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Nomenclature

x Location
xrec Length of the recirculation zone
ycyl Transverse position of the cylinder
t Time
u Velocity field
us Steady Navier-Stokes solution
ui i-th expansion mode of the Galerkin approximation
uc Actuation mode associated with transverse cylinder oscillation
ai Fourier coefficient of the i-th expansion mode
ac Amplitude of the actuation mode
φ Phase of the transverse oscillation
A Amplitude of the transverse cylinder oscillation
α, β, γ, σr, σ3, ω Galerkin system coefficients describing the natural dynamics
r, θ Polar coordinate representation of a1,a2

θc Phase difference between actuation and flow phase
θol Phase difference between actuation and flow phase under open-loop actuation
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∆φ Phase offset under closed-loop control
Γ Amplitude of the ficticious volume force
g1, g2 Galerkin system coefficients associated with the volume force
κi, κi,j Galerkin system coefficients associated with the cylinder oscillation
gr, gθ, g3 forcing terms of the Galerkin system in cylindrical coordinates
‘ ’ Denotes a one-period average
〈 〉 Denotes the time average
Other quantities relate to parameter estimation in the appendix

I. Introduction

In the current study, the suppression of laminar vortex shedding behind a transversely oscillating circular
cylinder is used as a testbed for a feedback flow control strategy based on low-dimensional empirical Galerkin
models.1 The suppression of the von Kármán vortex street has been a benchmark problem for many flow
control strategies. Significant reductions of the wake oscillations have been achieved with passive means,
like splitter plates,2,3, 4 control cylinders5 and with open-loop actuation, like base bleeding6 and oscillatory
cylinder rotation.7

Model-based feedback flow control stabilizations of the nearly steady wake have been performed with a
large variety of models. Examples of numerically or experimentally validated controllers are

1. a black-box control using loudspeakers,8

2. an optimal control employing oscillatory cylinder rotation,9

3. an optimal control based on continually updated empirical Galerkin models using a local volume force,10

4. an optimal control based on a higher-dimensional empirical Galerkin model using a cylinder rotation,11

5. a flatness-based control from a low-dimensional vortex model applying cylinder rotation,12

6. an energy-based control derived from a Galerkin model with a volume force actuator,13 and

7. a PD control from the first Karhunen-Loève coefficient using transverse cylinder oscillations.14

s e n s o rA )  v o l u m e  f o r c e

B )  c y l i n d e r  o s c i l l a t i o n

Figure 1. Principal sketch of the cylinder wake with
actuation and sensor. Two kinds of actuations have
been investigated: (A) a local volume force,13 and (B)
transverse cylinder oscillation (current study).

In the current study, an opposition control strat-
egy for transverse cylinder oscillation is developed
based on work of the USAFA team14 (see Fig. 1).
This strategy leads to robust energy-based con-
trol employing a least-order Galerkin model. The
manuscript is organized as follows. First (§II), a
minimal Galerkin model is derived from the recipes
of Part I.1 For that model, a corresponding con-
troller is designed in §III. In §IV, Navier-Stokes
simulations are presented for a controlled cylinder
wake. The conclusions are summarized in §V. A
dynamic estimation technique for parameter calibra-
tion of the least-order Galerkin model is presented
in §A

II. Galerkin model with actuation

In this section, a least-order model is distilled from the Galerkin modelling toolbox of Part I.1 First (§A),
a minimal representation of the natural dynamics is reviewed. The incorporation of a volume force and
cylinder motion as actuators are described in §B and §C, respectively.

A. Minimal Galerkin model for the natural flow

The starting point of the model development is a Galerkin approximation based on the (unstable) steady
Navier-Stokes solution us, the first two Karhunen-Loève modes u1,2 and the shift mode as the third mode
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u3,
u = us + a1u1 + a2u2 + a3u3. (1)

This ansatz neglects about 5% of the fluctuation energy of the limit cycle and is equivalent to Eq. (3) of
Ref. 1 with an offset in the shift-mode amplitude a3.

The corresponding Galerkin system (5) of Part I can be phase-averaged without noticeable loss of accu-
racy.15 This procedure yields the dynamical system

d

dt




a1

a2

a3


 =




σr −ω − γa3 −βa1

ω + γa3 σr −βa2

αa1 αa2 −σ3







a1

a2

a3


 (2)

with only 6 model parameters (α, β, γ, σ0, σ3, ω) as opposed to 60 of the original system. Here, σ0, β > 0
guarantee the existence of a globally stable limit cycle.

A transformation to cylindrical coordinates r, θ, a3 via

a1 = r cos(θ), a2 = r sin(θ) (3)

yields

d

dt

[
r

a3

]
=

[
σr −βr

αr −σ3

] [
r

a3

]
,

d

dt
θ = ω + γa3. (4)

with the stable limit cycle

a3∗ =
σr

β
, r∗ =

√
σ3

α
a3∗ =

√
σ3σr

αβ
. (5)

B. Incorporation of the volume force

The oscillating cylinder is described in a body-fixed coordinate system (see §VII of Part I). Hence, a ficticious
transverse volume force representation has to be added to Eqn. (2) accounting for the cylinder acceleration,

d

dt




a1

a2

a3


 =




σr −ω − γa3 −βa1

ω + γa3 σr −βa2

αa1 αa2 −σ3







a1

a2

a3


 +




g1

g2

0


 Γ. (6)

with the new coefficients g1, g2 and Γ = −ÿcyl = ȧc. Note that the dynamics of the shift mode is not directly
affected by the volume force due to reasons of symmetry.

C. Incorporation of the cylinder oscillation

The free-stream oscillation requires an actuation mode contribution acuc to the Galerkin ansatz (1) as
described in Part I. The resulting Galerkin system is expressed by

d

dt




a1

a2

a3

ac


 =




σr ω + γa3 −βa1 κ1 + κ1,3a3

−ω − γa3 σr −βa2 κ2 + κ2,3a3

αa1 αa2 −σ3 κ3 + κ3,1a1 + κ3,2a2 + κ3,cac

0 0 0 0







a1

a2

a3

ac


 +




b1

b2

0

1


 Γ. (7)

The coefficients κi, κij describe the coupling of the flow dynamics with the control input ac and can easily be
determined from the Galerkin system coefficients lij , qijk in Eqn. (7) of Part I. The fourth equation implies
Γ = dac/dt as derived in Part I.

A transformation into cylindrical coordinates (3) yields additional forcing terms in Eqn. (4),

d
dt

[
r

a3

]
=

[
σr −βr

αr −σ3

][
r

a3

]
+

[
gr(θ, a3, ac, ȧc)

g3(a, ac)

]

d
dt

θ = ω + γa3 + gθ(θ, a3, ac, ȧc)

(8)
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where

gr(θ, a, ac, ȧc) = cos(θ) [(κ1 + κ1,3a3)ac + b1ȧc] + sin(θ) [(κ2 + κ2,3a3)ac + b2ȧc] ,

gθ(θ, a, ac, ȧc) =
1

r
{cos(θ) [(κ2 + κ2,3a3)ac + b2ȧc] − sin(θ) [(κ1 + κ1,3a3)ac + b1ȧc]} ,

g3(a, ac) = (κ3,1a1 + κ3,2a2 + κ3,cac) ac.

We assume a slowly varying oscillatory control input of the form

ac = rc cos(φ) = rc cos(θ − θc),
d

dt
ac ≈ −φ̇rc sin(φ) ≈ −(ω + γ a3) rc sin(θ − θc) (9)

where rc represents the velocity amplitude, φ the phase of the control, and θc the phase difference between
control and flow.

A one-period average of ansatz (9) in (8) yields following dc components of the forcing term:

gr ≈ 0.5rc {cos(θc) [κ1 + κ1 3a3 − b2(ω + γa3)] + sin(θc) [κ2 + κ2 3a3 + b1(ω + γa3)]} (10)

gθ ≈ 0.5rc {cos(θc) [κ2 + κ2 3a3 + b1(ω + γa3)] − sin(θc) [κ1 + κ1 3a3 − b2(ω + γa3)]} (11)

g3 ≈ 0.5rc {[κ3 1 cos(θc) + κ3 2 sin(θc)] r + κ3 crc} . (12)

The largest amplitude decay r at a given forcing amplitude rc is obtained when θc is chosen according to

[
cos(θc)

sin(θc)

]
∝

[
κ1 + κ1 3a3 − b2(ω + γa3)

κ2 + κ2 3a3 + b1(ω + γa3)

]
⊥

[
κ2 + κ2 3a3 + b1(ω + γa3)

− (κ1 + κ1 3a3 − b2(ω + γa3))

]
. (13)

The ⊥ sign indicates that the most energy efficient θc for amplitude reduction (or enhancement) coincides
with a vanishing effect of the control on the frequency. The control amplitude rc can be determined from a
prescribed exponential decay of the fluctuation amplitude r, as elaborated in Ref. 16.

III. Control design based on the Galerkin model

The Galerkin system (8) is employed for a heuristic analysis of the actuation effect on the flow dynamics.
The corresponding amplitude equation is expressed by

d

dt
r = (σr − β a3) r + g. (14)

In addition, the inertial manifold relation of natural dynamics is exploited,15

a3 = (α/σ3) r2. (15)

For reasons of simplicity, g is assumed constant. The implications of the Galerkin model can be read from
Eqs. (14,15) and have been numerically validated:

1. The natural flow has an unstable steady solution at the origin r = a3 = 0 corresponding to us in Eqn.
(1).

2. The natural flow has a globally stable limit cycle described by Eqn. (5).

3. Open-loop forcing tends to increase the energy level by choosing a phase θc = θol which nearly optimizes
the energy extraction of the mean flow. In terms of the amplitude equation (14), this implies g < 0
and an increase of a∆ (see Fig. 1).

4. Closed-loop forcing with constant amplitude rc and constant phase θc can reduce the oscillation am-
plitude r. There exists a single stable limit cycle (see Fig. 1).

5. Moreover, there exist another limit cycle with lower energy, if the amplitude is not too large. This
limit cycle can be shown to be unstable from Eqn. (14), i.e. cannot be realized as steady state under
our control policy.
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unstable limit cycle under closed−loop control

stable limit cycle under closed−loop control

natural limit cycle

stable limit cycle under open−loop actuation

unstable natural fixed point

3 3aa

33% limit for stable controlled limit cycles

g<0g>0 actuation effectinertial manifold

100%

Figure 2. Principal sketch of the solutions associated with Eqn. (14).

6. The largest achievable reduction is 2/3 of the natural fluctuation energy — assuming again a feedback
control policy with the constant amplitude rc and constant phase.

7. A stabilization of the unstable steady solution requires a different feedback control law where g vanishes
as r → 0.

All these statements are also numerically corroborated in our flow simulations.
In the current study, we adopt a simple control strategy motivated by this analysis,

ac = A cos(θ − θc), A = constant, θc = constant. (16)

The minimal Galerkin model is quantitatively validated near the open-loop limit cycle,16 but the coefficients
quickly change as control suppresses vortex shedding. In particular, the dominant κi coefficients are found
to be strongly dependent on the base flow. In contrast, the validity range of Galerkin model based on a local
volume force is observed to be significantly larger.13

IV. Feedback flow control of the cylinder wake

Open- and closed-loop control is applied to the cylinder motion at Re = 100. The open-loop actuation
is given by

ac = −ẏcyl = A cos ωt = A cos(θ − θol), (17)

where ω is the natural shedding frequency and the second equality expresses a definition for open-loop phase
difference between flow phase and actuation. The closed-loop control imposes a phase difference ∆φ with
respect to the open-loop forcing,

ac = A cos(φ), φ = θ − θc, θc = θol − ∆φ. (18)

The flow phase is measured with respect to Karhunen-Loève modes of open-loop forcing in the near wake of
the computational domain (x ≤ 6). This domain size has been chosen to compare our results with a similar
study of the USAFA team.14 The open-loop actuation amplitude for the reference simulation is A = 0.06.

Figure 3 visualizes the natural flow as well as the wake under open-loop and closed-loop forcing. Open-
loop actuation reduces the recirculation region whereupon closed-loop control re-laminarizes the near wake.
For closed-loop control (18), the optimal phase difference ∆φ = 210◦ of Siegel, Cohen and McLaughlin14 has
been adopted. It may be noted that significantly longer recirculation regions are achievable with Karhunen-
Loève modes based on shorter observation regions, e.g. x ≤ 4 D.

Figure 4 displays a transient from open-loop forcing to closed-loop control via the natural state. The
fluctuation amplitude decreases during this transient and the shift-mode amplitude gets closer to the fixed
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a
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c

(c)
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b

(e)

c

(f)

Figure 3. Snapshots of the natural (a,d), open-loop actuated (b,e) and closed-loop controlled wake (c,f).
Actuation is provided by a transversely oscillating cylinder. The amplitude of open-loop actuation is A = 0.06.
Closed-loop control is employed at the amplitude A = 0.03 and at the phase difference ∆φ = 210◦. The cylinder
is indicated by a solid disk. In the top row (a-c), the snapshots are visualized by streamlines, in the bottom
row (d-f), iso-lines of the u velocity component are shown for the same snapshots. The corresponding levels
are u = −0.2, −0.1, 0, 0.2, 0.4, 0.6, 0.8 and 1.0. The shaded rectangle illustrates the streamwise extension of the
instantaneous recirculation region.

0 20 40 80t/T
-1.5

-1

-0.5

0

0.5

1.5

a1,3

(a)

-1.5 -1 -0.5 0 0.5 1.5a1

-1.5

-1

-0.5

0

0.5

1.5

a2

(b)

-1.5 -1 -0.5 0 0.5 1.5a1
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Figure 4. Transient from open-loop actuated flow (t < 20 T ) to closed-loop controlled flow (t > 40 T ) via the
natural condition as intermediate state. The parameters are the same as in Fig. 3. The Fourier coefficients
a1 (thin curve) and a3 (thick curve) are shown as a function of time t normalized with the natural shedding
period T (figure a). Figures b,c display phase portraits of the first three Fourier coefficients a1, a2, a3.
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point value a3 = −2.2.a As expected from Fig. 1, the trajectory t 7→ a1, a2, a3 spirals downward close to
the inertial manifold paraboloid. The relative reduction of the oscillation amplitude in a1 is about 50% and
compares well with the reduction achieved in the study of the USAFA team.14

Intriguingly, chirp excitations may also drive the flow to a weakly unstable limit cycle, the existence of
which has been predicted by the Galerkin model. Figure 5 shows a transient from an unstable to a stable
limit cycle. The actuation and phase difference are keep constant during this 50 period long transient.

0 20 40 80t/T

-2
-1.5

-1
-0.5

0
0.5

1

2
a1,3

(a)

-2 -1 0 1 2a1

-2

-1

0

1

2

a2

(b)

-2 -1 0 1 2a1

-1

-0.8

-0.6

-0.4

0

a3

(c)

Figure 5. Same as Fig. 4, but for the transient from an unstable to the stable limit cycle under closed-loop
control. The parameters of actuation are A = 0.10 and ∆φ = 270◦ throughout the transient. The Karhunen-
Loève decomposition is carried out in a larger domain x ≤ 10. For smaller observation regions, the transient
phases are shorter.

A parametric amplitude variation yields Aopt ≈ 0.03 for the smallest fluctuation energy TKE in the
near-wake x ≤ 6 (see Fig. 6). This minimum coincides well with the minimum of the energy resolved by the
two Karhunen-Loève modes, i.e. 〈a2

1 + a2
2〉/2. Note that the Karhunen-Loève modes resolve less than 50%

at A = 0.1, i.e. other modes are excited at large amplitudes. This analysis corroborates the identification
of an optimal actuation amplitude in Ref. 14. The minimum fluctuation energy of Fig. 6a coincides well

0 0.04 0.1A
0

0.2

0.4

0.6

1

TKE

(a)

0 0.04 0.1A
2

3

4

x rec

(b)

Figure 6. Control measures under closed-loop actuation. The figure displays the averaged fluctuation energy
K (•, figure a), the averaged resolved fluctuation energy 〈a2

1
+a2

2
〉/2 (◦, figure a), and the averaged recirculation

length xrec (?, figure b) in dependency of the actuation amplitude A. The phase difference between open and
closed-loop forcing is ∆φ = 210◦.

with the maximum near-wake re-laminarization quantified by the recirculation bubble length xrec. We adopt

aIn this section, the a3 = 0 corresponds to the limit cycle, i.e. the notation of Part I is adopted.
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this length as our control measure since it is physically appealing and since it has the advantage of being
independent of the observation region.

A systematic variation of the actuation amplitude A ≤ 0.1 and phase difference ∆φ ∈ [0◦, 360◦] strongly
suggests that the closed-loop actuation always gives rise to a unique stable periodic limit cycle independent
of the initial condition. This observation is consistent with the prediction of a globally stable limit of
the Galerkin model under open- and closed-loop actuation. The transient time may be as large as 50
periods (see Fig. 5, for instance) and may be reduced by a state-space dependent phase variation.14,16

From Fig. 7, the optimal parameters for vortex shedding suppression can be identified: Aopt = 0.03 and

Figure 7. Recirculation length xrec of the closed-loop actuated cylinder wake as a function of the amplitude A
and phase difference ∆φ.

∆φopt = 210◦. Intriguingly, the shortest recirculation zone is not obtained under open-loop control (∆φ = 0)
but at (∆φmax ≈ 40◦). Similarly, the optimal re-laminarization is not achieved at ∆φ = 180◦ — as the
opposition control idea may suggest — but at ∆φopt ≈ 210◦. Yet, the most amplified and most suppressed
closed-loop vortex shedding states are almost 180 degrees apart. This 180 degree difference is also predicted
by the Galerkin model.

V. Conclusions

A 4-dimensional Galerkin model is proposed for the vortex shedding behind a circular cylinder with
oscillatory transverse motion. An energy-based control design based on that model yields an opposition-
type control law, which we adopt in a simplified manner for Navier-Stokes simulations. The model has a
very narrow region of validity, since the accuracy of the underlying Karhunen-Loève decomposition rapidly
deteriorates under a change of actuation. However, the model qualitatively explains all numerical simulation
results in remarkable details. Examples include the existence of a globally stable and unstable limit cycle
under closed-loop control besides the existence of a lower bound for the achievable fluctuation energy under
our feedback control policy. In §A, a model estimation path is discussed for the calibration of that reduced-
order model.
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A. Model parameter estimation

In Part I, we discussed pressure and turbulence models as means to compensate energy dynamics that
are neglected in a standard Galerkin projection, leading to distorted predictions by the Galerkin system.
The over-predicted limit cycle amplitude in the reduced-order wake model is an example. Yet another cause
for mismatch include the fact that an empirical Galerkin model of an attractor may not be capable to
predict dynamic properties at another operating point. As shown in Noack et al.,15 good prediction may be
achieved by a sufficiently enriched model: In the cylinder wake this includes an 11-mode model, comprising
four attractor harmonics, a shift mode and two leading stability analysis modes. Our goal here is to illustrate
the advantages of an alternative (or complementary) approach by which parameter estimation methods are
applied to achieve a posteriori correction of the distortions in a very low order model. Our simple benchmark
example — the unactuated three state cylinder wake model — provides a compelling illustration (Fig. 8).
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3D State DNS data vs. nominal GS simulation
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a 3
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3
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r

a 3

DNS
 GS 

0 50 150 250

−3
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t
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Figure 8. DNS data and a nominal Galerkin system simulations, depicting the invariant manifold formed by
transients from the unstable steady solution to the attractor. Left: dynamics of of the three leading Fourier
coefficients. Middle: a crosscut of the invariant manifold, showing the shift mode a3 as a function of the
oscillation amplitude r. Right: The time trajectory of a1.

Estimation of the parameters α, β, γ, σr, σ3, and ω is based on DNS data of time trajectories of the
Fourier coefficients.

The estimation task falls into the general form of a Galerkin system, written in the form

d

dt
a = F (a)σ + G(a) (19)

where a is the vector of Fourier coefficients, σ := [σ1, . . . , σθ]
T comprises the unknown parameters, and F (a)

and G(a) are, respectively, a quadratic matrix- and vector-valued polynomials in the entries of a. The two
approaches reviewed here adhere to the observation (see e.g., Ljung17) that — in contrast to the rich theory
for the linear case — the identification of a nonlinear model for a system often reduces to a question of curve
fitting rather than modelling. We then illustrate the application of these procedures in the context of (8).

A. Dissipative Dynamic Estimation

An appeal to dynamic dissipation is common in estimation, adaptation and control design.18,19,20 The
dynamic dissipative estimator is of the form

d

dt
â = −d{δ}4a + F (a)σ̂ + G(a) (20a)

d

dt
σ̂ = −F{a}T d{α}2 4a, (20b)

where, as usual, a hat “̂” indicates an estimate and “4”, the estimation error (i.e., 4a = a − â), α =
[α1, , α2 . . . ]T and δ = [δ1, δ2, . . . ]T are vectors of positive scalar design parameters, and where d{δ} and
d{α} are the diagonal matrices defined by δ and α. Denoting the weighted error ξ = d{α}4a, the structure
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(20) and the hypothesis that, indeed, (8) is structurally valid lead to the estimation error dynamics

d

dt
ξ = −d{δ} ξ + d{α}F (a)4σ (21a)

d

dt
4σ = −F{a}T d{α} ξ, (21b)

Under this negative semi-definite + skew-symmetric system structure, the storage (Lyapunov) function
V (ξ, 4σ) = 0.5(‖ξ‖2 + ‖4σ‖2) is non-increasing:

d

dt
V (ξ, 4σ) = −ξT d{δ} ξ (22)

The stability implications of (22) imply heavily on invariance properties of (21), and, in turn, on the richness
of the underlying trajectory of a (technically, on having sufficient excitation) (see, e.g., Artstein21 and
Anderson et al.18). With ample excitation error will decay and 4σ 7→ 0. Design parameter selection
effect the balance between dissipation rates and “error energy” flow, which need to be balanced for overall
convergence.

B. Least Mean Squares Estimation

Here the curve fitting idea is followed literally. In the simplest form, the differential equation (8) is approx-
imated as a difference equation

a(t + 4t) = a(t) + {F [a(t)] σ + G [a(t)]} 4t (23)

with a small 4t. This equation can be re-cast in the form

Aσ = ζ (24)

where the vector ζ contains the terms that are independent of σ in (23), evaluated at times tk, k = 0, 1, . . . ,K
and Aσ describes, in an obvious manner, the corresponding σ dependent terms. This is an over-determined
equality formulation that lends itself to a standard least mean squares estimation (or weighted versions
thereof)

σ = (AT A)−1AT ζ (25)

The sufficient excitation condition manifests itself as the invertibility of AT A. The advantage of this method
is that a constant solution is guaranteed. Yet in case the very structure of the model is incorrect, the value
of that solution would be doubtful.

C. Parameter Estimation in the Cylinder Wake Benchmark

The mismatch between the Galerkin projection and observed dynamics is clear from Fig. 8 and in the top
left plot of Fig. 9. An efficient estimation process exploits a clear distinction between two regimes: The
near growth rate, characterizing the central transient domain, and the flat area of the attractor. Specifically
ratios ρr = σr/β and ρ3 = σ3/α determine the Galerkin system attractor, while the growth / dissipation
coefficients σr and σ3, in and of themselves, have essentially no impact in that region. Additionally, the
cylindrical frames allow to estimate the frequency coefficients separately: Equation (4) can thus be re-written
as

ṙ = β(ρr − a3)r (26a)

ȧ3 = α(r2 − ρ3a3) (26b)

θ̇ = ω + γa3 (26c)

Using this partition, α and β — which have no effect on the attractor — are first fixed at their nominal
values and ρr and ρ3 are estimated, using an attractor portion of the reference. Using either estimation
scheme, the result is that indeed, the attractor is precisely predicted (the dotted line, top left plot of Fig. 9),
but the growth rate is not resolved. Having fixed the corrected values ρr and ρ3, estimation of the growth
rates α and β exploits the growth portion of the reference. Indeed, it is convenient to convert (26a-26b) to
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Figure 9. Top, left: The mismatch between log(r) growth in DNS (bold) and the the original Galerkin system
response (dashed), where time is measured by T , the attractor’s nominal period. Dynamic estimation of ρr and
ρ3 (from (26) with the nominal α and β) provide a match of the attractor (dots), but the growth rate is even
lower than in the nominal model. The remaining 3 plots show the effect of estimating all model parameters,
comparing Galerkin system and DNS simulations. Top, right: The 3D transient dynamics of the three leading
Fourier coefficients. Bottom, left: a plot of a3 as a function of r, along such transients. Bottom, right: The
time trajectory of a1.

Table 1. A comparison of nominal and estimated model parameters

Parameter Nominal Estimated Estimated / Nominal

σr 0.048 0.1676 3.5

σ3 0.048 1 20.8

β 0.019 0.0747 3.9

α 0.0196 0.4354 22.2

ω -0.9936 -0.8524 0.86

γ -0.034 -0.1091 3.2

equivalent differential equations in log r and log a3 to that end, using the near-linear portion of the transient
reference. Again, these two estimation problems are mutually uncoupled. Finally, ω and γ are estimated
from (26c). The results are plotted in the remaining three plots of Fig. 9, with near perfect tracking.
Table 1 compares the nominal and the estimated values of model parameters. To summarize the meaning
of the differences between the nominal and the estimated model, we highlight the following points:

• Differences in σr and β: The factors of 3.5 / 3.9 indicate both a small correction to the amplitude of
the resulting limit cycle, and a 3.5 fold increase in the initial exponential growth rate.

• Differences in σ3 and α: The similar factors of 20.8 / 22.2 indicate that the target proportion of r2

and a3 is similar to the nominal prediction, yet the tracking speed is about 20 times faster.
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• Differences in Ω and γ: The limit frequency is slightly lower. The 3.2 factor in γ was essential for good
phase tracking during transients, and it reflects the deeper issue of phase shift in expansion modes
during such transients.

Acknowledgments

The research of Gilead Tadmor was supported by the U.S. National Science Foundation grants ECS-
0136404, CCR-0208791 and INT-0230489. Bernd R. Noack acknowledges support by the Deutsche Forschungs-
gemeinschaft (DFG) under grant NO 258/1-1, by the DFG via the Collaborative Research Center (Sfb 557)
“Control of complex turbulent shear flows” at the Technical University of Berlin, by the DAAD program
(PPP USA), and by the Windows of Science Program of EOARD. Stefan Siegel would like to acknowledge
funding through the Air Force Office of Scientific Research, Lt.Col. Sharon Heise. We have profited from
fruitful and stimulating discussions with the TU Berlin team (Ralf Becker, Oliver Lehmann, Rudibert King,
Mark Pastoor, Ivanka Pelivan, Michael Schlegel, and Tino Weinkauf), with the US Air Force Team, (Kelly
Cohen, Thom McLaughlin, and Mark Luchtenburg), and with Laurent Cordier (LEMTA).

References
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