exchangers. However, often the drag and periodicity associated with
blu1-body wakes are undesirable. Examples include the landing noise due to vortices shedding behind
a wing in a high-lift con5guration, the hydrodynamic forces on a submarine conning tower, and
the potentially hazardous aero-elastic resonances between wakes and elasticity modes of chimneys,
bridges and other blu1 bodies.

A characteristic feature of the vortex street is its geometric similarity which is nearly independent
of the blu1 body generating it. This feature of the vortex street suggests that there should be analytical
relations between the Reynolds number Re=UD=�, which describes the boundary condition with the
lateral dimension of the obstacle D, the ?ow velocity U and the ?uid viscosity � and parameters
characterizing the ?ow, including the Strouhal number St, the drag coe4cient cD and the parameters
describing the vortex street. There are other structures that also bear little witness to the generating
mechanism, namely shock waves in gases and plasma. For these structures, one can give elegant
analytical relations linking parameters in the post-shock medium to the equivalent pre-shock quantities
and to the shock velocity. A well-known example are the Rankine–Hugoniot conditions for the
conservation of mass, momentum and energy augmented by the thermodynamic equation of state.
In this study, analogous equations for the vortex-street ?ow are found. The analysis is accomplished
by the use of conservation equations for mass, momentum and mechanical energy, augmented by an
equation of state and relations for the accessible modes of the mechanical energy of the ?uid.

Roshko (1954b) experimentally investigated laminar and turbulent wakes behind cylinders of dif-
ferent cross sections and observed geometric similarity among all vortex streets. From his data,
he derived empirical features of vortex streets that are Reynolds-number independent, and he pos-
tulated a ‘universal’ Strouhal number that is related to the wake width. The laminar and turbulent
vortex-shedding process is slightly a1ected by other phenomena as well, e.g. oblique shedding modes,
transition modes, Kelvin–Helmholtz instability, boundary-layer e1ects at the obstacle (see, e.g., the
reviews of Berger and Wille 1972; Williamson, 1996; Noack, 1999a, b). However, the main char-
acteristics of the vortex street are not strongly a1ected by these phenomena.

Development of experimental techniques, like particle-image velocimetry, has provided valuable
insight into the shedding processes from small Reynolds numbers to large Reynolds numbers in
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the tens of millions (Lin and Rockwell, 1994; Lin et al., 1995; Chyu et al., 1995; Brede et al.,
1997). Increasing computational capabilities have helped to reproduce and isolate many experimental
5ndings in the laminar and transitional Reynolds number regime (Karniadakis and Triantafyllou,
1992; Mittal and Balachandar, 1995; Zhang et al., 1995; Henderson, 1996). However, the complexity
of the vortex shedding process has eluded an analytical description of the subject. Von KDarmDan and
Rubach (1912) celebrated model describes the vortex street as a staggered periodic chain of vortices
with alternating rotational direction and where the spacing is derived from a stability consideration.
His model inspired numerous modi5cations. However, the assumed vorticity distribution, that of
point vortices, is far from realistic and the predicted transverse spacing is too large. Von KDarmDan
combined his geometrical model of the vortex street with a momentum consideration to derive a
drag relationship. Consequently, numerous drag models have been proposed, mainly focusing on
the mean ?ow (Roshko, 1993). These models have attempted to describe the role of physical and
geometric parameters of the mean recirculation zone. However, the Reynolds-number dependency
and coherent structures have not been explicitly incorporated. Coherent structures are intimately
related to ?uctuation amplitudes of drag and lift and also to the mean ?ow quantities.

In the present study, we pursue Roshko’s universal vortex street parameters and von KDarmDan’s
concept to derive blu1-body drag from a phenomenological model of the wake kinematics. The
model and its implications are outlined in Section 2. The predictions are compared with experimental
formulae and data for the Strouhal number and the drag coe4cient (Section 3). Finally, the study
is summarized and discussed (Section 4).

2. Model

In this Section, a phenomenological model for blu1-body wakes is proposed. In Section 2.1, the
main assumptions are outlined. The corresponding constitutive model equations are derived in Section
2.2. Using the model, aspects of the onset of vortex shedding (Section 2.3), the intermediate (Section
2.4) and the high Reynolds number regime (Section 2.5) are described.

2.1. Assumptions

The phenomenological near-wake model describes a cylindrical object which translates with con-
stant speed U through ambient ?uid and has lateral dimension D. This model is based on three
major experimental and analytical 5ndings related to the geometry of the vortex street, the energy
associated with the streamwise motion, and a momentum analysis of the transverse motion.

2.1.1. Vortex-street geometry
The cylindrical object generates a nearly periodic vortex street downstream characterized by a

streamwise wavelength 	. The vortex street consists of a meandering river and a staggered array
of vortices with alternating vorticity direction (see, for instance, Fig. 3.22, 3.23, 5.16 and 5.19 in
Zdravkovich, 1997 or Schlichting and Gersten, 1999). The vortices do not translate much with respect
to the ambient ?uid. For reasons of simplicity, the vortices are assumed to be Rankine vortices of
diameter D? = 2R? and circumferential velocity U?. Fig. 1 illustrates this assumption.
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Fig. 1. Principal sketch of the wake generated by a blu1 cylindrical object of diameter D and span W . The object travels
with constant speed U through ambient ?uid.

The described periodic structure is observed in numerous ?ow visualizations (see, for instance,
Ahlborn et al., 1998) and simulations (see, for instance, Zhang et al., 1995). Williamson (1989)
measures the velocity of the vortices in the laminar regime. The vortices follow the cylinder with
speed 0:15 U in the near-wake and lower velocities still further downstream. This small translational
vortex velocity is consistent with measurements in the turbulent Reynolds number regime. Thus, the
assumption of stationary vortices is roughly consistent with experiment.

The nearly stagnant vortex street is linked to the observed rapid decline of the wake de5cit behind
the mean recirculation zone which is only approximately one cylinder diameter long (Balachandar et
al., 1997). The streamwise decline of the transverse velocity di1erence is caused by the good initial
mixing properties in the vortex formation region near the recirculation zone. Further downstream,
the wake river is essentially ‘detached’ from the obstacle and its speed signi5cantly smaller than the
speed of the cylinder. The vortices follow the obstacle at an even smaller speed than the wake river
due to the displacement towards the ambient ?uid. Hence, the assumption of stagnant vortices is
applicable behind the vortex formation region and its accuracy improves in the streamwise direction.

2.1.2. Mechanical energy of the wake Cuctuation
The cylinder motion through the ambient ?uid generates a drag force, FD, and corresponding

‘towing’ power, FDU . This power is assumed to be completely converted into mechanical wake
energy. This assumption is made in 5nite-wing theory (see, for instance, Panton, 1984) where the
trailing edge vortices are related to the wing drag.

The towing power initiates the motion of the full wake: the mainly translational motion of the
wake river, the rotation of the vortices, and the pressure energy of the vortices. The latter can be
de5ned by the pressure defect p − p∞ integrated over the vortex volume,

∫
dV (p − p∞), where

p∞ represents the static pressure of the ambient ?uid. The pressure defect holds the spinning vortex
together against centrifugal forces and is a measure of the coherence of the vortex. Hence, Ahlborn
et al. (1991) call this quantity ‘coherence energy’. While the translational and rotational energy
represent two forms of the kinetic energy, the coherence energy may be viewed as potential energy
due to the pressure 5eld. This pressure energy may be released in kinetic energy in the spirit of
Malkus (1956). This interpretation is corroborated by the Ahlborn et al. (1991) numerical study of
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vortex interactions in which the sum of kinetic and coherence energies is found to be approximately
conserved, whereupon each form of energy signi5cantly changes with time.

Eventually, the mechanical wake energy converts to thermal energy (heat). We assume that the
viscous dissipation per wavelength 	 and per shedding period T is small compared to the total energy
generated by the towed cylinder during this period. This assumption is plausible for the considered
shedding regime, i.e. at Reynolds numbers Re = UD=��1, (� is the ?uid kinematic viscosity).

2.1.3. Vorticity production and transverse momentum
In Ahlborn et al. (1998), the vortex-shedding process is analytically investigated with the transverse

component of the momentum equation and the vorticity equation. The analysis takes into account
the vortex production, convection and dissipation mechanisms and their e1ects on transverse ?uid
motion. The following equation for the Strouhal frequency St = fD=U is subsequently derived,

St2 +
4N
�2Re

St =
cD + 1
23=2�2�2 : (1)

The 5rst term on the left-hand side (l.h.s.) arises from the near-wake inertia. The second term on
the l.h.s. is associated with vorticity di1usion. This term contains the normalized vortex diameter
de5ned as

� = D?=D (2)

and a dimensionless empirical di1usion parameter N which describes the strength of the vorticity
gradient. The right-hand side (r.h.s.) of Eq. (1) is related to vorticity production (cD + 1)U 2=2,
where cD is the drag coe4cient. This vorticity production was rigorously derived from the vorticity
equation without simplifying assumptions. The term contains the well-known contribution U 2=2 from
free shear layers (Cottet and Koumoutsakos, 2000) and also incorporates the e1ect of the pressure
5eld due to form drag. This analysis agrees favorably with experiment in Ahlborn et al. (1998).

2.2. Constitutive model equations

In the following, three constitutive model equations are derived from the assumptions outlined in
the previous section. These equations constitute the main part of the model from which most insights
of the wake dynamics are obtained in the following sections. Their derivation is based on kinematic
considerations and the mass, momentum and energy balance equations of ?uid mechanics without
utilizing further approximations.

The geometric wake assumption implies that in the blu1 body’s 5xed frame of reference the
wavelength 	 of the vortex street is the product of the oncoming velocity U and the shedding
period T = 1=f, or, equivalently, 	f = U . The relationship can be expressed as a function of the
non-dimensionalized wavelength � = 	=D and the Strouhal number St = Df=U , yielding �St = 1.
Alternatively, the wavelength–frequency relationship can be expressed in terms of wake-intrinsic
properties. Following Roshko (1954b), we introduce the ‘universal’ Strouhal number St? = fD?=U
and the aspect ratio �? = 	=D?. Thus,

�St = �?St? = 1: (3)

An energy balance yields a second relationship as follows. The energy required to tow the cylinder
of spanwise length W through the ambient ?uid for one period is FD	. The drag force can be
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expressed in terms of the drag coe4cient cD by FD = 1
2 cD�U

2DW and the wavelength by 	=D=St.
Thus,

FD	=
1
2
cD�U 2D2W=St: (4)

The energy contained in one wavelength of the vortex street consists of the rotational kinetic energy
Er of a pair of counter-rotating Rankine vortices, the associated coherence energy Ec (Ahlborn et
al., 1991), and the translational kinetic energy Et of the river, i.e. the total energy is given by
E	=Er +Ec +Et . The rotational energy of the Rankine vortex Ek is, by de5nition, the kinetic energy
of a solid body with constant density �, height W , radius R?, and circumferential velocity U?, i.e.
Ek = �

4�R
?2
U?2

W . The ratio = U?=U between the circumferential velocity of the vortex and the
free-stream velocity can be estimated from the phenomenological picture. The velocity di1erence
across the vortex diameter D? is 2U?. Assuming that the vortex has no slip with the two ?ow
regions with velocity 0 and U , the velocity di1erence 2U? is given by U , or, equivalently

=
U?

U
=

1
2
: (5)

Thus, the rotational energy becomes

Er = 2Ek =
�
8
�22�U 2D2W: (6)

For a Rankine vortex, the coherence energy has the same magnitude as the kinetic energy (Ahlborn
et al., 1991). The contribution of translational, rotational and coherent energy per unit wavelength
is summarized as

E	 =
1
2
��2�U 2D2W; (7)

where the non-dimensional parameter � has been introduced. The ratio between the total energy and
the rotational energy per unit wavelength is

k =
E	

Er
=

4
�

�
2

=
16
�

�: (8)

This ratio is called the ‘energy-mode parameter’ in the following.
The energy balance implies that FD	= E	, or, employing Eqs. (4), (7) and (8),

cD =
�
16

k�2St: (9)

This drag relation can be interpreted as follows. With increasing k, the energy content per period
increases assuming the other parameters to remain constant. Thus, the towed blu1 body must pro-
vide more energy to the ?uid which implies an increasing drag coe4cient. By a similar reasoning,
the drag coe4cient grows when the vortex size characterized by � increases. The drag coe4cient
indicates how much energy is put into the ?uid per unit time and �

16 k�
2 is the energy released

per vortex-shedding period. The Strouhal number is, hence, the conversion factor between both time
scales in Eq. (9). Eq. (9) seems to contradict the engineering rule-of-thumb that cD scales inversely
with Strouhal number St. However, for geometrically similar vortex streets, k is a constant but �˙ 	
and St ˙ 1=	. Hence, Eq. (9) implies cD ˙ 1=St for a class of geometrically similar vortex streets
in agreement with engineering experience.
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The energy-mode parameter k has a simple geometrical interpretation. The ?ow is considered in a
frame of reference at rest with the ?uid. The energies associated with the nearly stationary vortices
can be described in terms of their areas Ae = 1

2 �(D
?)2 by Er = Ec = 1

8 Ae�WU 2. The translational
energy is stored in a meandering river of width b and follows the blu1 body with its velocity U . The
river area per wavelength is At = 	b. The translational energy can be expressed by Et = 1

2 At�WU 2.
Thus, the energy-mode parameter is a function of the ratio between these two areas,

k =
Et

Er
=

Et + Er + Ec

Er
=

Et + 2Er

Er
= 2 + 4

At

Ae
: (10)

This relation indicates that the achievable density of rotational vortex street energy is less than the
density of translational motion energy.

Eq. (10) may also be interpreted with a thermodynamics analogy. The rotational energy Er may
be associated with the energy of a single degree of freedom in analogy to kT=2 (k: Boltzmann factor,
T : temperature). Then, the energy-mode parameter k is analogous to the thermodynamic degrees of
freedom n. In thermodynamic equilibrium, one would expect a value of k = 3, i.e. the same energy
in the translational, rotational and coherent mode of energy. In ?uid dynamics, there is no reason to
expect this equilibrium.

The conservation of momentum (1) is the third constitutive model equation. Elimination of � in
Eqs. (1) and (9) yields

St
(
cD +

Re?

Re

)
= B(cD + 1); (11)

where the ‘reduced energy-mode number’ B and the ‘vorticity-di1usion parameter’ Re? have been
introduced to emphasize the simple structure of the drag–frequency relation. These parameters are
de5ned by

B=
k

211=2�
;

Re? =
�kN
4

:

This drag-frequency relation (11) can loosely be interpreted as follows. The r.h.s. is related to vor-
ticity production. The 5rst and second term of the l.h.s. can be related to the vorticity accumulated in
the vortices and the vorticity lost by di1usion, respectively. Di1usion reduces the Strouhal frequency
since the vorticity needs longer to cumulate to a given size vortex.

The wake ?ow is characterized by six parameters of which two (cD; St) depend on the time-
dependent force on the blu1 body, two (�; �) are related to the vortex-street geometry, and two
(N; k) are associated with the energies. These parameters can also be further categorized in terms of
streamwise and transverse motions. Table 1 summarizes the independent parameters. The Reynolds
number characterizes only the boundary condition and not the property of the vortex-shedding process
in the wake. The universal wavelength �? = �=� and universal Strouhal number St? = �St can be
derived from the set of independent parameters.
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Table 1
List of the six ?ow parameters and their interpretation

Parameters : : : streamwise : : : transverse corresponding
related to : : : motion motion equation

: : : force (1) cD = 2FD
�U2DW (2) St = Df

U Conservation
on object of momentum

: : : vortex (3) � = 	
D (4) � = D?

D Conservation
street kinematics of mass

: : : vortex street (5) k = 16
�

FD	
�U2D2W (6) N Conservation

dynamics Alternatively: Alternatively: of energy
B = 1

211=2�
k Re? = �

4 kN

In summary, three constitutive model Eqs. (3), (9) and (11) relate the Reynolds number and the
six wake ?ow parameters in Table 1,

Fn(Re; cD; St; �; �; k; N ) = 0; n= 1; 2; 3: (12)

Ideally, there are as many relations as parameters. However, some of these are probably body-speci5c
and hence more complicated. Here one can think of three further relations which would close the
system of equations: (1) The dynamics of viscous dissipation in the vortex shear-layer, (2) the
mechanism of initial vortex formation near the object, and (3) the distribution of energy between
the three mechanical energy modes (translational, rotational, and coherent) in the wake. The 5rst
connects Re; N and �. The second links Re, �; � and St, and requires detailed knowledge of the
blu1-body shape. The third ties together cD; Re; St, and N . In the spirit of looking for general
relations between the vortex-shedding parameters, we avoid these object-speci5c relations, and settle
for relations containing several parameters.

With six parameters in a system of three equations, only three parameters can generally be ex-
pected to be eliminated by Eq. (12), leaving three wake parameters in each formula, e.g. cD =
cD(Re; �; �; k); St= St(Re; �; �; k), etc. In the following sections it turns out that there is more struc-
ture and beauty in the constitutive model equations. This structure can be exploited to remove more
adjustable parameters as will be shown next.

2.3. Onset of vortex shedding

The mechanism for the onset of vortex shedding can be explained by vorticity production and
dissipation considerations. Vortex shedding can be expected to occur if the dissipation time scale
�diss for vortex decay is larger then its production time �prod. Two vortices are produced per shedding
period T = 1=f = D=St U , i.e. the production time is given by

�prod =
T
2
=

D
2St U

: (13)
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In order to estimate the dissipation time, the von KDarmDan vortex is modeled by an Oseen vortex.
Its circumferential velocity distribution is given by uOseen = ((=2�r)[1 − exp(−r2=4�t)], where (
represents the circulation and r the radial distance from the vortex center (see, for instance, Panton,
1984). The e-folding time scale with the vortex core radius R? reads (see, for instance, Ahlborn et
al., 1985),

�diss =
R?2

16�
=

�2D2

64�
; (14)

using R?=D?=2=�D=2. Vortex shedding occurs if the dissipation time is larger than the production
time, i.e. �diss¿ �prod. Hence, �diss = �prod and Eqs. (13) and (14) de5ne the onset Reynolds number
to be Rec = 32=�2St. The Strouhal number can be eliminated with the energy equation (9),

Rec =
2�k
cD

: (15)

According to Eq. (15), the critical Reynolds number increases with decreasing drag coe4cient, i.e.
with more streamlined obstacles. The onset is also delayed by an increasing energy-mode parameter
k, i.e. decreasing amount of kinetic energy in rotational form. Both trends are physically plausible.

For the ?ow around a circular cylinder, we obtain Rec = 46 using typical values, cD = 1:5 at low
Reynolds numbers and k = 11 of Section 3.2. This estimate is in good agreement with the value of
Rec = 46 predicted by linear stability theory for the circular cylinder (Jackson, 1987; Zebib, 1987;
Noack and Eckelmann, 1994).

2.4. Intermediate Reynolds number regime

In the intermediate Reynolds number regime, where viscosity e1ects still play a role, Eqs. (3),
(9) and (11) are applicable. From this set of equations, one can derive relations between cD; � and
� as function of St; Re; Re? and B, namely

St = B
cD + 1

cD + Re?=Re
; (16)

cD =
B− St Re?=Re

St − B
; (17)

�=
1
St

=
cD + Re?=Re
B(cD + 1)

; (18)

� =
1

23=4�St

√
cD(cD + 1)
cD + Re?=Re

: (19)

Relation (16) predicts that the Strouhal number should increase with Reynolds number and should
converge asymptotically to a 5nite value, as observed in experiments. The drag formula (17) has
an interesting, non-trivial implication. The drag coe4cient can only be 5nite and positive for all Re
if B¡St¡BRe=Re?. In other words, the model imposes a lower and upper bound on the Strouhal
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number. In addition, the inequality can only be ful5lled at Re¿Re?, i.e. Re? can be considered
as a lower bound for the critical Reynolds number for the onset of vortex shedding. The following
analysis of experimental data in Section 3 con5rms this interpretation. Eq. (18) brings out the inverse
proportionality between shedding frequency and wavelength. This equation is, of course, equivalent
to the Strouhal equation (16) appreciating the inverse proportionality between shedding frequency
and wavelength (3). The vortex-size equation (19) indicates that di1usion at low Re values increases
the vortex size.

2.5. High Reynolds number regime

At high Reynolds numbers, the wake parameters asymptotically approach values which can be
inferred from Eqs. (16)–(19) and are denoted by the subscript ‘∞’:

St∞ = B
cD;∞ + 1
cD;∞

; (20)

cD∞ =
B

St∞ − B
; (21)

�∞ =
cD;∞

B(cD;∞ + 1)
: (22)

The vortex-size parameter � is intimately linked to the universal wake parameters,

St?∞ = �∞St∞ =
D?∞
	∞

=
1

23=4�

√
cD;∞ + 1; (23)

�?∞ =
	∞
D?∞

=
23=4�√
cD;∞ + 1

: (24)

Eq. (20) reveals that a large drag coe4cient is associated with a small variation in the Strouhal
number in dependency of Re, since B¡St¡St∞. The wake dynamics of a blu1 body is dominated
by pressure 5elds and less by viscous di1usion. For instance, the ?ame-holder with a triangular cross
section or a plate has a large drag coe4cient and its shedding frequency depends only weakly on the
Reynolds number. In contrast, di1usion and boundary-layer e1ects play a larger role for the laminar
wake of more streamlined cylinders with small cD.

The proportionality between the Strouhal number St?∞ and the reduced energy-mode number B,
expressed by Eq. (20), can be interpreted in geometric terms. A small B indicates that a large portion
of the wake energy is concentrated in rotational energy and correspondingly larger wake vortices.
Larger vortices imply a longer wavelength and hence a smaller Strouhal frequency. Eq. (23) is the
most signi5cant result to this point. The universal aspect ratio St?∞=�∞St∞=D?∞=	∞ of the vortex
street is independent of the energy-mode parameter k, and only a function of cD;∞. This implies
that the distribution of energy between rotation, coherence energy, and translational river energy is
stable. The vortex street retains no features of the blu1-body geometry that generated it. Therefore,
one 5nds the same wake structure for all blu1 bodies that have the same drag coe4cient. Eqs. (21)
and (22) con5rm our interpretation from the discussed Strouhal- and vortex-size equations (18)
and (19).
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Fig. 2. Three invariants of vortex streets at large Reynolds numbers in dependency of the drag coe4cient, �St (♦); k� (◦),
and k=St ( ).

Three invariants, which depend only on cD;∞, can be constructed from Eq. (9). This equation can
be rewritten as cD = �

16 k
?St? = �

16 (k=St)(St
?)2 with the universal Strouhal number St? = �St and

the re-scaled energy-mode parameter k? = �k. Since the l.h.s. and St? depend only on cD at large
Re; k? and k=St similarly depend only on cD at large Re. These invariants are displayed in Fig. 2.
Apparently, the drag coe4cient is the most important order parameter of turbulent vortex streets.

As an example, the universal Strouhal number is calculated for the circular cylinder with cD=1:1.
We obtain St?∞ = 0:274. Roshko (1954b) measures a similar universal Strouhal number of 0.28 for
a large class of cylindrical cross sections. The small Strouhal number variations for the cylinders
studied can be attributed to the fact that Roshko’s blu1 bodies have cD ≈ 1 and that St?∞ in Eq. (23)
depends only weakly on cD. The universal aspect ratio is St∞�∞ = 0:27.

3. Analysis of experimental data

In this section, experimental values of drag, Strouhal number and Reynolds number from the
literature are combined with the model relations in order to look at known functional relations and
to extract new insight into the structure of vortex streets. In Section 3.1 the model is shown to
correctly predict empirical frequency laws. In Section 3.2, the vortex shedding behind a circular
cylinder at high Reynolds numbers is discussed. In particular, the change of the vortex-street geom-
etry throughout the drag crisis is analyzed. In Section 3.3, the vortex-street geometry is studied for
various cylindrical objects with circular and other cross sections.

3.1. Frequency laws

In Eq. (16), the Strouhal number is expressed as a function of B; cD; Re?, and Re. We assume
that the 5rst three quantities depend weakly on Re. At large Re, the denominator of Eq. (16) can
be expanded to 5rst order in 1=Re, thus yielding

St = St∞
(
1− b

Re

)
; (25)
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where St∞ is described by Eq. (20) and b= Re?=cD. This frequency law has the form of Roshko’s
empirical formula for the laminar wake behind a circular cylinder,

St = 0:212
(
1− 21:2

Re

)
: (26)

Therefore, a rough estimate of Re? and k can be obtained:

Re? = bcD = 21:2cD; (27)

k = 211=2�B= 211=2�St∞
cD

cD + 1
: (28)

With cD = 1:1 at Re ∼ 100, Eq. (27) yields Re? =23. Thus, Re? is a conservative lower bound for
the critical Reynolds number Rec = 46 at the onset of vortex shedding, as speculated in Section 2.4.
Re? = 23 coincides with the boundary for the di1usion-dominated regime Re¡ 25 of the cylinder
wake. In this regime, no vortex shedding can be excited because the viscous dissipation continuously
overwhelms the vorticity production rate. Mathematically this is revealed in the stability spectrum,
which has no pronounced complex conjugated eigenvalue pair (Noack and Eckelmann, 1994).

Eq. (28) yields an energy-mode parameter of k = E	=Er = 15:8 at St∞ =0:212; cD = 1:1, i.e. only
6% of the total wake energy is stored in rotational form. The analysis reveals that most of the
kinetic energy is stored in the translational mode. This energy distribution explains the applicability
of quasi-steady ?ow models for the drag analysis (Roshko, 1993; Balachandar et al., 1997). The
dominance of the time-averaged ?ow in the energy ?ux as compared to the contribution of turbulent
kinetic energy is also observed in the di1user ?ow, even in the transitory stall regime (Coller et
al., 2000). However, the value for the ratio should not be taken too literally since the formula
for rotational energy is based on a crude simpli5cation. In particular, the vortex edge velocity was
assumed to be U? = U=2. In fact, if the circumferential edge velocity was smaller than U=2, the
energy balance which relates to the measured cD can still be satis5ed if k = E	=Er is larger than 3.

Fey et al. (1998) propose another frequency law,

St = St? +
m√
Re

; (29)

with di1erent values for St? and m in di1erent shedding regimes of the circular cylinder wake. Their
empirical formula agrees better with experimental data than Roshko (1954a). It is possible to derive
Eq. (29) from our model with a re5ned assumption. In the derivation of Roshko’s law, Re?=�kN=4
is assumed to depend weakly on Re. In Ahlborn et al. (1998), N estimates the non-dimensionalized
vorticity gradient at the boundary of the von KDarmDan vortex. During its creation, the von KDarmDan
vortex rolls up the vorticity of the separating boundary layer of thickness �. According to laminar
boundary-layer theory, this non-dimensional thickness varies inversely with the square-root of the
Reynolds number, �=D˙ 1=

√
Re. Hence, N ∼ D=�˙

√
Re. With N = c

√
Re,

Re?

Re
=

�
4
ck
√
Re: (30)

Substituting Eq. (30) in the Strouhal formula (16) and expanding for small 1=
√
Re yields to the 5rst

order

St = St∞
(
1− �

4
ck

cD
√
Re

)
: (31)
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This Strouhal-frequency law (31) has the same form as the previously proposed Eq. (29) and the
coe4cients coincide if

St∞ = St?; n=−4
�
mcD
k

: (32)

In the laminar shedding regime, 46¡Re¡ 160; m ≈ −1 and hence c = 0:1. The derivation of Eq.
(31) assumes a laminar boundary-layer. However, at boundary-layer transition, i.e. Re ≈ 3×105, the
Reynolds-number dependent term in Eq. (31) is small and can be neglected. It should be noted that
the subtle changes in the di1erent turbulent shedding regimes (Noack, 1999b; Williamson, 1996)
require some modi5cations of the coe4cients St?; m (Fey et al., 1998) and are not considered in
our simple model.

3.2. Wake of the circular cylinder

Schewe (1986) experimentally determined Strouhal numbers and drag coe4cients for the cir-
cular cylinder over a large Reynolds number range, 20 000¡Re¡ 107. This range includes the
‘drag crisis’ regime where Strouhal number and drag coe4cient vary greatly. An energy analysis of
Schewe’s data reveals the variability of the wake parameters and also shows that the high-Re for-
mulae (20)–(23) are valid since Re�Re?. The energy-mode and vortex-size parameters can easily
be inferred from Eqs. (28) and (23) omitting the subscript ‘∞’ for high Reynolds numbers,

k = 211=2�
cDSt
cD + 1

; (33)

� =
1

23=4�

√
cD + 1
St

: (34)

Fig. 3 shows the measured Strouhal number and drag coe4cient as well as the energy and vortex-size
parameters k and � as a function of the Reynolds number. Evidently, the vortex size changes
drastically at the drag crisis. This was expected from Schewe’s ?ow visualizations. However, the
wavelength also decreases so that the aspect ratio �St is maintained. Also, the energetics of the wake
seems to be less a1ected by the drag crisis since k is practically unchanged at the equilibrium value
11, and only drops slightly at Re=3×106 where the drag increases again. This implies that even at
high Reynolds numbers most of the energy resides in the wake river and the eddies represent only
a minor energy contribution. Since k ≈ 11, one can solve Eq. (33) for St to get a simple relation
between Strouhal number and drag coe4cient:

St ≈ 0:077
CD + 1
CD

: (35)

Similarly, an approximation for the vortex-size parameter can be obtained from Eqs. (34) and (35),

� ≈ 1:2
CD√
CD + 1

: (36)

While k is nearly constant, the vortex size � grows steadily with CD. Eqs. (35) and (36) can be
combined to obtain the universal Strouhal number

St? = �St ≈ 0:92
√

CD + 1: (37)

Formulae (35)–(37) derived from the Reynolds-number dependent data of a blu1 body will be
compared with cylinders of di1erent cross sections in Section 3.3.
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Fig. 3. Analysis of Schewe’s data in dependency of the Reynolds number. In the upper 5gure, the Strouhal data St is
denoted by on open circle (◦), the drag coe4cient cD by an open square ( ) and the energy-mode parameter k obtained
from Eq. (33) by a diamond (♦). In the lower 5gure, the universal Strouhal number St? = �St (◦), the aspect ratio
1=� = 	=D = 1=St ( ), and the vortex-size parameter � derived from Eq. (34) (♦) are shown.

The parameter k derived here from experimental Strouhal numbers and drag coe4cients, can
alternatively be displayed as functions of the eddy size � (see Fig. 4). This presentation emphasizes
the fact that the drag coe4cient increases with eddy size, and that the energy fraction k in the wake
is practically independent of eddy size. A bifurcation may be occurring for large eddies (�¿ 0:65),
where both k and cD become double valued. There is no current explanation for this phenomenon.

3.3. Wake of cylinders with various cross sections

The formalism developed in this study permits to investigate the vortex streets of blu1 bodies
where measured drag coe4cients and Strouhal numbers exist. The analysis can be carried out an-
alytically by the use of Eqs. (33) and (34) or graphically. For the graphical analysis, a parameter
net of curves of equal k- and �-values is drawn into a St–cD-plane, Fig. 5. An iso-k-curve is
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Fig. 4. Energy-mode parameter k (◦) and drag coe4cient cD (5) as a function of the vortex-size parameter � from the
data of Fig. 3.

Fig. 5. Strouhal number St as function of the drag coe4cient cD for various body shapes. The 5gure displays the data
(St; cD) in an iso-k and iso-� net. The numbered open squares indicate the kind of the cross section. The numbers refer
to following data: (1) Store belt bridge (Schewe and Larsen, 1998), Re = 5 × 104; (2) Store belt bridge (Schewe and
Larsen, 1998), Re = 2 × 106; (3) Circular cylinder (Norberg, 1993), Re = 13; 000; (4) Takoma narrows (Schewe and
Larsen, 1998), Re=4:2× 105— 8× 105; (5), (7), (8) Square cylinder (Vickery, 1966); Re=176 000; (6) Square cylinder
(Norberg, 1993); (8) Circular cylinder (Seto, 1990; Seto et al., 1992) at Re = 9300.

obtained by solving Eq. (33) for St and inserting, for instance, k = 12. Then, St(cD; k = 12) is plot-
ted, which yields the middle curve of the k-family in Fig. 5. The curves of the �-family are similarly
obtained by solving Eq. (34) for St and calculating St(cD) at various 5xed values of �. Experimental
data points St(cD) for various cylindrical bodies are also shown in Fig. 5. By interpolating between
the k- and �-curves, one can directly read o1 the energy-mode parameter k with the vortex-size
parameter �. Note that the Strouhal frequency St decreases with increasing � assuming that the
other parameters remain constant. Since the assumed speed of propagation U of the vortex street is
5xed, the shedding is inversely proportional to the size of the vortex street as characterized by the
vortex-size parameter �. At a given shedding frequency, the drag coe4cient is seen to increase with
the energy-mode parameter k. This parameter characterizes the energy content per unit wavelength
which the drag force has to produce.
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Table 2
Experimental data and derived quantities for various cross sections. The data sets are sorted by increasing drag coe4cient.
We use data of Schewe and Larsen (1998) for the store belt bridge and square cylinder at Re = 105, of Schewe (1984)
for the Tacoma bridge and inclined square cylinder, of Seto (1990) for the circular cylinder, of Norberg (1993) for the
square cylinder at Re = 13000, and of Lee (1975) for the square cylinder at Re = 176 000

Source Re cD St � k �St tan � �

Store belt bridge 2× 106 0.600 0.220 0.915 11.7 0.201 0.632 32:3
◦

Store belt bridge 50 000 0.680 0.180 1.15 10.4 0.206 0.648 32:9
◦

Circular cylinder 4500 0.700 0.217 0.956 12.7 0.208 0.652 33:1
◦

Tacoma bridge 6× 105 1.25 0.117 2.04 9.24 0.239 0.750 36:9
◦

Square cylinder 1:76× 105 2.04 0.122 2.70 11.6 0.330 1.04 46:0
◦

Square cylinder 105 2.05 0.118 2.36 11.3 0.278 0.873 41:2
◦

Square cylinder 13 000 0.216 0.132 2.14 12.8 0.283 0.889 41:6
◦

Inclined square cylinder 6× 105 2.40 0.120 2.45 12.0 0.293 0.922 42:7
◦

10

1

0 0.5 1 1.5 2 C
D
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ß

Fig. 6. Vortex-size parameter � (◦) and energy-mode parameter k (5) as function of the drag coe4cient cD for the
experimental data in Table 2.

All these vortex streets, generated by very di1erent blu1 bodies have roughly the same energy-mode
parameter k ≈ 11, which is the same value extracted from Schewe’s data for the circular cylinder
over a large range of Reynolds numbers. One can therefore conclude by Eq. (10) that the area ratio
of wake river to vortices is At=Ae ≈ 11 − 2 = 9 for all vortex streets at high Reynolds number.
This implies that most of the energy is contained in the wake river and not in the vortices. The
energy-mode parameter k and other quantities are summarized in Table 2. Employing the approxi-
mate formulae (36) and (37) obtained in Section 3.2 for the circular cylinder, we expect that � and
St? = �St as reported in Table 2 are only functions of cD. This expectation is corroborated by a
corresponding illustration in Fig. 6.

The universal Strouhal number St? = �St has a useful geometrical interpretation: It characterizes
the maximum excursion angle � of the meandering vortex street, de5ned in Fig. 1. The wake can
be approximated by a wake river which meanders around a staggered array of von KDarmDan vortices
of radius R? and streamwise wavelength 	 (see Sections 2.1 and 2.2). The centerline yw(x) of the
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Fig. 7. Maximum de?ection angle � (40) as function of the drag coe4cient for the experimental data of Table 2.

wake river can hence be approximated by a sinusoidal wave motion where the amplitude (centerline
deformation) scales with the radii of the vortices,

yw = R? sin
(
2�x
	

)
: (38)

The maximum slope of this curve dyw=dx describes the velocity ratio of the transverse wake velocity
vw to the streamwise component uw with respect to the ambient ?uid, i.e.

vw
uw

=
dyw

dxw
=

2�R?

	
cos

(
2�x
	

)
: (39)

The associated maximum de?ection angle � is expressed by tan �=dyw=dxw. Employing the de5nition
of the Strouhal number, Eqs. (2) and (23), the de?ection of the wake river and the amplitude of
the velocity ratio (39) can be expressed by

tan �=
(
vw
uw

)
max

=
(
dyw

dx

)
max

= ��St = �St? =
cD + 1
23=4

: (40)

The quantity tan � is referred to as the ‘wake-de?ection parameter’. This parameter is proportional to
the universal Strouhal number St? which can thus be neatly interpreted as the amplitude of the river
deformation. Like the universal Strouhal number, the wake-de?ection parameter is only a function
of the drag coe4cient at high Reynolds numbers. Fig. 7 displays the maximum de?ection angle
� as a function of the drag coe4cient using the data of Table 2. The change of this angle varies
signi5cantly from 32◦ to 43◦. Note also that this angle has a limiting value of �0=arctan 2−3=4=30:7◦

according to Eq. (40). This limiting angle is approached for blu1 bodies when cD is very small.
This 5nding is corroborated by ?ow visualizations in the laboratory reference frame (Ahlborn et
al., 1998). The corresponding velocity ratio is also in good agreement with numerical data for the
wake behind a circular cylinder. The transverse velocity component in the laminar and transitional
near-wake is numerically observed to be approximately 60% of the oncoming velocity (Zhang et al.,
1994), which corresponds to a velocity ratio of 0:6. Eq. (40) may be used to determine the drag
coe4cient of a structure if the ratio of the transverse and the longitudinal velocity components uw
and vw of the wake river are measured.
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In summary, the wake geometry is essentially parameterized by two quantities, the energy-mode
parameter k and the universal Strouhal number St?.

4. Conclusions

A phenomenological model is proposed for the formation of the vortices and vortex street down-
stream of a blu1 body. A detailed analysis based on the mass, momentum and energy balance
equations yields relationships between the Strouhal number, the drag coe4cients and the Reynolds
number.

In addition, the onset Reynolds number is predicted and permissible ranges of geometric wake
parameters are shown. Thus, well-known trends of the Strouhal number vs. Reynolds number relation-
ships are explained. The discrepancy of the analytical forms of di1erent empirical Strouhal frequency
laws are traced back to the vorticity di1usion. Roshko’s (1954a) law St = 0:212(1 − 21:2=Re) for
the laminar shedding behind a circular cylinder is consistent with a Re-independent di1usion num-
ber N in the proposed model. This constancy implies that the di1usion layer of the von KDarmDan
vortex is Reynolds-number independent. However, it is physically more plausible that the di1usion
layer scales with the boundary-layer thickness, since the evolving vortex rolls up the shear-layer
originating from the separation point. This reasoning leads to a proportionality of the di1usion layer
with 1=

√
Re resulting in a frequency law suggested by Fey et al. (1998) for the circular cylinder

wake, St = St? + m=
√
Re. However, for other cylindrical cross sections, it is not a priori evident

that the Fey et al. formulae is necessarily superior to Roshko’s analytical form. To the best of the
authors’ knowledge, the model represents the 5rst derivation of an experimentally observed St–Re
relationship.

A second important outcome of the model is the Strouhal-drag coe4cient relationship. The corre-
lation of St and cD becomes very evident in the drag crisis regime of the cylinder’s wake (Schewe,
1986) where a sudden increase in Strouhal number at Re = 3 × 105 is accompanied by a large
decrease in drag coe4cient. It is empirically known that the Strouhal number varies inversely with
the drag coe4cient. In the present model, the 5ne-structure of the St–cD relationship is elaborated
in terms of geometric and energetic wake parameters. Thus, experimental data for St and cD provide
insight into the wake energetics, e.g. how the vortex size is linked to the blu1-body dimensions.
Such models may be useful in engineering contexts when only the drag force can be monitored
in time for di1erent oncoming velocities. From this drag data, the Strouhal number and thus the
St–cD relationship can be inferred. Thus, wake properties can be indirectly assessed. Furthermore,
the universal Strouhal number St? is shown to be directly proportional to the ratio of transverse
to longitudinal velocity components in the wake. This raises the possibility of determining drag co-
e4cients for arbitrarily shaped cylindrical blu1 bodies through measurements of the wake velocity
components.

Third, Roshko’s experimental observation of the universal Strouhal number and the geometric
similarity of the vortex street behind cylinders of di1erent cross section is described in the model.
Roshko’s universal Strouhal number and the vortex-street geometry is shown to depend only weakly
on the drag coe4cient and is independent of other wake parameters. In addition, the proposed model
provides a simple geometric interpretation for the universal Strouhal number in terms of the wake
river shape.
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