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Abstract

Turbulent fluid has often been conceptualized as a transient thermodynamic phase.
Here, a finite-time thermodynamics (FTT) formalism is proposed to compute
mean flow and fluctuation levels of unsteady incompressible flows. The pro-
posed formalism builds upon the Galerkin model framework, which simplifies
a continuum 3D fluid motion into a finite-dimensional phase-space dynamics
and, subsequently, into a thermodynamics energy problem. The Galerkin model
consists of a velocity field expansion in terms of flow configuration dependent
modes and of a dynamical system describing the temporal evolution of the mode
coefficients. Each mode is treated as one thermodynamic degree of freedom,
characterized by an energy level. The dynamical system approaches local ther-
mal equilibrium (LTE) where each mode has the same energy if it is governed
only by internal (triadic) mode interactions. However, in the generic case of un-
steady flows, the full system approaches only partial LTE with unequal energy
levels due to strongly mode-dependent external interactions. The FTT model is
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first illustrated by a traveling wave governed by a 1D Burgers equation. It is then
applied to two flow benchmarks: the relatively simple laminar vortex shedding,
which is dominated by two eigenmodes, and the homogeneous shear turbulence,
which has been modeled with 1459 modes.

1. Introduction

A uniform flow encountering an obstacle breaks up into more or less ran-
dom, laminar or turbulent structures, characterized as vortices or eddies. This
vortex-shedding process is abundantly observed in nature and technology [1],
for instance behind a bridge pier in a river (see Leonardo da Vinci’s draw-
ings [2]) and the flow around a mountain [3].The eddies interact and gradually
disappear in the wake of the obstacle. These structures acquire time-varying
velocity components in the transverse and longitudinal directions out of the
longitudinal flow. One can think of them either as interacting eddies (parti-
cles) or as time-varying streamwise structures (waves). The energy contained
in these coherent structures is part of the internal energy of the fluid and, hence,
is part of the thermodynamics of the system. Similar observations hold for
many other shear flows as well, for instance jets or two merging streams with
different velocities. In this study, a thermodynamic framework is proposed
for such unsteady shear flows.

The phenomenology of shear flow depends on the Reynolds number, Re. At
low values, the flow is steady. With increasing Reynolds numbers, instabilities
occur and shape the coherent structures. Often, the first instability qualitatively
represents the coherent structures observed far into the turbulent regime.
Examples are the von Kármán vortex street behind a cylinder, the Kelvin–
Helmholtz vortices in a shear layer, and the vortex rings in the Taylor–Couette
configuration. The very ansatz of stability analysis rests on a steady base flow
and fluctuations that are expanded in terms of space-dependent eigenmodes
and time-dependent Fourier coefficients. Weakly nonlinear stability theory [4]
accounts for nonlinear effects and thus extends the validity of the expansion
ansatz. More generally, reduced-order Galerkin models may characterize not
only the instability but also the irregular coherent structure dynamics [5]. Such
models are generally based on modes arising from the spectral ansatz [6, 7],
from stability analysis [8, 9], from empirical decompositions [5], or from
physical insight [10, 11]. These modes are global, i.e., extend over the entire
flow domain – in contrast to finite elements and other computational bases.The
beauty of these methods lies in the reduction of a complex space- and time-
dependent momentum transfer into a low-dimensional phase-space dynamics,
where each direction is associated with a modal energy.

J. Non-Equilib. Thermodyn. 2008 · Vol. 33 · No. 2



A Finite-Time Thermodynamics of Unsteady Fluid Flows 105

The number of modes needed to resolve a turbulent flow is estimated by
N ≈ Re9/4 [12]. Evidently, large Reynolds numbers imply that most degrees
of freedom cannot be dynamically resolved but have to be statistically mod-
eled. According to Boussinesq [13], the eddies act on the mean flow like an
additional “eddy” viscosity νturb. More generally, the effect of neglected fine-
scale fluctuations on the dynamically resolved flow is represented by an ad-
ditional eddy viscosity. This viscosity is estimated in Prandtl’s mixing-length
theory for turbulent flow [14]. Turbulent diffusion is depicted as an ensemble
of eddies with velocity umix and mean free path length λmix, called mixing
length.That eddy viscosity is estimated by the product of the eddy velocity and
its mixing length, νturb ∼ λmixumix, i.e., in complete analogy to kinetic theory
for molecular viscosity ν ≈ λ c, which depends on the average thermal speed
c and the molecular mean free path λ.The success of the mixing-length theory
comes from the fact that the new free parameters, the eddy velocity and mix-
ing length, may be estimated algebraically much easier than the eddy viscosity
itself. This mixing-length theory constitutes the core of most engineering tur-
bulence simulations to date – including Reynolds-averaged Navier–Stokes
(RANS) computations and large-eddy simulations (LES). Closer to the focus
of this paper, reduced-order Galerkin models also rely on energy sinks to
account for energy flow into unresolved structures [15–17].

The mixing-length theory provides a rather coarse statistical picture of the
turbulent flow. In particular, it provides no account of the creation, decay, and
interaction dynamics of these coherent structures. No systematic analogies
have been established to date for such powerful thermodynamics concepts as
degree of freedom, Boltzmann factor, equipartition of energy, entropy, en-
tropy production (transfer of energy into the thermal background), and the
principle of minimum entropy production. Numerous such analogies have
been proposed on phenomenological grounds [18,19] following the introduc-
tion of eddy viscosity. In particular, eddies have been suggested as “atoms”
of turbulence. For grid turbulence, the energy of eddies has been experi-
mentally observed to follow Maxwell–Boltzmann statistics [20]. In similar
spirit, Chorin [21] points out a number of qualitative analogies between vor-
tex motion and statistical physics. The statistical isotropic approximation of
large-scale eddy motion is, however, inhibited for inhomogeneous shear flows
due to their concentration in thin high-shear regions or their confinement by
walls. Examples are wakes, jets, shear layers, and pipe flow.

In the “wave picture”, particularly instructive are truncated Euler solutions
[22] of a flow in a periodic box with vanishing base flow and neglecting viscous
forces. In a spectral ansatz, this flow is approximated by a Galerkin expansion
with a finite number of spatial Fourier modes and associated time-dependent
amplitudes. The dynamical system for the mode amplitudes is derived from
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the Euler equation. The resulting solutions display equipartition of energy in
all modes. While these solutions do not describe any real flow condition, this
result suggests that the modes of a Galerkin approximation may nevertheless
constitute a set of thermodynamic degrees of freedom to which equipartition
of energy applies.

Here, we follow that hint. Targeting complex geometries, the restriction to a
spectral method with Fourier modes [6] is relaxed to a traditional Galerkin
model [23] with global orthonormal modes. This generalization allows the
development of more efficient expansions for shear flows. While the spa-
tial Fourier modes of the periodic box configuration represent sinusoidal
waves in all directions, most modes of low-order Galerkin approximations
of shear flows represent waves with a characteristic wavenumber and fre-
quency, aligned with the convection velocity. These Galerkin models of in-
compressible flows usually do not obey equipartition of energy in the mode
ensemble, since distinct modes are affected differently by the mean flow and
viscous dissipation. Galerkin methods allow the quantification of how large-
scale energetic modes feed small-scale, less energetic ones via an energy flow
cascade [24–26]. The energy absorbed by the large scales from the mean flow
needs a finite time to be transferred to the small scales where it is dissipated.
This energy transfer is reminiscent of finite-time thermodynamics [27–30]
where the production and dissipation time scales are explicitly modeled. Dif-
ferences between these time scales disturb equipartition of energy between
modes. Our goal is to cast this “wave picture” in a systematic mathematical
framework, framing a statistical physics analogy of the dynamics of coherent
structures. We thus contribute to the link between statistical physics and fluid
dynamics of unsteady fluid flows.

The paper is organized as follows.A finite-time thermodynamics (FTT) frame-
work is outlined in Section 2, based on a Galerkin model. In Section 3, we
discuss this FTT formalism with respect to nonlinear dynamics, control de-
sign, and thermodynamic analogies. In Section 4, the traveling wave solution
of the 1D Burgers equation serves as a first illustration of the predictive ca-
pabilities of FTT models. Shear flow results are presented for the simple
dynamics of 2D periodic vortex shedding (Section 5) and for the complex
dynamics of the 3D homogeneous shear turbulence (Section 6). Finally, the
main findings are summarized and open research problems are suggested in
Section 7.

2. Finite-time thermodynamics model

Here, we propose a closure scheme for the computation of the first and sec-
ond statisticalmoments of viscous incompressible fluid flows. Field dynamics
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are first transformed by the Galerkin method into a system of ordinary dif-
ferential equations (Section 2.1). This dynamical system is characterized by
ensemble-averaged equations for mean values and energy levels (Section 2.2).
Employing the averaged equations, a finite-time thermodynamics considera-
tion leads to a closure scheme (Section 2.3). Finally (Section 2.4), reduced
systems are derived by lumping thermodynamic degrees of freedom.

2.1. Galerkin model

The incompressible flow is described in a Cartesian coordinate system x =
(x, y, z), where the x-axis is parallel to the flow, the y-axis is aligned with
the shear, and the z-axis points in spanwise direction. The velocity field is
expressed in the same coordinate system by u = (u, v, w). Time is denoted
by t and pressure by p. The fluid has kinematic viscosity ν and density ρ. In
the following, all quantities are assumed to be nondimensionalized with the
velocity scale U , the transverse length scale D, and the density ρ. The flow
is characterized by the Reynolds number Re = UD/ν.

The flow domain � and the boundary conditions on the boundary ∂� are
stationary. The employed boundary conditions have the form

LBC [u] = FBC(x), (1)

where LBC is a linear operator and FBC(x) has a prescribed value. Exam-
ples are the homogeneous Dirichlet condition for no slip at a wall u = 0,
the inhomogeneous variant for the oncoming velocity at infinity u = u∞,
the Neumann condition with vanishing normal gradient ∂nu = 0 as trans-
verse boundary condition, a periodic assumption for infinite domains, and the
convective outflow condition.

In FTT modeling, only the statistics of a converged flow solution is considered.
These statistics is independent of the initial condition for the considered flows.
Hence, the initial conditions need not be discussed. The conservation of mass,
i.e., the equation of continuity, of an incompressible fluid reads

∇ · u = 0. (2)

The momentum (Navier–Stokes) equation is expressed by

N [u] := ∂tu + ∇ · (u ⊗ u) + ∇p − ν �u != 0. (3)

Here, ν := 1/Re. The pressure is not included as argument in the Navier–
Stokes operatorN , since it is a function of u. The pressure can be determined
by the pressure Poisson equation derived from Eqs. (2) and (3).
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The flow field is decomposed into a steady, basic mode u0 and a time-varying
fluctuation u′,

u(x, t) = u0(x) + u′(x, t), (4)

where both contributions satisfy the equation of continuity (2), ∇ · u0 = ∇ ·
u′ = 0, and the original and homogenized form of the boundary condition (1),

LBC [u0] = FBC(x) and LBC
[
u′] = 0.

The primary purpose of this decomposition is to apply the superposition prin-
ciple to the fluctuation. Any linear combination of permissible fluctuations
satisfies the equation of continuity and the boundary condition.

This opens the path for defining the Hilbert space L2(�) of square-integrable
velocity fields for the fluctuation.The corresponding inner product is given by

(u, v)� :=
∫
�

dx u · v,

and leads to the norm

‖u‖� :=√
(u, u)�.

This Hilbert space has a complete, countable system {ui(x)}∞
i=1 as basis. With-

out loss of generality, orthonormality can be assumed,(
ui, uj

)
�

= δij, i, j = 1, . . . , N .

Thus, the flow (4) can be approximated by a Galerkin expansion u[0...N ] with
N space-dependent modes ui and corresponding time-dependent Fourier co-
efficients ai ,

u(x, t) ≈ u[0...N ](x, t) := u0(x) +
N∑

i=1

ai(t) ui(x), (5)

where ai = (u′, ui)�, i = 1, . . . , N .

The evolution equation for the Fourier coefficients is derived from the Navier–
Stokes equation via a Galerkin projection onto each mode,(

ui, N
[
u[0...N ]] )

�
= 0, i = 1, . . . , N .

The resulting Galerkin system contains constant, linear, and quadratic terms
in ai , i = 1, . . . , N :
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ȧi = ci +
N∑

j=1

lij aj +
N∑

j,k=1

qijk aj ak , i = 1, . . . , N . (6)

The coefficients ci, lij and qijk are derived in [26].

In principle, almost any incompressible flow can be arbitrarily accurately
described by the “traditional” Galerkin method, as described above (see, e.g.,
[23]). Hence, the assumption of an existing model poses no severe limitation
on the applicability of the FTT formalism. In practice, the computational cost
of this O(N 3) algorithm requires that N be small. Exceptions to this rule may
be spectral methods with an N log N cost [6,7].

The art of efficient Galerkin modeling rests largely on designing the modes
for particular configurations. The literature suggests mathematical [31], phys-
ical [9], and empirical approaches [5] serving different goals. In the mathemat-
ical approach, completeness of the Galerkin expansion is guaranteed. In fact,
mathematical Galerkin methods are used to prove properties of the Navier–
Stokes solution [32]. The physical method utilizes stability eigenmodes, thus
economically describing linear behavior. In the empirical direction, e.g., us-
ing the Proper Orthogonal Decomposition (POD), nonlinear dynamics may
be optimally resolved in a certain sense by extracting the most energetic struc-
tures from a known flow solution. The current study employs a mathematical
expansion for the Burgers equation (Section 4), an empirical model for the
wake flow (Section 5), and a physical one for the shear turbulence (Section 6).

2.2. Ensemble-averaged equations

The proposed FTT formalism rests on the traditional Galerkin model and
shall predict only ensemble means. For the transient onset of an instability
(Appendix B) or the decay of turbulence (Appendix C), such a filter may be
approximated by a phase or short-term average. For post-transient behavior
(Sections 4–6), statistical stationarity and ergodicity are assumed, i.e., the
ensemble average is equivalent to the time average, and time derivatives of
ensemble-filtered quantities vanish.

In the following, ensemble-averaged quantities are denoted by an overbar and
the corresponding fluctuation by a prime, e.g., ai = ai + a′. The ensemble-
averaged Galerkin system (6) reads

ȧi = ci +
N∑

j=1

lij aj +
N∑

j,k=1

qijk aj ak +
N∑

j,k=1

qijk a′
ja

′
k , i = 1, . . . , N . (7)
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This equation shall be called Galerkin–Reynolds equation as it can also be
derived by a Galerkin projection onto the ensemble-averaged momentum
(Reynolds) equation,(

ui,N
[
u[0...N ]

])
�

= 0, i = 1, . . . , N .

The evolution equation of the modal energy Ei := (a′
i)

2/2 is derived by
multiplying Eq. (6) with a′

i and averaging,

Ėi = Qi + Ti, i = 1, . . . , N , (8)

where

Qi :=
N∑

j=1
qij a′

i a′
j, qij := lij +

N∑
k=1

(
qijk + qikj

)
ak ,

Ti :=
N∑

j,k=1
Tijk , Tijk := qijk a′

i a′
j a′

k .

A detailed analysis [26] reveals that the first term Qi originates from Navier–
Stokes terms that are linear with respect to u′ comprising modal production,
convection, and dissipation terms. These linear terms represent external inter-
actions with the mean flow u as a “macroscopic background” or the molecular
chaos via viscosity as a “microscopic background”. The second term Ti origi-
nates from the quadratic convection term in Eq. (3) and is known as the transfer
term. This term comprises intermodal energy exchange rates. The effect of
the pressure term in this modal energy flow balance either vanishes exactly
for closed flows [5], approximately for open flows in large domains [25,33],
or adds to Qi and Ti in analogy to the velocity fluctuation. The effect of pres-
sure power on Qi results from interactions with mean flow and on Ti from
intermodal interactions.

2.3. Closure model

Equations (7) and (8) represent 2N equations for 2N unknowns, the mean val-
ues and energy levels of each mode: {ai}N

i=1, {Ei}N
i=1. However, the equations

contain unknown second- and third-order centered statistical moments, a′
i a′

j
and a′

i a′
j a′

k . Equations for these moments can be derived from Eq. (6) but at
the price of generating more unknown higher-order statistical moments. The
resulting system of equation can never be closed, constituting the well-known
closure problem of turbulence. In this section, we introduce closure approxi-
mations for these moments. In particular, we aim to parameterize all centered
moments by the modal energy distribution.
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The external interaction term Qi requires an ansatz for the second centered
moments of the Fourier coefficients. We assume a diagonal correlation matrix,

a′
i a′

j = 2 Ei δij, i, j = 1, . . . , N . (9)

This assumption is fulfilled by definition for the Proper Orthogonal Decom-
position (POD) – also called the Karhunen–LoŒeve decomposition or Principal
ComponentsAnalysis (PCA). It is approximately fulfilled also by locally time-
periodic shear flows resolved by Fourier modes [34], POD modes [24,26,33],
or stability eigenmodes of oscillatory nature [25]. Here, each harmonic fre-
quency is resolved by one pair of modes mutually shifted by a quarter period
with similar pair-wise energy content.The analysis of this paper remains valid
for non-POD modes or non-periodic flows when deviations from Eq. (9) by
individual (i,j) pair cancel out approximately in the summation of formula (8)
for Qi . The ultimate corroboration in such cases is by numerical experiments,
as provided below.

Equation (9) simplifies the Galerkin–Reynolds equation to

ȧi = ci +
N∑

j=1

lij aj +
N∑

j,k=1

qijk aj ak +
N∑

j=1

2qijj Ej, i = 1, . . . , N . (10)

The energy distribution {Ei}N
i=1 parameterizes the mean values {ai}N

i=1. The
simplified Galerkin–Reynolds equation has a number of intriguing limiting
cases. Let u0 represent the steady Navier–Stokes solution us. Then ci = 0,
i = 1, . . . , N , and, by a first-order approximation, the mean values depend
linearly on the energy distribution – in agreement with mean-field theory [4].
If u0 = u is chosen to be the mean solution of a statistically stationary
dynamics, ai = 0, i = 1, . . . , N and Eq. (10) represents a linear system from
which the energy distribution can be determined. When u0 is not too far from
the mean solution, then quadratic terms in ai can be neglected and the changes
of the averaged flow depend linearly on the energy distribution.

The assumption (9) implies that the modal external interaction term is only a
function of the corresponding modal energy,

Q̂i = q̂i Ei, where q̂i := 2qii +2
N∑

j=1

(qiij +qiji)aj, i = 1, . . . , N .

(11)

Here and throughout, a hat shall indicate the (approximate) FTT-modeled
quantity as opposed to its exact representation from the Navier–Stokes equa-
tion.
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The transfer or internal interaction term Ti is the sum of many triadic interac-
tion terms Tijk . The energy exchanges in each triad conserves the total energy
Ei + Ej + Ek , due to the energy-preserving (Hamiltonian) property of the
quadratic Galerkin system term (see Appendix A). In other words, the total
energy of a triad is only redistributed between the modes. We assume that the
triadic interaction term is a function of the modal energies of the involved
modes, T̂ijk = T̂ijk (Ei, Ej, Ek ) and that energy flows downhill, i.e., from more
to less energetic modes. With this ansatz, a mathematical procedure (see Ap-
pendix A) leads to

T̂ijk = α χijk
(
Ei Ej Ek

)1/2

(
1
2

(
Ej + Ek

)− Ei

Ei + Ej + Ek

)
, (12)

i, j, k = 1, . . . , N ,

where α is derived from a condition of energy flow consistency (A 8) and the
triadic interaction function

χijk := 1

6

(|qijk | + |qikj | + |qjik | + |qjki| + |qkij | + |qkji|
)

is determined by the Galerkin system.

The resulting FTT-modeled energy equation reads

Ėi = q̂i Ei +
N∑

j,k=1

T̂ijk (Ei, Ej, Ek ), i = 1, . . . , N . (13)

Donor modes with q̂i > 0 provide energy from the external background in
the mode system while the recipient modes with q̂i < 0 discharge this energy.
The transfer term is energy preserving and redistributes energy toward a local
thermal equilibrium (E1 = E2 = . . . = EN ). In highly energetic modes we
find q̂i > 0. The first term therefore promotes “capitalism” by making “rich”
donor modes even richer, while the second term can be viewed as social
welfare in the mode sociology.

Equations (10) and (13) constitute our FTT equations, representing 2N nonlin-
ear equations for 2N statisticalmoments, {ai}N

i=1 and {Ei}N
i=1.These equations

accommodate the steady solution E1 = E2 = . . . = EN = 0 in addition to a
potentially unsteady solution – assuming the Galerkin model to be accurate.
Figure 1 illustrates the interdependency between averaged Fourier coefficients
and modal energy distributions.
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Galerkin–Reynolds equation

ȧi = ci +
N∑

j=1
lijaj + . . . +

N∑
j=1

2qijjEj
ai

External interactions

Q̂i = q̂i Ei

Internal interactions

T̂ijk = α χijk
√

EiEjEk

1
2 (Ej + Ek ) − Ei

Ei + Ej + Ek
T̂i =

N∑
j,k=1

T̂ijk

E1 E2 EN

T̂1 T̂2 T̂N

Ei

Q̂1 Q̂2 Q̂N

Ėi = Q̂i + T̂i

q̂i = 2

[
lii +

N∑
k=1

(qiik + qiki) ak

]

Figure 1 FTT model: Interrelation between the Galerkin–Reynolds equation (10) and the modal
energy balance equation (13).

2.4. System reduction

Geometric symmetry conditions lead to equipartition of energy in certain
groups of modes [35]. In particular, Galerkin models commonly employ pairs
of modes to span distinct traveling waves with characteristic wavenumbers
and frequencies [24–26]. The modes of such pairs have the same or very
similar energies, which are periodically transferred back and forth between
them. An analytical argument is provided in [36]. Let us assume that modes
i = 1 and i = 2 form such a pair. This pairwise equipartition E1 = E2 may
be employed to reduce the order of the energy equation (13). The first two
equations are lumped into one for E[1,2] := E1 + E2,

Ė[1,2] = q̂1 + q̂2

2
E[1,2] +

N∑
j,k=1

(
T̂1jk + T̂2jk

)
.
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While the external interaction term Q̂[1,2] := Q̂1 + Q̂2 can be expressed in
terms of E[1,2], the internal interaction term uses E1 = E2 = E[1,2]/2 and
further simplifications require conditions on the triadic interaction function
χijk .

The considerations above may easily be generalized to more and larger subsets
of modes living in equipartition of energy. A trivial, extreme case is where all
modes are included in a single group I := {1, . . . , N }. Energy conservation

means that
N∑

i,j,k=1
T̂ijk = 0. Hence, an equilibrium implies a zero net external

interaction

Ė[1...N ] = [(
q̂1 + . . . + q̂N

)
/N
]

E[1...N ] = 0.

This further implies either the trivial steady solution

E1 = . . . = EN = 0

or that external interaction coefficients satisfy q̂1 + . . . + q̂N = 0.

A generic nontrivial “least-order” model may be based on the classification
into donor modes with indices in I+ := {i ∈ I : q̂i > 0} and recipient
modes associated with I− := {i ∈ I : q̂i ≤ 0}. This least-order lumping is
employed to determine α in Eq. (12) (see Appendix A).

A particularly attractive feature of Eq. (13) is the possibility to compute pa-
rameters of simplified energy distributions. Let, for instance, Ei = a + i b
represent a linear approximation. Then, a lowest (nontrivial) minimum of

the residual χ2(a, b) :=
N∑

i=1

(
q̂iEi +

N∑
j,k=1

T̂ijk

)2

indicates a good choice

of a, b.

3. Nonlinear dynamics, control theory, and thermodynamics
analogies

The FTT model is discussed in this section from dynamical systems, control
theory, and thermodynamics perspectives. First (Section 3.1), the dynamical
behavior is classified. Nonlinear control opportunities are distilled in Sec-
tion 3.2. Finally, mathematical analogies of the FTT system as heat conduction
(Section 3.3) and spectroscopy problem (Section 3.4) are presented.
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3.1. Classification of model behavior

The solutions of the modal energy equations (13) depend on the external
interaction efficiencies q̂i. For the sake of simplicity, we assume here that these
parameters are constant, i.e., neglect the interdependency between

{
q̂i
}N

i=1
and the energy distribution {Ei}i=1,....,N communicated by the mean values
{ai}N

i=1. Furthermore, we assume that all modes are connected via the internal
triadic interaction terms T̂ijk and that there are “no isolated islands of modes”.
Precisely, two modes i and j are said to be directly connected if there exists
a k such that χijk �= 0. They are indirectly connected if they are not directly
connected but there exists a chain of K modes, l1, l2, . . ., lK such that the
pairs (i,l1), (l1,l2), . . ., (lK , j) are directly connected. The minimum value of
K defines the order of connection. In these terms we assume that any pair of
modes is either directly or indirectly connected, guaranteeing energy transfer
coupling between all modes.

Under these assumptions, four kinds of FTT model behavior (13) can be
classified:

A) Hamiltonian dynamics (min
i∈I q̂i = max

i∈I q̂i = 0):

The total energy E of the initial condition is preserved and the system
can be expected to approach a state with approximate equipartition of
energy,

lim
t→∞ Ei(t) = E/N , i = 1, . . . , N . (14)

In the social analogy of Section 2.3, social welfare between the modes
leads to complete communism.

B) Dissipative dynamics (min
i∈I q̂i < max

i∈I
q̂i ≤ 0):

The system converges to the origin,

lim
t→∞ Ei(t) = 0, i = 1, . . . , N .

Social welfare continually provides the recipient modes with q̂i < 0
with energy, until all energy is lost.

C) Anti-dissipative dynamics (0 ≤ min
i∈I q̂i < max

i∈I q̂i):

The system converges to infinity,

lim
t→∞ Ei(t) = ∞, i = 1, . . . , N .

This behavior corresponds to case B in reverse time direction.
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D) Hyperbolic dynamics (min
i∈I q̂i < 0 < max

i∈I q̂i):

On the basis of our numerical results, the system is conjectured to
converge for all initial conditions with nonvanishing energies Ei > 0,
i = 1, . . . , N , to a unique stable flow equilibrium

lim
t→∞ Ei(t) = E∞

i , i = 1, . . . , N .

Social welfare prevents the rich donor modes from divergence and the
recipient modes from dying.

Under the premise of complete nonlinear connectivity, the four cases consti-
tute a classification of dynamics behavior, i.e., any FTT model (13) belongs to
one and only one of the cases. The conjectured nonlinear behavior for cases
A and D is consistent with all the FTT studies carried out by the authors,
including those presented here.

Case A and D are the only nontrivial bounded behaviors. The Hamiltonian
dynamics A leads to local thermal equilibrium (LTE) in a micro-ensemble of
modes that has no energy exchange with the outside world.The converged state
of hyperbolic dynamics can be considered as a partial LTE of a macro-ensem-
ble of modes that exchanges energy with the background. The background
“heats” the donor modes and “cools” the recipient modes, thus preventing
complete LTE. In general, large (small) q̂i correlate with large (small) Ei.
However, q̂i > q̂j does not generally imply Ei > Ej , since the T̂ijk redistributes
energy at rates determined also by χijk . A “greedy” donor mode with a small
internal exchange rate can build larger wealth than another donor mode that
overcompensates a larger q̂i by an overproportional contribution to the social
welfare system.

The hyperbolic dynamics is a typical case for Galerkin models of unstable
shear flows and is implicitly assumed in the following, unless otherwise stated.
From our numerical examples, we conjecture that this dynamics has only
one stable fixed point (E∞

1 , . . . , E∞
N ), i.e., it cannot display hysteresis with

two or more stable states. However, multi-attractor behavior may arise if the
assumption of frozen q̂i is dropped. In this case, the energy distribution can
change the q̂i via the mean solution {ai}N

i=1.

3.2. Controlled dynamics

The FTT model can be employed as a plant for infinite-horizon, nonlinear
control design.A thorough discussion of flow control using this framework re-
quires an independent presentation, covering modeling, actuator implementa-
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tion, dynamic estimation, and ways to address practical performance-limiting
issues. These are currently being pursued by the authors. Here we shall be
content with a brief sketch. It is focused on the ideal case of a single volume
force actuator with a commanded, time-varying amplitude b(t). This force
enters the Galerkin system (6) in the form

ȧi = ci +
N∑

j=1

lij aj +
N∑

j,k=1

qijk aj ak + gi b, i = 1, . . . , N ,

where gi are mode-dependent gains [37–39].The ubiquitous acoustic actuator
is an example [40].

With a linear state feedback law,

b :=
N∑

j=1

kj aj, (15)

the resulting controlled dynamics is described by

ȧi = ci +
N∑

j=1

lc
ij aj +

N∑
j,k=1

qijk aj ak , i = 1, . . . , N , (16)

where lc
ij := lij + gi kj and the quadratic term is not changed. Hence, the

prerequisites of the FTT model with a Hamiltonian quadratic term are fulfilled
by Eq. (16). Thus, the nonlinear dynamical effect of the control law (15) is
predicted by the FTT model over an infinite time horizon, enabling a fully
nonlinear, infinite-horizon control design.

Generic flow control objectives can be stated in terms of targeted modal ener-
gies.A common example is the suppression of fluctuations [41,42]. Excitation
of selected structures as a means to enhance mixing is another. Control enters
the energy flow equation via the added modal actuation power Gi := gia′

ib:

Ėi = Qi + Ti + Gi, i = 1, . . . , N .

In these terms, suppression of fluctuations is achieved by imposing dissipative
dynamics. The dissipation can be imposed directly on the energy of the larger
structures in donor modes E+ := ∑

i∈I+ Ei. If the donor modes die out and
do not feed the recipient modes, the latter will die, too. In the linear feedback
framework (15), this is achieved by selecting ki = 2(σ+ − q̂i)/gi, i ∈ I+,
where σ+ < 0 is the minimal desired decay rate. Indeed, by partitioning the
original system into donors and recipient states, as done earlier, this formalism
guarantees that the following closed loop system is dissipative:
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Ė+ =
∑
i∈I+

(Qi + Ti + Gi) = σ+ E+ + T+,

Ė− ≤ q̂−E− + T−,

where q̂− = maxi∈I− q̂i < 0 and T+ + T− = 0. In analogy to E+, the su-
perscripts “+” (“−”) denote aggregate terms for the donor (recipient) modes.
Not surprisingly, this control law is equivalent to energy-based control vari-
ants that have successfully been employed to stabilize wake flows using a
Galerkin model for control design [43].

An alternative approach to stabilization is the actual stimulation of growth
in selected energy recipients. Although counterintuitive, at first glance, this
kind of control builds on the fact that triadic energy exchange terms (12)
depend on the amplitude of the consumer energy. An increase in the latter
can increase the rate of energy transfer from donors to consumers, and thus
decrease the overall energy of the system. This is the rationale behind the
ubiquitous use of high frequency jet actuation to attenuate low frequency
instabilities. Controller parameters can be chosen by optimization of Eq. (16).
We leave out the details.

3.3. Analogy with heat conduction

For reasons of simplicity, the discussion of the triadic interaction model em-
ploys Eq. (A 10), fromAppendixA, but could easily be generalized to Eq. (12).
This model retransfers energy from the most energetic to the least energetic
modes. The implied behavior of the modal interactions terms T̂ijk , T̂jik , and
T̂kij from a triad at given energy levels Ei, Ej , and Ek is geometrically visu-
alized in Figure 2. The ansatz predicts vanishing transfer between all modes
in case thermal equilibrium is achieved, Ei = Ej = Ek . Thus, the modeled
energy transfer between modes qualitatively resembles Fick’s law, describing
the energy transfer by diffusion across temperature gradients. Here, the flux
ceases when equilibrium distribution is reached. Hence, we propose to call
the triadic interaction model Fick’s law for triadic interactions.

That analogy with heat fluxes can be made more concrete in a mechanical
analogy. Each mode at energy Ei (solid circles in Figure 2) may be identified
with a sphere with unit heat capacity and temperature θi . In addition, auxiliary
spheres are introduced corresponding to the averaged energy between two
modes (open circles in Figure 2) and containing negligible heat capacity. The
auxiliary sphere connecting the j-th and k-th element can be maintained at
the average temperature θjk := (θj + θk )/2 by the same heat conductor to
both elements. Equation (A 10) can now be interpreted as heat conduction
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Figure 2 Geometric interpretation of Fick’s law for triadic interactions. Each vertex (solid circle)
of the isometric triangle represents one mode i, j, or k . Without loss of generality, the triangle is
arranged so that the horizontal projection of the vertices denotes Ei, Ej , and Ek , respectively (left
axis). Similarly, the midpoints (open circles) represent averaged energy levels of two modes. Formula
(A 10) implies that the modeled energy exchange rates T̂ijk , T̂jik , and T̂kij are proportional to the
horizontal projection of the bisectors associated with mode i, j, and k , respectively (right arrows).
The energy flow toward one mode is positive (negative) if the averaged energy of the remaining modes
is larger (smaller), i.e., energy flows “downhill”.

between the i-th sphere and the corresponding auxiliary sphere in that triad.
The heat flux depends on the temperature of all three spheres. The ensemble
of modes represents an ensemble of spheres (including the auxiliary ones).
The set of triadic interactions are reflected in the conductor network. Positive
(negative) external energy flows Qi correspond to external heating (cooling)
of the i-th sphere. This completes the analogy of the modal energy balance
equation (13).

3.4. Analogy with spectroscopy

Another thermodynamic analogy can be established with the Einstein transi-
tion probabilities in spectroscopy [44]. Fick’s law of triadic interactions can
be interpreted as two bi-modal interactions, writing Eq. (A 10) as

T̂ijk = α
(
Ei Ej Ek

)1/6
[

1

2

(
Ej − Ei

)+ 1

2
(Ek − Ei)

]
,

i, j, k = 1, . . . , N .

J. Non-Equilib. Thermodyn. 2008 · Vol. 33 · No. 2



120 B.R. Noack et al.

In the framework of the analogy, this corresponds to two simultaneous transi-
tions between three energy levels. Obviously, mode i takes energy from modes
j and k if their levels are higher and gives energy if their levels are lower.

This bi-modal interpretation leads to a transition matrix formalism,

T̂i =
N∑

j,k=1

T̂ijk =
N∑

j=1

Aij Ej, i = 1, . . . , N ,

Aij := α
(
1 − 2δij

) [ N∑
k=1

(
Ei Ej Ek

)1/6

]
.

Let Bij = q̂iδij , then Eq. (13) becomes with the model assumptions

d

dt
Ei =

N∑
j=1

(
Aij + Bij

)
Ej, i = 1, . . . , N . (17)

Here, Aij describes the interactions due to internal interactions – equivalent to
the spontaneous transition probability in spectroscopy. And Bij represents the
energy absorbed from the environment – equivalent to the Einstein induced
transition probability in atomic physics.The matrix Aij conserves energy while
Bij does not.

In spectroscopy, there exists the same equation (17) for the population of
energy shells in an atom. Here, Ei corresponds to the population of electrons
ni in the energy state i, the matrix Aij to the spontaneous decay from state j to
state i, and the matrix Bij quantifies external triggering. Energy conservation
corresponds to preservation of the number of electrons. However, it should
be noted that energy plays a different role in spectroscopy. In the Galerkin
model, energy is a free parameter associated with mode i; in spectroscopy
i corresponds to a fixed energy level and ni takes over the role of the free
parameter.

4. Burgers equation – an illustrative example

We illustrate the FTT model for a 1D partial differential equation, the Burgers
equation.This equation represents a modified version of the 1D Navier–Stokes
equation and mimics its dynamics in important aspects. First (Section 4.1), a
Galerkin model of a modified Burgers equation is derived.Then (Section 4.2),
the Galerkin solutions are compared against FTT predictions. In particular,
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truncated Burgers dynamics leading to an absolute equilibrium solution with
equipartition of energy is considered. Thus, observations of Majda and Tim-
ofeyev [45] are reproduced and explained in the FTT framework.

4.1. Galerkin model of a modified Burgers equation

The Burgers equation

∂tu + u ∂xu = ν ∂2
xxu

mimics the Navier–Stokes equation in the absolute derivative Dtu := ∂tu +
u ∂xu with quadratic nonlinearity and the dissipation term ν ∂2

xxu with viscos-
ity ν. We add a convection term U∂xu with constant velocity U to include
periodic traveling waves. This convection term arises from a change to a co-
ordinate system moving with velocity −U . Moreover, a forcing term g(x, t)
shall balance the energy dissipation due to ν∂2

xxu.The resulting equation reads

∂tu + (U + u) ∂xu = g(x, t) + ν ∂2
xxu. (18)

We consider 2π-periodic solutions of Eq. (18) in the Hilbert space of square-
integrable real functions L2([0, 2π]). The inner product of u, v ∈ L2([0, 2π])
is defined by

(u, v)� :=
∫ 2π

0
dx u v.

The trigonometric system {i(x)}∞i=0,

i(x) :=

⎧⎪⎨
⎪⎩

1√
2π

i = 0;
1√
π

sin
( i+1

2 x
)

i > 0 and i odd;
1√
π

cos
( i

2 x
)

i > 0 and i even;

constitutes a complete, countable, orthonormal system of the Hilbert space.
The time-dependent function u(x, t) is approximated by the Galerkin expan-
sion

u[0...N ](x, t) :=
N∑

i=0

ai(t) i(x), (19)

where ai := (u,i)�.
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The forcing of Eq. (18) is chosen to be g(x, t) := σ
[
a1(t)1(x)+a2(t)2(x)

]
.

This term provides energy in the first spatial harmonics spanned by 1, 2
with growth rate σ > 0. This linear dynamics mimics the role of the produc-
tion term in the Navier–Stokes equation.

The resulting Galerkin system is obtained by a straightforward Galerkin pro-
jection of Eq. (18) on i, i = 0, . . . , N . This projection yields a system of
the form (6) [45]. The 0-th equation reads ȧ0 = 0. Without loss of generality,
a0 ≡ 0 is assumed. The constant term vanishes, ci = 0, i = 1, . . . , N . The
linear term has block diagonal structure with 2×2 matrix on the diagonal.And
the quadratic term is energy preserving, i.e., fulfills Eq. (A 2) in Appendix A.

For N = 10, the Galerkin system reads:

ȧ1 = (σ − ν) a1 −U a2 +h1, ȧ2 = (σ − ν) a2 +U a1 +h2,

ȧ3 = −4 ν a3 −2 U a4 +h3, ȧ4 = −4 ν a4 +2 U a3 +h4,

ȧ5 = −9 ν a5 −3 U a6 +h5, ȧ6 = −9 ν a6 +3 U a5 +h6,

ȧ7 = −16 ν a7 −4 U a8 +h7, ȧ8 = −16 ν a8 +4 U a7 +h8,

ȧ9 = −25 ν a9 −5 U a10 +h9, ȧ10 = −25 ν a10 +5 U a9 +h10,

(20)

with the quadratic terms

h1 = [−a1a3 − a2a4 − a3a5 − a4a6 − a5a7 − a6a8 − a7a9 − a8a10] /
√

π,

h2 = [−a1a4 + a2a3 − a3a6 + a4a5 − a5a8 + a6a7 − a7a10 + a8a9] /
√

π,

h3 = 2
[+a2

1/2 − a2
2/2 − a1a5 − a2a6 − a3a7 − a4a8 − a5a9 − a6a10

]
/
√

π,

h4 = 2 [+a1a2 − a1a6 + a2a5 − a3a8 + a4a7 − a5a10 + a6a9] /
√

π,

h5 = 3 [+a1a3 − a1a7 − a2a4 − a2a8 − a3a9 − a4a10] /
√

π,

h6 = 3 [+a1a4 − a1a8 + a2a3 + a2a7 − a3a10 + a4a9] /
√

π,

h7 = 4
[+a1a5 − a1a9 − a2a6 − a2a10 + a2

3/2 − a2
4/2
]
/
√

π,

h8 = 4 [+a1a6 − a1a10 + a2a5 + a2a9 + a3a4] /
√

π,

h9 = 5 [+a1a7 − a2a8 + a3a5 − a4a6] /
√

π,

h10 = 5 [+a1a8 + a2a7 + a3a6 + a4a5] /
√

π.

The ten equations represent five quadratically coupled and harmonically re-
lated oscillators. The first oscillator for i = 1, 2 in Eq. (20) is amplified
for supercritical conditions σ > ν. The other oscillators are dampened in
proportion to the square of their eigenfrequency.

4.2. Galerkin solutions and FTT model

For ν > σ , the Galerkin solutions converges to the origin a1 = a2 = . . . =
aN = 0. For the numerical analysis, we choose σ = 1/50, ν = 1/100,
U = 1 and N = 10 as reference condition. The resulting Galerkin solution
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Periodic solution Absolute equilibrium solution

(a) (b)

Figure 3 Phase portraits a10 vs. a1 of the Galerkin system (20). The Fourier coefficients a1(t) and
a10(t) of the periodic solution (a) and the corresponding absolute equilibrium solution (b) are shown.
The trajectory (b) is displayed for 5000 time units.

is periodic with circular frequency 1, representing a self-sustained traveling
wave with convection velocity U = 1. Figure 3a displays a phase portrait
from the first and last Fourier coefficient. The portrait displays a Lissajous
curve with frequency ratio 5 – corresponding to the eigenfrequency ratio of
the first and last oscillator.

An interesting dynamics arises when production and dissipation of each os-
cillator is turned off, ν = σ = 0. In this case, the initial energy E =
(a2

1 + . . . a2
N )/2 of the system is preserved. Each Fourier coefficient keeps

a dominant frequency consistent with its eigenfrequency. Yet, the amplitudes
vary irregularly and after a long time, a state with equipartition of energy is
approximated,

Ei = a2
i /2 ≈ E/N .

In fact, Majda & Timofeyev [45] proof Ei → E/N as N → ∞. These are
called truncated Burgers [45] or absolute equilibrium solutions [22]. Figure
3b shows a corresponding phase portrait. The resulting Galerkin expansion
(19) does not approximate a solution of the Burgers equation.Yet, the Galerkin
solution represent a well-studied limiting case of the Galerkin dynamics.

The modal energy distributions for the periodic and absolute equilibrium
solutions are depicted in Figure 4. The latter is obtained by the first by set-
ting σ = ν = 0 at some instant, i.e., both solutions have the some ener-
gy E.

J. Non-Equilib. Thermodyn. 2008 · Vol. 33 · No. 2



124 B.R. Noack et al.

Periodic solution Absolute equilibrium solution
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Figure 4 Energetics of the Galerkin system (20): (left: a,c) periodic solution, (right: b,d) correspond-
ing absolute equilibrium solution. (top: a,b) Modal energy distributions from a numerical simulation
Ei (•) and from the FTT model Êi (◦). Pairs of trigonometric modes with the same wavenumber are
connected by a line. (bottom: c,d) Energy flows re-scaled by 104: External energy flows Qi from the
Galerkin solution (•), from the FTT analysis Q̂i(E1, . . . , E10) with the energy distribution Ei of the
Galerkin solution (◦), and from the FTT model Q̂i(Ê1, . . . , Ê10) with estimated energy levels Êi (∗).
Internal energy flows: Ti ( ), T̂i(E1, . . . , E10) (�), and T̂i(Ê1, . . . , Ê10) (�). Note that some symbols
are covered by the corresponding solid ones.

The Burgers equation fulfills all prerequisites for our finite-time thermody-
namics formalism. It has a linear and quadratic term and the latter is energy
preserving. The Galerkin–Reynolds equation (10) degenerates because the
mean values ai = 0, i = 1, . . . , N , are not effected by the fluctuation. The
modal energy equations (13) can be employed using the Galerkin system
coefficients ci = 0, lij and qijk of Eq. (20). Numerical studies suggest that
the equations have a single globally stable fixed point with attractive basin
Êi > 0. The resulting FTT model predicts energy levels Êi which are in good
agreement with converged ones of the Galerkin solutions Ei (Figure 4a). The
deviation between Ei and Êi for the periodic dynamics at i = 9, 10 is a trun-
cation effect of the finite Galerkin expansion. Increasing the number of N
reduces this error. Moreover, the energy distribution converges rapidly with
increasing N .
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In addition, the external and internal energy flows Qi and Ti are well predicted
by the FTT model (Figure 4c). Expectedly, the prediction is better for the
computed energy distribution than for the FTT-predicted values. Again, a
truncation effect is apparent in modes i = 9, 10.

The Galerkin solution of the truncated dynamics with g ≡ 0, ν = 0 displays
a monotonously increasing modal energy Ei with mode index i (Figure 4b).
The difference between the energy levels is 14%, while the FTT model pre-
dicts exact equipartition for these conditions. The difference vanishes with
increasing number of modes N . The modeled transfer term T̂i with computed
energy distribution Ei predicts that modes with an energy above (below) the
average value lose (gain) energy to restore equipartition of energy (See “�”
in Figure 4d).

5. Periodic vortex shedding – a “Lyman alpha” state of fluid
motion

The second example illustrates the proposed FTT formalism for 2D periodic
vortex shedding behind a circular cylinder leading to the well-known von
Kármán vortex street. Such flow is a paradigm of a self-excited, amplitude-
limited flow oscillation discussed in all text books of fluid dynamics. The von
Kármán vortex street might be compared with the Lyman-alpha series of the
hydrogen atom in spectroscopy in terms of dynamic simplicity.

The incompressible flow is computed with a spectral element method [46,47]
of high spatial resolution; further details for the employed simulation param-
eters can be found in [36]. In the following, all variables of that numerical
Navier–Stokes (CFD) solution are nondimensionalized with the cylinder di-
ameter D, the oncoming velocity U , and the density of the fluid ρ. Figure 5
shows the streamlines of the periodic wake at a Reynolds number Re = 100
– well above the onset of vortex shedding at Recrit = 47 and well below the
3D transition around Recrit,2 ≈ 180 [48–50]. Note the waviness of the wake.

Following the pioneering work of Deane et al. [33], the flow is described by
a ten-dimensional Galerkin model based on the proper orthogonal decompo-
sition (POD) from the velocity field. This POD extracts the most energetic
modes from velocity snapshots in the observation domain (see Figure 5). The
POD modes can be grouped in pairs (2n − 1, 2n) resolving the n-th harmon-
ics and are displayed in [25]. The 2n-th mode looks like the 2n − 1-th mode
(n = 1, 2, 3, . . .) shifted in streamwise direction. A similar behavior of the
POD modes is observed in many other periodic shear flows [26,51].
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Figure 5 Cylinder wake at Re = 100. The cylinder at (x, y) = (0, 0) is depicted by the solid circle.
An instantaneous flow field is visualized by streamlines in the most active domain x ∈ [−5, 38],
y ∈ [−5, 5]. The computational region extends to x ∈ [−20, 38], y ∈ [−20, 20].

By construction, the energy levels are sorted, E1 ≥ E2 ≥ E3 ≥ . . .. In
addition, the energy level in the n-th pair of modes (2n − 1, 2n) is nearly
evenly distributed, i.e., E2n−1 ≈ E2n. Hence, the modal energy distribution
Ei forms a staircase pattern in Figure 6. While the second and third pair of
modes are known to have similar energy, the energy of the following mode
pairs decreases rapidly in geometric progression following an asymptotic
theory [34]. Thus, the cumulative modal energy

E[1...I] := E1 + E2 + . . . + EI

converges rapidly against the total value E as I increases. The FTT-modeled
energy distribution {Êi}N

i=1 resolves well the computed values extracted from
the direct numerical simulation (see Figure 6). A truncation effect of the POD
expansion is evident from a logarithmic representation of the energy levels –
like in the model for Burgers equation.
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Figure 6 Energetics of the cylinder wake displayed in Figure 5. (a) Cumulative energy distribution
E[1...I ] = E1 + . . . + EI and (b) modal energy levels Ei displayed on a logarithmic scale. The graphs
display computed values Ei (•) and FTT-modeled pendants Êi (◦). In (a), the difference between
all Ei and Êi, i = 1, . . . , 10 is so small that the symbols overlap. In (b), pairs of modes with the
same frequency but different phases are connected by a line. A truncation effect is apparent in the
higher-order modes, like in the model of Burgers equation.
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The actual external interaction Qi is well approximated by the modeled value
Q̂i. One reason is that the assumed diagonal structure of the correlation matrix
(9) is a constitutive element of POD [5]. The computed and modeled transfer
terms agree well also – explaining the good agreement of the corresponding
energy distributions. Like in the model of Burgers equation, the first two POD
modes provide the energy flow in the cascade that nurtures the remaining
recipient modes.

The numerical results for periodic vortex shedding demonstrate that the FTT
formalism provides a framework for predicting and interpreting the energy
flow cascade. Also the onset of vortex shedding can be interpreted in this
formalism (see Appendix B).

6. Homogeneous shear turbulence – the “almost ionized state”
of fluid motion

As a last example, homogeneous shear turbulence is investigated assuming a
periodic box. This flow is driven by a base flow with homogeneous shear. The
temporal behavior gives rise to a broad-band frequency range – in contrast
to the periodic cylinder wake. This large frequency range is reminiscent of
spectra of almost ionized atoms. Despite dynamic complexity, the fluctua-
tions are statistically homogeneous. That space-independent statistics makes
homogeneous shear flow an El Dorado for theoretical studies and one of best
investigated forms of turbulence [22,52,53].

The flow is described in a Cartesian coordinate system. In that system, the
base flow reads u0 = (Sy, 0, 0), S = du/dy being the uniform shear rate (see
Figure 7a). The fluctuation has wavelength λ in x-, y-, and z-direction. The
Reynolds number Re = Sλ2/ν is set to 1000, where ν represents the kinematic
viscosity. Following [9], the fluctuation is resolved by a Galerkin expansion
with 1459 Stokes eigenmodes. Each mode is characterized by a wavenumber
vector k = 2 π n/λ, where n = (n1, n2, n3) has integral components ni =
−4,−3, . . . , 0, 1, . . . , 4.

The ensemble of Stokes modes include 3D modes, 2D modes with one van-
ishing wavenumber component, and 1D flows resolving mean-flow defor-
mations. In the following, the Stokes modes are numbered with a single in-
dex i = 1, 2, . . . , N and sorted with respect to the external energy flows
Q1 ≥ Q2 ≥ . . . ≥ QN . This order separates donor modes with Qi > 0
and recipient modes with Qi < 0. The reduced-order Galerkin model (ROM)
based on these modes resembles the large-scale irregular fluid motion (see
Figure 7b) while it cannot resolve the turbulence cascade over orders of mag-
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Figure 7 1459-dimensional Galerkin model of homogeneous shear turbulence at Re = 1000. The
figure displays the 1D mean flow (a) and a snapshot of the 3D fluctuation (b). In (b), the flow is
represented by an iso-surface of a positive (bright) and negative v-component (dark).

nitudes. Such a resolution is even difficult for Navier–Stokes simulations on
one the largest computers of this planet, the earth simulator [54].

The ROM serves its purpose for the proof-of-concept study of the proposed
FTT formalism. We focus on the FTT analysis of the ROM solution for the
internal interactions leading to Ti. The external pendant Qi is equal but op-
posite to Ti due to convergence of the statistics (8). The model of this term
Q̂i has to be refined for an accurate FTT prediction of the energy level. This
predictive capability will be elaborated in another forthcoming publication.

The time-averaged energetics of a converged ROM solution are displayed in
Figure 8. The cumulative modal energy E[1...,I] and transfer terms T [1...I] are
shown. In contrast to modal values (see, e.g., Figs. 4 and 6b), such a distribu-
tion function filters out fluctuations. Evidently, the cumulative modal energy
is not converged against an asymptotic value – thus indicating a truncation ef-
fect of the ROM.The transfer term has 432 energy-producing modes (Qi > 0)
that feed the energy flow cascade to the remaining dissipative modes (Qi < 0).
The large number of active modes is consistent with the observed broad-band
frequency dynamics of the fluctuation. The FTT-modeled cumulative transfer
term T̂ [1...I] follows well the ROM-computed values in the productive regime.
In the dissipative regime, it deviates by up to 14%.This deviation can partly be
attributed to the severe spatial truncation of the Galerkin expansion. Energy
flows to the neglected less energetic modes are not resolved in the framework
of this ROM. For the given proof-of-concept ROM, the accuracy of the FTT
formalism can be considered as satisfactory.

J. Non-Equilib. Thermodyn. 2008 · Vol. 33 · No. 2



A Finite-Time Thermodynamics of Unsteady Fluid Flows 129

0 200 400 600 800 1000 1400I
0.0

0.1

0.2

0.3

0.5

E
[1..I]

(a)
0 200 400 600 800 1000 1400I

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

0.0

T
[1..I]

(b)

Figure 8 Energetics of the homogeneous shear turbulence displayed in Figure 7. (a) Cumulative
energy distribution E[1..I ]; (b) computed and modeled cumulative transfer terms, T [1... I ] (thick line)
and T̂ [1... I ] (thin line), respectively.

The ROM displays equipartition of energy (14) under the same conditions
as for the Burgers equation (Section 4). The initial condition is a state of the
converged Galerkin model. The external interactions are set to zero Qi = 0,
i = 1, . . . , N by enforcing the so-called truncated Euler dynamics. Here,
the shear rate and the viscosity is set to 0, thus inhibiting energy sources and
sinks.Truncated Euler solutions in spectral methods also display equipartition
of energy [22]. Setting only the shear rate to 0, yields a well studied decay of
turbulence (see Appendix C).

These ROM results for homogeneous turbulence corroborate that each mode
may be considered as a thermodynamic degree of freedom. Without external
interactions due to viscosity or mean flow, internal interactions lead to an
equipartition of energy between these degrees of freedom. Internal interac-
tions between modes thus serve the same balancing effect as collisions be-
tween molecules in gases. The nontrivial observed modal energy distribution
can be directly linked to the external interactions Qi . Large excess energies Qi
lead to more energetic modes that feed the energy in the energy flow cascade
to less energetic modes. The energy imbalance between the modes is thus a
finite-time phenomenon associated with redistribution of modal energy. An
infinitely fast redistribution would assure equipartition of energy between the
modes, even for nonvanishing Qi.

The conventional interpretation of the turbulence cascade is that energy flows
from large scales to small scales. The FTT formalism indicates, however, that
the primary mechanism is a cascade from energetic to less energetic modes.
This may correspond to the conventional cascade since large-scale modes may
be associated with large production and negligible dissipation (Qi > 0), while
fine-scale modes have negligible modal production and high dissipation, i.e.,
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Qi < 0. However, FTT predicts an inverse cascade from small to large scales if
the large scales are less energetic. These inverse cascades are indeed observed
in wall turbulence as well as in free shear turbulence due to vortex pairing.
Thus, FTT may comprise the normal and the inverse turbulence cascade in a
unified framework.

7. Conclusions

This study proposes a finite-time thermodynamics formalism for unsteady
incompressible fluid flows. That formalism builds upon an expansion of the
flow field in terms of a mean flow u0(x) and N global modes ui(x) with
time-dependent amplitudes ai(t),

u(x, t) = u0(x) +
N∑

i=1

ai(t) ui(x).

The global modes extend over the entire flow domain and are conceptionalized
as waves. They may be Fourier modes, stability eigenmodes, or constitute a
POD expansion. Each mode is characterized by a mean value of the Fourier

coefficient ai and an energy level Ei = (
a′

i

)2
/2.

The statistical closure determines the first and second moments of the Fourier
coefficients and thus the corresponding moments of the flow field.The closure
builds on a Galerkin system with constant, linear, and quadratic terms,

ȧi = ci +
N∑

j=1

lij aj +
N∑

j,k=1

qijk aj ak , i = 1, . . . , N .

The quadratic term alone leads to Hamiltonian (energy-preserving) dynamics.
In particular, the term qijk describes internal interactions between the modes.
The linear term parameterized by lij represents external interactions of the
mode with the base flow u0 and the “molecular chaos” characterized by the
kinematic viscosity ν. The constant term ci is an important parameter in the
mean-field equation. It vanishes if the steady solution is chosen as the base
flow u0.

The proposed FTT formalism rests on the Galerkin–Reynolds equation, i.e.,
the averaged Galerkin system, and the modal energy flow balance [26]. Under
statistically stationary conditions, the modal energy flow equation implies that
for each mode the energy flows due to external interactions and internal inter-
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actions are in balance. From Eqs. (13) and (12), the balance equation reads

Ėi = q̂i Ei︸︷︷︸
external

interactions

+
N∑

j,k=1

α χijk
(
Ei Ej Ek

)1/2
1
2 (Ej + Ek) − Ei

Ei + Ej + Ek︸ ︷︷ ︸
internal

interactions

= 0, (21)

i = 1, . . . , N .

The simplifications are axiomatically derived from known and postulated
properties of the Galerkin system. The key assumption is that the external
interaction term of one mode depends only on its energy and that each in-
ternal interaction term depends on the energies of the involved modes. These
assumptions are inspired by energy shell models of turbulence theory.

Each mode is considered as a thermodynamic degree of freedom. The quadra-
tic term of the Galerkin system alone leads to local thermal equilibrium (LTE),
i.e., equipartition of energy. The linear term differentiates between donor and
recipient modes of the energy flow cascade and promotes a complete order.
The donor modes diverge and recipient modes decay assuming a frozen mean-
field and neglecting internal interactions. Thus, linear and quadratic terms
compete against each other for “complete order” and “complete disorder”,
respectively. The compromise is a partial LTE state that is communicated
by the relevant time scales for energy exchange. If the welfare system acts
much faster than the growth of individual fortunes, an egalitarian communist
state is promoted. If the welfare system is slow and ineffective, a capitalist
system with large individual fortunes is obtained. Formally, the α-parameter
in Eq. (21) allows the interpolation between complete order (α = 0) and
complete disorder (α = ∞). The constant term does not affect the energy
flows directly, but via the interplay between modal energy distribution and
mean values of the Fourier coefficients.

The FTT model has been applied to three different configurations: (a) the
1D Burgers equation, (b) the 2D periodic vortex shedding behind a circu-
lar cylinder, and (c) the 3D homogeneous shear turbulence. The underly-
ing Navier–Stokes or Navier–Stokes-related equations are discretized with a
Galerkin expansion allowing a very low-dimensional representation of the
kinematics. In all cases, the internal energy exchange is well described by
the FTT model. Moreover, that model predicts well the energy distribution
for the 1D and 2D configurations. For the 3D flow, the large dimension of
the problem complicates the solution of coupled nonlinear equations. A trun-
cated dynamics gives rise to approximate local thermal equilibrium (LTE) in
those cases where the quadratic term is exactly Hamiltonian. For the cylinder
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Table 1 Investigated configurations.
Aspect Burgers equation cylinder wake homogeneous

turbulence

Evolution
equation

1D partial
differential equation

2D Navier–Stokes
equation

3D Navier–Stokes
equation

Boundary
conditions

periodic Dirichlet
and convective

periodic

Reynolds
number

Re = 1/ν = 100 Re = 100 Re = 1000

Modes N = 10
mathematical modes,
trigonometric system

N = 10
empirical (POD) modes
from numerical solution

N = 1459
physical modes
(Stokes modes)

Optimality
of modes

completeness data compression linear dynamics

Donor modes 2 2 432

Hamiltonian
quadratic term

exactly approximately exactly

FTT analysis Qi, Ti Qi , Ti Ti

FTT prediction Ei, ai Ei , ai energy decay

Truncated dynamics approximate LTE tendency to LTE approximate LTE

wake, the truncated dynamics shows a strong tendency toward LTE. Table 1
summarizes the properties and FTT results of the investigated configurations.
Forthcoming articles by the authors will address FTT models for mean-flow
effects and algorithms for high-dimensional dynamics. Appendix D outlines
a more general framework for this purpose.

An inspiring perspective of the FTT model is the possibility of a new path for
control design. The nonlinear effect of a control law can be predicted over an
infinite horizon. Thus, a nontrivial energy cascade manipulation may become
possible, significantly generalizing control theory applications. The authors
are actively pursuing this path for flow control applications.

The presented examples indicate that the FTT model works for a larger class
of dynamical systems or Galerkin systems with Hamiltonian quadratic term.
In all investigated cases, numerical experiments indicate that the attractor is
robust and globally stable. Secondly, the low order of the modes induces a
strong coupling between all modes. Good “mixing” in the state space can be
expected to be beneficial to the performance of the proposed closure scheme.
Certainly, we cannot expect the FTT formalism to overcome the sensitivity
problem inhibiting all modeling approaches. If a small change in the dy-
namical system yields large changes in the solution, then small modeling
errors have a similar effect. In particular, delicate resonance conditions will
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not adequately be predicted. Galerkin modes that do not yield similarly ro-
bust Galerkin systems might imply a poor performance of the FTT model.
Largely, the class of systems appropriate for the proposed closure scheme will
be determined by future studies.

An open question from a thermodynamics aspect is which functional na-
ture tries to minimize in fluid flow systems. Can a version of the principle
of minimum entropy production be derived on more formal grounds, e.g.,
the proposed modal balance equations? If yes, what are the side constraints
and how are the thermodynamic fluxes and forces defined? If not, may the
finite-time availability play a role in the new optimization functional, like in
discussions of the Carnot engine [55,56]? In how far may thermodynamic op-
timization [57] be employed in flow control strategies, where actuation gives
rise to additional energy flows Gi into the i-th mode [38,39]? The thermody-
namic heat flux analogy associated with Figure 2 suggests that at least some
of these problems may be solvable within FTT. Moreover, FTT suggests a
statistical mechanics for a Galerkin system attractor with probability distri-
bution p(a) employing the Shannon entropy S = − ∫ da p(a) ln p(a) with
suitable constraints.

In summary, it appears that the proposed FTT formalism offers a promis-
ing new path to the theoretical understanding of turbulence, to engineering
computational models for this complicated flow phase, and to nonlinear flow
control design. The authors are currently pursuing a turbulence model for
the first and second statistical moments of engineering applications involving
global stability eigenmodes and the FTT formalism. Future work should also
aim at exploring the domain of applicability of our model.
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Elektrochemie” hosted at the Technical University Dresden. The work of

J. Non-Equilib. Thermodyn. 2008 · Vol. 33 · No. 2



134 B.R. Noack et al.

Gilead Tadmor was partially supported by NSF grants 0410246 and 0524070
and the US AFOSR grants FA9550-05-1-0399 and FA9550-06-1-0373. The
3D flow visualization has been performed with Amira Software (Zuse In-
stitute Berlin) [58]. We are grateful for outstanding computer and software
support from Martin Franke and Lars Oergel. We are indebted to Steffi Stehr
for carefully proof-reading the manuscript. Last but not least, we thank the
referees whose encouraging and critical questions significantly contributed to
the presented research results.

Appendix A. Fick’s law of triadic interactions

Here, we describe the approximation of Tijk in Eq. (12). The nonlinearity is
necessary for self-sustained unsteadiness and gives rise to the transfer term.
The modal transfer term Ti = ∑N

j,k=1 Tijk comprises interactions between
three modes involving the i-th mode, the so-called triadic interaction terms,

Tijk := qijk a′
i a′

j a′
k . (A 1)

The main prerequisite is the energy-preserving property of the quadratic term
in the Galerkin system, which implies

qijk +qikj +qjik +qjki +qkij +qkji = 0, ∀i, j, k ∈ {1, . . . , N }. (A 2)

This Hamiltonian property of the quadratic term can be derived from the
Navier–Stokes equation for various boundary conditions [5, 59], e.g., a peri-
odic box, confined flow, or fluctuations in an ambient fluid. It is conserved
by any orthonormal transformation of the expansion modes in the Galerkin
approximation.

The key ansatz for modeling the triadic interaction term (A 1) is that the energy
gain of the i-th mode in one triad (i, j, k) depends only on the corresponding
energy levels of the participating modes in that triad:

T̂ijk = T̂ijk (Ei, Ej, Ek ). (A 3)

The transfer term may, however, depend on the Galerkin system coefficients
involved in the triad, i.e., qijk , qikj , . . ., qkji . It may be worthwhile to note that
the spectral transfer terms in turbulence theory have been modeled in a similar
spirit (see Appendix C).

The triadic interaction term fulfills a number of derivable or plausible prop-
erties:

P1) Homogeneity: Rescaling the mode amplitudes a′
i �→ √

λa′
i with a posi-

tive parameter λ yields Ei �→ λEi and according to the triadic interaction
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term (A 1),

T̂ijk (λEi, λEj, λEk) = λ3/2 T̂ijk (Ei, Ej, Ek ).

P2) Zeros: The triadic interaction term (A 1) vanishes if a′
i ≡ 0 (Ei = 0) or

a′
j ≡ 0 (Ej = 0) or a′

k ≡ 0 (Ek = 0). Hence,

T̂ijk (0, Ej, Ek ) = T̂ijk (Ei, 0, Ek ) = T̂ijk (Ei, Ej, 0) = 0.

P3) Energy conservation: The sum of all energy exchanges in one triad
vanishes for a large class of boundary conditions [59]. In other words,
the energy gained by one mode is lost by the other ones:

T̂ijk + T̂ikj + T̂jik + T̂jki + T̂kij + T̂kji = 0.

P4) Monotony: We assume that energy flows downhill, i.e. the least energetic
mode of a triad wins and the most energetic one loses energy,

Ei = min{Ei, Ej, Ek } ⇒ T̂i ≥ 0;
Ei = max{Ei, Ej, Ek } ⇒ T̂i ≤ 0.

It should be noted that the downhill direction is only implied for the
averaged quantities. Instantaneously, energy may, of course, flow uphill.

P5) Symmetry: Without loss of generality, the triadic transfer term can be
assumed to be symmetric. Symmetrization does not affect the modal
energy flow balance:

T̂ijk = T̂ikj .

P6) Realizability: The modeled transfer term should respect the upper and
lower bounds arising from Eq. (A 1),

|T̂ijk | ≤ |qijk | |a′
ia

′
ja

′
k |max ≤ |qijk | |a′

i|max |a′
j|max |a′

k |max. (A 4)

The word “realizability” is borrowed from similar constraints imposed
on turbulence models for Reynolds’ equation. Here, a positive trace of
the modeled Reynolds tensor, i.e., positive turbulent kinetic energy, is
required. We approximate |a′

i|max by
√

Ei modulo a factor of order one.
In this case, the strong realizabilitycondition (A 4) is replaced by a softer
version

|T̂ijk | � |qijk |√Ei Ej Ek, (A 5)

where the absolute value of the modeled term shall not exceed the limit
on the right-hand side by a factor of larger order than unity.
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All properties P1, P2, P5, and P6 are derived or motivated from the definition
of the triadic transfer term (A 1). Energy preservation P3 is synonymous with
Eq. (A 2). The monotony property P4 is motivated by physical considerations.
As a first illustrative case, we consider truncated Euler dynamics with Qi = 0,
i = 1, . . . , N displaying thermal equilibrium E1 = E2 = . . . = EN . P4
implies T̂i = 0, i = 1, . . . , N , i.e., thermal equilibrium is indeed a solution
of Eq. (13). As a second case, the turbulence cascade is considered. In the
inertial range, K41 theory describes the decay of energy with the increase of
the wavenumber κ ,

E(κ) = C ε2/3 κ−5/3, (A 6)

where C is the Kolmogorov constant and ε the dissipation per unit mass (see,
e.g., [60]). According to that theory, modes at the wavenumber κ receive
energy from more energetic modes, at lower wavenumbers, and transfer it
to less energetic ones, at higher wavenumbers. In other words, the assumed
“downhill” flow of energy in P4 is qualitatively consistent with K41 theory
describing an energy transfer from low to large wavenumbers. Finally, we con-
sider the inverse cascade due to vortex merging. Here, energy flows from the
energy-carrying coherent structures to emerging less energetic, larger scale
structures. Hence, also the inverse cascade is qualitatively consistent with the
assumed downhill energy flow in P4. In addition to these qualitative consider-
ations, our numerical results for several 2D and 3D shear flows corroborate the
tendency of least energetic modes to absorb energy from the most energetic
ones in the considered triad, both for the normal and the inverse cascade.

We propose the following formulation of a triadic interaction term as a real-
ization of P1–P6,

T̂ijk = α χijk
(
Ei Ej Ek

)1/2

(
1
2

(
Ej + Ek

)− Ei

Ei + Ej + Ek

)
, (A 7)

where the factor χijk := 1
6

(|qijk | + |qikj | + |qjik | + |qjki| + |qkij | + |qkji|
)

is
determined by the Galerkin system and is totally symmetric χijk = χikj =
. . . = χkji . We shall call this factor triadic interaction function of the Galerkin
system, alluding to similar restrictive roles of the characteristic function in
set theory and structure function in turbulence theory. The factor χijk shall
be set to 0 when the triple correlation a′

i a′
j a′

k vanishes, e.g., when strictly
periodic Fourier coefficients have incommensurable frequencies. Properties
P1–P5 are easily validated. The realizability P6 is appreciated from

−1 ≤
1
2

(
Ej + Ek

)− Ei

Ei + Ej + Ek
≤ +1
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and assuming that the involved coefficients qijk have the same order of mag-
nitude.

The parameter α is determined so that the amount of energy spent by the
donor modes is equivalent to the energy transferred by the donor modes to
the recipient ones. Let I+ be the index set of the donor modes with Q̂i > 0,
then α is determined from∑

i∈I+

[
Q̂i + T̂i

]
= 0. (A 8)

Note that the modal energy flow balance is generally not fulfilled with the
modeled terms, i.e., Q̂i + T̂i �= 0 for all i = 1, . . . , N . This balance equation
might, however, be satisfied by a mode-dependent parameter αi , i = 1, . . . , N ,
in the T̂ijk -ansatz.

We conjecture that Eq. (A 7) is the only nontrivial solution consistent with ax-
ioms P1–P6.The only degree of freedom is the design of the triadic interaction
function. Another totally symmetric candidate is, for instance,

χijk =
√(

q2
ijk + ... + q2

kij

)
/6.

In fact, Eq. (A 7) has been distilled from a more general class of T̂ijk that
satisfies only properties P1–P5. Symmetry P5 and homogeneity P1 conditions
suggest to employ powers of the product Ei Ej Ek and the sum Ei +Ej +Ek as
normalization factor. Symmetry P5, energy preservation P3, and monotony
P4 suggest (Ej +Ek )/2−Ei as redistribution factor. Homogeneity P1 restricts
the permissible powers in the normalization factor resulting in

T̂ijk = α χijk
(
Ei + Ej + Ek

)−β (
Ei Ej Ek

)1/6+β/3 (1
2

(
Ej + Ek

)− Ei
)
,

(A 9)

where β > 0 is a free parameter and χijk is totally symmetric in the indices.
Evidently, β = 1 is the only choice consistent with P6 and this leads to Eq.
(A 7).

An intriguing special case of Eq. (A 9) is obtained by setting χijk ≡ 1 for all
i, j, k ∈ {1, . . . , N } and β = 0,

T̂ijk = α
(
Ei Ej Ek

)1/6
(

1

2

(
Ej + Ek

)− Ei

)
. (A 10)

This terms satisfies another property, namely
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P7 Universality: T̂ijk (Ei, Ej, Ek ) is assumed to be a universal function for
all modal interactions independent of the Galerkin system,

T̂ijk = F(Ei, Ej, Ek ).

Note that universality (P6) and the realizability condition (P7) may not be
compatible. For instance, qijk = 0 implies T̂ijk = 0 – consistent with the
realizability condition. In contrast, mutually different energy levels Ei, Ej,
and Ek and a nontrivial universal solution imply T̂ijk �= 0 in the ansatz (A 3).

For the numerical analysis, Eq. (A 7) is adopted. For thermodynamic interpre-
tations, the simpler model (A 10) serves a better purpose. Generalization of
these interpretations for the triadic interaction term (A 7) is straightforward.
We propose the term Fick’s law of triadic interaction for the T̂ijk model; the
reasons are outlined in Section 3.3.

Appendix B. FTT model and linear stability analysis

In Section 5, a FTT model of the 2D periodic vortex shedding at a supercritical
Reynolds number has been proposed. Here, the onset of this vortex shedding
is described. Thus, the interrelation between FTT and linear stability analysis
is outlined.

At all Reynolds numbers Re, there exists a steady solution us of the Navier–
Stokes equation. This solution becomes unstable at the critical Reynolds
Recrit = 47. At Re < Recrit, the steady flow is globally stable, i.e., all per-
turbations die out exponentially fast. At Re > Recrit, a supercritical Hopf
bifurcation gives rise to an oscillatory instability leading to periodic vortex
shedding [12,61,62].

This “phase transition” is described by a global stability analysis around the
steady solution us [63]. At a given Re, the most amplified perturbation is of
oscillatory nature and described by the real part of

u′(x, t) = eλ1t f1(x).

The temporal behavior is characterized by the eigenvalue λ1 = σ1+ıω1, where
σ1 represents the growth rate and ω1 the frequency. The spatial structure is
resolved by the corresponding complex eigenmode f1 = u1 + ıu2 with real
part u1 and imaginary part u2. Figure 9 displays the steady solution and the
most unstable eigenmode at a supercritical Reynolds number.

The dominant fluctuation thus lives in a two-dimensional subspace and can
be described by a traditional Galerkin model based on the modes u1,2 after
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(a) (b)

Figure 9 Steady solution (a) and most unstable eigenmode (b) of the cylinder wake at Re = 100.
The cylinder is represented by the solid circle. The flow fields are visualized by streamlines. Only
the real part of the complex eigenmode is visualized. The imaginary part looks similar except for a
quarter wave length stream-wise phase shift.

an orthonormalization. To simplify the following energy flow discussion, we
assume that both modes have the same energy E1 = E2 = E/2 and behave like
the pair cos ω1t and sin ω1t, i.e., are temporally uncorrelated.This assumption
is observed to be a good approximation for instabilities of most free shear
flows, including the cylinder wake.

The total energy exchange of the stability eigenmode with the external envi-
ronment is given by

d

dt
E = Q = q E, (B 1)

employing [26,36].The transfer terms T1,2 describe nonlinear interactions and
are neglected in linear stability analysis. The external energy flow term Q can
be decomposed into the source Qprod, due to interactions with the base flow u0,
and the sink Qdiss, due to dissipation by viscous forces. The energy input from
the base flow is given by Qprod = qprodE.This rate shall be called the (reduced)
production, and the constant qprod the (reduced) production efficiency. This
allows the definition of a production time scale τprod = 1/qprod = E/Qprod
as the time needed for the production Qprod to fill the energy level to E.
(The overbar indicates converged time-averaged values, as opposed to the
instantaneous values from Eq. (B 1).) Similarly, the dissipation Qdiss = qdiss E
with dissipation efficiency qdiss are introduced. The positive dissipation time
scale

τdiss = −1/qdiss = −E/Qdiss

represents the time needed for the dissipation Qdiss to absorb the energy E.
Summarizing, q = 1/τprod−1/τdiss. From Eq. (B 1), the fluctuation is unstable
at q > 0. This implies τprod < τdiss. In other words, a necessary and sufficient
condition for linear instability is that a unit energy is produced quicker than it
is dissipated. Similarly, stability implies q < 0 and τprod > τdiss. The critical
Reynolds number is defined by τprod = τdiss. This discussion suggests to
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Figure 10 Onset of instability of the cylinder wake as transition-time phenomenon.The time scales
for production τprod (•) and dissipation τdiss (◦) are visualized for the most unstable eigenmode as a
function of the Reynolds number.

introduce a new order parameter Re� := τdiss/τprod, for which we propose
the name “onset Reynolds number.” This parameter is proportional to Re and
is unity at Recrit.

Figure 10 displays the production and dissipation time scales in dependency
of Reynolds numbers. As expected, τprod = τdiss at Re = Recrit = 47. In-
triguingly, the dissipation time remains approximately constant at supercrit-
ical Reynolds numbers Re > Recrit, while the production time diverges at
Re < Recrit. In other words, the most unstable modes become very inefficient
in absorbing energy from the mean flow at Re < Recrit. Similar time-scale
considerations for the onset of vortex shedding have been proposed in the
vortex framework [64–66].

In the FTT formalism for N modes, Eq. (13) implies that any energy distri-
bution converges to the fixed point E1 = E2 = . . . = EN = 0 if qmax :=

max
i∈{1,...,N }{q̂i} < 0. This can be proven by summing up the modal balances

(13) to the total balance, exploiting energy preservation of the transfer term
T1 + T2 + . . . + TN = 0 and the estimate for the energy derivative

d

dt
E = q1E1 + q2E2 + . . . + qN EN ≤ qmaxE.

In contrast, a sufficient and necessary criterion for a stable nontrivial energy
distribution is the existence of one or more productive modes, i.e., qmax > 0.
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Figure 11 Decay of homogeneous shear turbulence. The shear rate is reduced to 0 at time t = 0,
thus removing the only source of energy in the cascade. The curves show the fluctuation energy of
the Galerkin model of Section 6 (thick curve), the corresponding FTT model (thin curve), and a final
decay law (C 1) (straight line) for the very final phase.

Appendix C. FTT model and theory of homogeneous
turbulence

Here, we present a first consistency study between the FTT model and the
theory of homogeneous turbulence. For this purpose, the 1459-dimensional
Galerkin model of Section 6 is revisited. The Stokes modes resolve in each
direction all wavenumbers up to 4×(2π/λ), λ being the length of the periodic
box.

We can corroborate that the Galerkin and FTT model are consistent with the
decay law for the very final stage of turbulence [52],

E ∝ t−5/2. (C 1)

The initial state of both models lies on the attractor of homogeneous shear
turbulence discussed in Section 6. The decay starts at t = 0 when the shear
rate is set to 0, i.e., when the production vanishes. Then, the total energy of the
Galerkin model follows Eq. (C 1) well (see Figure 11). The kink near t = 20
is related to an increase of the concentration of energy in the low-wavenumber
modes, as the modes “feel” the limitations of the periodic box. This concen-
tration is over-predicted by the FTT formalism. One reason is the frozen α
parameter of Tijk for the shear turbulence state. Under statistically stationary
conditions, α is well defined by an energy flow consistency between donor and
recipient modes (A 8). Under the considered nonstationary decay conditions,
no donor modes exists and no analogous consistency can be proposed.

Fully developed turbulence has also been studied extensively resting on the pe-
riodic box approximation [52,67]. The employed spectral methods fit into the
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traditional Galerkin framework, required by FTT models. Hence, in principle,
the asymptotic properties of the proposed formalism can be compared against
Kolmogorov’s turbulence theory (see, e.g., [60]). In practice, the associated
computational load inhibits meaningful numerical results: the reduced-order
model above resolves only scales differing by a factor of at most 4 and in-
volves already about 3 million triadic interactions. In general, the number
of nonvanishing triadic interactions needed for the FTT model increases in
proportion to N 2. Spectral methods are much more efficient employing an
N log N algorithm [6,7]. However, a turbulence simulation with 4096 Fourier
modes in each direction was performed already on one of the most powerful
computers, the earth simulator [54]. Evidently, analytical approximations for
qijk and wavenumber interactions are necessary.

Analytical studies for periodic box turbulence are typically based on the spec-
tral energy equation for decaying turbulence. Let E(κ, t) dκ be the energy
contained at time t in the shell κ < ‖κκκ‖ < κ + dκ , where κκκ represents the
wavenumber vector, κ its norm, and dκ the width of the wavenumber shell.
The time evolution is described by

∂tE(κ, t) = −2 ν κ2 E(κ, t) + T (κ, t), (C 2)

where T (κ, t) is the transfer term representing all triadic interactions pumping
energy in a sphere with unit width.

In any spectral Galerkin model, its dissipation term is well approximated by
D = 2νκ2E(κ, t), because the coefficients of the viscous term lij form a diago-
nal matrix.The challenge of turbulence modeling is an estimate of the transfer
term. In the Galerkin model, the cumulative transfer term

∫ κ
0 dκ ′ T (κ ′, t) is

a continuous approximation of all interactions where the first mode i has
wavenumber magnitudes ‖κκκ i‖ < κ:

κ∫
0

dκ ′ T (κ ′, t) =
∑
i,j,k

‖κκκi‖≤κ

Tijk .

In the FTT model, the energy flow by a triadic interaction is given by Tijk =
Tijk (Ei, Ej, Ek ). In spectral closures, like Heisenberg’s ansatz [68], T (κ, t) is
assumed to be a function of the whole energy distribution κ �→ E(κ, t). In
both closures, the energy distribution is the driving force of the transfer term.
In the FTT model, a downhill flow toward thermal equilibrium is assumed,
both for the normal and the inverse turbulence cascade. The spectral closure
describes energy flow from low to large wavenumbers, in the inertial regime.
Under these premises, neither the inverse cascade nor the absolute equilibrium
ensemble is derivable.
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It should be noted the FTT and spectral closure have different benchmark
equilibria. As a statistical physics ansatz, FTT predicts a vanishing transfer
term T ≡ 0 for thermal equilibrium, i.e., E ∝ κ2 up to a maximum value
of κmax. As asymptotic approximation, spectral closures, like Heisenberg’s
model, predict a vanishing transfer term for the inertial range obeying the 5/3
law (A 6). Preliminary semi-analytical investigations of the authors addressing
the 5/3 law in FTT framework are encouraging.

Appendix D. Outline of a dynamic FTT model

In some applications, the temporal evolution of coherent structures shall be
explicitely resolved, e.g., shear flow fluctuations contributing to mixing and
noise. To address this need, the FTT model is generalized for the triple de-
composition into the base flow, time-resolved coherent structures and statisti-
cally modeled fluctuations [69]. A similar philosophy is adopted in a number
of computational fluid dynamics approaches [70], e.g., URANS (unsteady
Reynolds averaged Navier–Stokes) models and LES (large eddy simulation).
The proposed generalization has already been successfully applied to the tran-
sient and post-transient cylinder wake.

The starting point is a Galerkin model with expansion (5) and dynamical
system (6). We classify the modes ui with i ∈ I = {1, . . . , N } in three groups:
dynamic, mean-field, and thermodynamic modes. The dynamic modes with
i ∈ Idyn may represent energetic coherent structures. Their evolution shall be
resolved in time by a modified version of the ordinary differential equation
(6):

ȧi = ci+
∑

j∈Idyn ∪ Imf

lij aj +
∑

j,k∈Idyn ∪ Imf

qijk aj ak +σi (ai − ai) , i ∈ Idyn.

Mean values ai and associated fluctuation energies Ei = (a′
i)

2/2 are esti-
mated from the time history of ai(t). The last term is equivalent to a modal
eddy viscosity ansatz [15–17,71] and accounts for energy transfer to the ther-
modynamic modes. The parameter σi is chosen to assure modal energy flow
balance: 2 σi Ei = ∑

j,k∈I
j∨k∈Itd

T̂ijk , where T̂ijk is determined from Eq. (12).

The mean-field modes with i ∈ Imf may resolve slow base flow variations,
e.g., by shift modes [25,72,73]. Their fluctuation is assumed negligible in the
time window of interest Ei ≡ 0. The mean values ai = ai are described by
the Galerkin–Reynolds equation (7) for i ∈ Imf . The associated fluctuation
energy vanishes, Ei = 0, by assumption.
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The remaining thermodynamic modes with i ∈ Itd are statistically modeled
as described in the current study, i.e., by Eqs. (10) and (13). Mean values
ai and modal energies Ei of the other modes with i ∈ I/Itd enter like the
corresponding values of thermodynamic modes.

The dynamic generalization of the FTT, outlined above, includes the original
FTT model (I = Itd), the “pure” Galerkin system (I = Idyn), a variant of the
slaving principle [74] (Itd = ∅), and myriad combination possibilities. The
most important aspect of this generalization is that the coupling term between
different sets of modes appears quite naturally. Moreover, the coupling term
can be checked against the Galerkin–Reynolds equation and the modal energy
balance equation as two important reference points.

The capability to resolve the time-evolution of critical modes in the dynamic
FTT may significantly enhance its accuracy at low computational cost. Other
currently pursued applications include dynamical least-order models from
first principles and subgrid turbulence models.
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[25] Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G., Thiele, F., A hierarchy of
low-dimensional models for the transient and post-transient cylinder wake, J. Fluid
Mech., 497 (2003), 335–363.

[26] Noack, B.R., Papas, P., Monkewitz, P.A., The need for a pressure-term representation
in empirical Galerkin models of incompressible shear flows, J. Fluid Mech., 523
(2005), 339–365.

[27] Curzon, F.L., Ahlborn, B., Efficiency of Carnot engine at maximum power output,
Am. J. Phys., 43 (1975), 22–24.

[28] Andresen, B., Berry, R.S., Nitzan, A., Salamon, P., Thermodynamics in finite time. I.
The step-Carnot cycle, Phys. Rev. A, 15 (1977), 2086–2093.

[29] Salamon, P., Andresen, B., Berry, R.S., Thermodynamics in finite time. II. Potentials
for finite-time processes, Phys. Rev. A, 15 (1977), 2094–2102.

[30] Ahlborn, B., Curzon, F.L., Time scales for energy transfer, J. Non-Equilib. Thermo-
dyn., 29 (2004), 301–312.

[31] Noack, B.R., Eckelmann, H., A low-dimensional Galerkin method for the three-
dimensional flow around a circular cylinder, Phys. Fluids, 6 (1994), 124–143.

[32] Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Flow,
1st ed., Gordon and Breach, New York, London, 1963.

[33] Deane, A.E., Kevrekidis, I.G., Karniadakis, G.E., Orszag, S.A., Low-dimensional
models for complex geometry flows: application to grooved channels and circular
cylinders, Phys. Fluids A, 3 (1991), 2337–2354.

J. Non-Equilib. Thermodyn. 2008 · Vol. 33 · No. 2



146 B.R. Noack et al.
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