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The transition of the cylinder wake is investigated experimentally in a water channel and is
computed numerically using a finite-difference scheme. Four physically different instabilities are
observed: a local "vortex-adhesion mode," and three near-wake instabilities, which are associated
with three different spanwise wavelengths of approximately 1, 2, and 4 diam. All four instability
processes can originate in a narrow Reynolds-number interval between 160 and 230, and may give
rise to different transition scenarios. Thus, Williamson's [Phys. Fluids 31, 3165 (1988)]
experimental observation of a hard transition is for the first time numerically reproduced, and is
found to be induced by the vortex-adhesion mode. Without vortex- adhesion, a soft onset of
three-dimensionality is numerically and experimentally obtained. A control-wire technique is
proposed, which suppresses transition up to a Reynolds number of 230. © 1995 American Institute
of Physics.

1. INTRODUCTION

The incompressible flow around a circular cylinder rep-
resents one of the most investigated prototypes of bluff-body
wakes. The properties of this flow depend on the Reynolds
number Re= UDI r, where U is the velocity of the oncoming
flow, D is the diameter of the cylinder, and v is the kinematic
viscosity of the fluid. Most authors agree that the transition
scenario contains a two-dimensional (2-D) instability from a
2-D steady to a 2-D periodic wake at Re, -45 and a three-
dimensional (3-D) transition at a Reynolds number Re, 2 be-
tween 150 and 210. While the onset of periodicity has been
conclusively identified as a supercritical Hopf bifurcation, 1-3

there still exist many contradictory results regarding the on-
set of three-dimensionality. Williamson4 ' 5 experimentally ob-
serves a hard hysteretical transition towards an irregular
wake, accompanied with a jump of the Strouhal number St
-fD/U (f: dominant frequency) and the base pressure6 at
the transition Reynolds number 180. The jump of the Strou-
hal number is also confirmed for different cylinder end con-
ditions by K6nig, Noack, and Eckelmann7 and by Brede
et al.8 In contrast, seemingly all recent 3-D numerical simu-
lations of Karniadakis and Triantafyllou,9 Tomboulides, Tri-
antafyllou, and Karniadakis,10 and Noack and Eckelmann""1, 2

indicate a soft transition to a 3-D, periodic flow.
Recent values for the critical Reynolds number Re, 2

range from 150 to 210 in the cited references. Most authors
report that the 3-D wake at Re-Re, 2 is characterized by a
wake pattern with a dominant spanwise wavelength, Az c2-

The reported values for this wavelength lie between 1-4
diam.13-16 While Williamson observes a transition from large
spanwise patterns with a wavelength X,- 3D (his A mode) to
a fine-scale pattern with a siz&'of ID (his B mode) near
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Re-230, the global stability analysis of Noack and Eckel-
mann yields an intermediate value of 1.8D. Gerrard'7 em-
phasizes that also wavelengths of ten and more diameters can
be found in some experimental works. Yet, these large struc-
tures seem to be induced by the strong perturbations at the
experimental end conditions and have not been reproduced
in more recent works with improved experimental facilities.

In addition to the wake patterns with a dominant span-
wise wavelength, also localized vortex deformations,
Williamson's' 4 "vortex dislocations," are experimentally ob-
served at transitional Reynolds numbers. At these "disloca-
tions," the von Karmin vortices seem to "adhere" at a
steady or slowly moving point at the cylinder for many pe-
riods. Hence, the vortex-adhesion mode may be a more suit-
able term for this phenomenon. Since there seems to exist no
published numerical simulations of the vortex-adhesion
mode, it cannot be conclusively settled whether these struc-
tures are only end effects due to the finite aspect ratio or if
vortex adhesion may also be a self-sustaining shedding state
for an infinitely long cylinder. While the vortex-adhesion
phenomenon has been shown to have a large effect on the far
wake,14 their influence on the onset of three-dimensionality
in the near wake is not well investigated so far. A further
complication of the cylinder wake transition is the experi-
mental observation that the far-wake structures and dominat-
ing time scales are less organized and significantly larger
than the near-wake features.18"19

In the present publication, the cylinder wake transition is
investigated in order to elucidate the reasons for the discrep-
ancies in the literature. For this purpose, an accurate 3-D
finite-difference scheme was developed2 0 and a water chan-
nel was constructed. In Sec. II, the construction and vali-
dation of the employed Navier-Stokes solver are described.
In Sec. III, the experimental setup is outlined. The numerical
and experimental results on the cylinder wake transition are
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cide with coordinate lines (=const or cost. The dimen-
sions of the ( and 27 coordinates are chosen so that the par-
tition of the grid consists of unit squares, i.e., the ( and 77
coordinates of the grid lines are integers.

Following Thompson et aL,22 the mapping x=x(, y7),
y =y(6, 77) from the computational to the physical domain is
obtained by numerically solving the following system of
Poisson equations with Dirichlet boundary conditions:

d2x t 2x 2 x ,, ax ax \
v + yg d=1 _iv P +Q---

e d~ T7_ IaT a1 '7

1111
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-I -I- r .8
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FIG. 1. Physical (top) and computational (bottom) domain for the finite-
difference scheme.

detailed in Sec. IV. Finally (Sec. V), the main findings are
summarized and discussed.

II. NUMERICAL METHOD

In this section, the incompressible Navier-Stokes solver
is described. This solver is based on a finite-difference
method for generalized coordinates on a boundary-fitted
grid.22 First (Sec. II A), the generation of the grid is outlined.
In Sec. II B, the finite-difference scheme and the employed
boundary conditions are discussed. Finally (Sec. II C), the
numerical scheme is validated for 2-D and 3-D solutions.

A. Grid generation

In the following, the flow is described in a Cartesian
coordinate system x,y,z, where the x axis is aligned with the
oncoming flow, the z axis coincides with the axis of symme-
try of the cylinder, and the y axis is perpendicular to the x
and z directions. These coordinates are assumed to be non-
dimensionalized with the cylinder diam D, i.e., the cylinder
surface is described by Jx 2+yy = 112.

The numerically resolved physical domain in the x,y
plane consists of a half-ellipse in the front joined by a rect-
angle for the wake region (see Fig. 1, top). This domain is
similar to the one used by Karniadakis and Triantafyllou23'9

for 2-D and 3-D cylinder wake simulations, except that they
use a half-circle in the upstream region. Following the work
of Thompson et aL, the physical domain is mapped on a
simpler T-shaped computational domain (see Fig. 1, bottom).
The cylinder is mapped onto the line F*, the outflow bound-
ary onto r* , the upper and lower boundaries of the wake
rectangle onto r4 and F*, respectively, and the upstream
half-ellipse onto F* and F*. The boundaries F* and F*
denote the cut y = 0 in the front region. The computational
domain is described by an orthogonal coordinate system A, y.
In this system, all boundaries of the physical domain coin-

d2 y 82y d2 y 2 8y 8y

a 2, d+ d7 _i P deQ d71

where a=t92x/d712 + d2y/da 2, /3=(dx/d)(dx/1a'1) +(y/
adj(ayldza), y=da2 x/a 2 +d 2 ylda 2 , and J= d(x,y)/d(6, 77)
=(ax/da)(dy/daT)-(dx/daq)(dy/da). With the source func-
tions P(6, y) and Q({,77), the density of grid lines in the
physical domain can be increased or decreased in regions
with large or small gradients (see, e.g., Chap. 13 of
Fletcher2 4). In the present publication, P = O and
Q=a1 exp(-ccq), where coefficients at and cl are chosen in
order to increase the radial resolution close to the cylinder
surface. In the wake region, the source terms vanish and the
mapping ((; 77)-(x;y) becomes locally orthonormal.

The size of a 2-D computational domain around the cyl-
inder is described by three parameters; the size of the up-
stream region Xi, the x coordinate of the outflow boundary
X0 , and the width of the wake rectangle Y, The inflow
boundary is a half-ellipse with a principal axis ratio of 1:2.
The numerically resolved physical domain is therefore
bounded by -Xi<x<Xo and Iyl<Yf 2 (see Fig. 2, bot-
tom). The grid C, illustrated in Fig. 2 (bottom), is employed
for the numerical computations. For validation purposes, two
other grids with either smaller dimensions (grid A) or larger
grid spacings (grid B) are generated (see Fig. 2, top and
middle). The geometric parameters and the resolution of the
grids are displayed in Table I. Here, N6 and N. represent the
number of grid points in the 6 and y7 directions. Here Axo
and AyO are the grid spacings in the x and y directions,
respectively, near the outflow boundary. Also, As, denotes
the grid spacing on the cylinder surface in the normal direc-
tion.

Since the computation is effected in the computational
domain, the Navier-Stokes equations have to be expressed
in terms of the coordinates (,x7. The transformation of the
spatial derivatives in the physical domain read as

a 1 a d a \
a x J J 7 'f a dJ

d 1 7 a d d
etc.

dy J t X ,+fd71/e

Further details can be inferred from most textbooks of com-
putational fluid dynamics, for instance, from Chap. 13 of
Fletcher.2 4

780 Phys. Fluids, Vol. 7, No. 4, April 1995

I

I 1-I'l. . . 1 .1 . IT

T, .
n

I r2H-[+

Zhang et al.

Downloaded 22 Apr 2006 to 142.90.96.3. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



'V-

FIG. 2. Grids A, B, and C (top to bottom).

B. Finite-difference scheme

The velocity field in terms of the location x=(x;y;z)
and the time t is described by u=(u;v;w), where u, v, and
w are the components in x, y, and z directions. The pressure
is denoted by p. In the following, all independent and depen-
dent variables are assumed to be nondimensionalized with
the diam D and the velocity of the oncoming flow U. The
evolution of the incompressible velocity field is described by
the Navier-Stokes and the continuity equations,

du l~~Vudu + (u-V)u= -VP+ 1 V'U,

V *U=0.

For the numerical computations, the boundary condi-
tions cannot be imposed at infinity, but have to be specified
at the boundary of the numerically resolved physical domain.
At the cylinder surface, the no-slip condition u=0 is en-
forced. The normal pressure gradient is set equal to zero, i.e.,
a homogeneous von Neumann condition is imposed on p.
The exact condition may be derived from the Navier-Stokes

TABLE I. Parameters of the grids used for the 2-D validation.

AxO
Grid Xf X0 Y, NfXN, =AY0 As, a, cl

A 3.0 11.5 6.0 96X 96 0.1667 0.010 1000.0 0.3
B 6.0 16.0 12.0 102X 90 0.2500 0.012 1000.0 0.3
C 6.0 16.0 12.0 144X 144 0.1667 0.008 1000.0 0.2

equations. Yet, this condition converges to the von Neumann
condition in the boundary-layer approximation at large Rey-
nolds numbers and is numerically found to yield insignifi-
cantly different solutions. At the inflow boundary, the veloc-
ity and the pressure are assumed to be uniform, u=(U;0;0)
and p =const. At the sides of the wake rectangle y = + YwI2,
vanishing normal gradients for all flow variables are as-
sumed, i.e., Ou/dy = dpady = 0. The outflow boundary condi-
tion at x=X0 should allow the vortices to leave without
causing upstream perturbations. This is achieved by requir-
ing vanishing third-order x derivatives, i.e.,
Auidx3 =a3 p/dx3 =0. In the spanwise direction, the flow is
assumed to be periodic with wavelength L.

The initial condition for a 2-D computation (u;v;w)
=(1;0;0) corresponds to an impulsive start. Asymmetric
2-D solutions may be obtained by adding a small perturba-
tion to the uniform initial condition. Post-transient 2-D solu-
tions superimposed by a 3-D perturbation are typically used
as initial conditions for the 3-D computation. In a Reynolds
number range of 160-230, small 3-D perturbations result in
a smooth onset of three-dimensionality, whereupon large lo-
calized 3-D perturbations give rise to a hard hysteretical tran-
sition for a sufficiently large spanwise domain size L (see
Sec. IV).

For 2-D computations, the velocity u at the node ((; 7)

= (i;j) and the time level n is denoted by ups. The velocity is
expanded as a Taylor series in terms of the time,

at t^ m atm a
m=M! latm 

m=1 II

The temporal order of a finite-difference method depends on
the number of the considered terms in the truncated expan-
sion. Methods with a temporal order larger than unity contain
higher-order spatial derivatives that are not present in the
original Navier-Stokes equations.25 The implementation of
these additional terms may make the scheme less economi-
cal, and also less accurate if the new terms are not treated
properly. The time step At depends on the grid spacing,
which must be small enough for the resolution of the veloc-
ity gradients, particularly near the cylinder surface. In the
present publication, the chosen time step At varies from
10-2 to 10-3. If only the first term in the temporal expansion
is taken, the truncation error is insignificant,

Un+j 1
=ug +At- + O (A t

2 ).if If a9t

For the temporal integration, a MAC-type finite-
difference scheme (see, for instance, Chap. 17 in Fletcher 24 )
is employed. In this scheme, the iteration is carried out in
two steps on a staggered grid, where the pressure nodes and
the velocity nodes are displaced by half a grid spacing. In the
first step an intermediate velocity u* is computed from the
flow variables at time level n, according to

,=un 2-1 1 V .=U i+ AtI (U.V)u+-Vui
U~~LJ ~ Re j.()
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TABLE II. Strouhal number St, mean drag coefficient CD, and RMS am-
plitude of the lift coefficient Cl at Re=100 for 2-D grids A, B, and C.

Grid St CD CL

A 0.190 1.548 0.225
B 0.172 1.421 0.247
C 0.173 1.425 0.250

The RHS of Eq. (1) represents the discretization of the spa-
tial derivatives at the node (i;j) and the time level n. In the
second step, the velocity is calculated for time level n + 1:

unj1 =u 1- At Vpl-. (2)

Before the second step (2), the Poisson equation for pressure

Pi

V2P I*= V u*
At

is solved. While the intermediate field u* is generally not
solenoidal, the velocity field at time level n + 1 can be shown
to fulfill the discretized incompressibility condition.

The first-order spatial derivatives in the convective term
of the Navier-Stokes equations are upwind discretized using
four grid points (for details see Ref. 20). The second-order
derivatives in the diffusion term are approximated by three-
point central differences. Thus, a third-order upwind scheme
is obtained, which is known to prevent nonphysical oscilla-
tion and which is expected to have negligible numerical vis-
cosity on the employed boundary-fitted grid.

C. Validation

In order to study the effect of the domain size and the
grid resolution on the 2-D solutions for the cylinder wake,
computations are performed at Re=100 on three different
grids (A, B, C). At this Reynolds number, 2-D parallel vortex
shedding can be achieved in the laboratory with a careful
treatment of the end conditions (Eisenlohr and Eckelmann 2 6).
Therefore, the influence of domain size and grid resolution
can be assessed by investigating the discrepancy between the
experimental and numerical Strouhal number values. The
computed Strouhal numbers, mean drag coefficients, and
RMS amplitudes of the lift coefficients are enumerated in
Table II. The experimental Strouhal number at Re=100 is
0.167 using the empirical formula of K6nig, Noack, and
Eckelmann.7 From Table HI the numerical values for the
Strouhal numbers are seen to be larger than the experimental
value. The discrepancy is around 3% for grids B and C and
about 12% for the smaller grid A. The improved grid reso-
lution of grid C-as compared to grid B-seems to have
little effect on the solution. In contrast, the numerical data for
the Strouhal number appear to converge rapidly to the ex-
perimental value with increasing domain size. A similar ten-
dency is reported by Karniadakis and Triantafyllou 9 for their
cylinder wake simulation with a spectral method.

The performance of the finite-difference method in terms
of the Reynolds numbers is investigated for the 2-D wake in
the range 40<Re<300. For this computation grid C is em-
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FIG. 3. Strouhal number St (top), mean drag coefficient CD (middle), and
RMS amplitude of the lift coefficient C' (bottom) in terms of the Reynolds
numbers Re. The solid circles (0) denote our numerical values. The solid St
vs Re curve represents the empirical formula of Konig et aL7 for 2-D shed-
ding. The symbols (+) and (X) refer to CD measurements of Tritton37 and
Wieselsberger, 3 8 respectively.

ployed. In Fig. 3 (top), the solid circles represent the com-
puted Strouhal numbers. The curve is based on the empirical
formula of Konig et al.7 In the whole Reynolds number in-
terval the computed values are about 3% larger than the ex-
perimental results. For an increased size of the computational
domain, a smaller discrepancy is expected.

The mean drag coefficient CD and the RMS amplitude of
the lift coefficient C' are presented in Fig. 3 (middle and
bottom) in terms of the Reynolds number. The mean drag
coefficients obtained in the 2-D computation are up to 20%
larger at Re=300 than the experimental ones, since in the
laboratory the flow is superimposed by 3-D fluctuations after
the transition. For the lift coefficients, no experimental data
has been found at low Reynolds numbers.

In the present work, also the influence of different out-
flow boundary conditions on the numerical results is inves-
tigated. The flow state is not noticeably changed, when the
first, second, or the third downstream derivatives of flow
variables are set equal to zero, except for minor differences
near the outflow boundary.

In 3-D computations the numerical solution is affected
by the spanwise domain size L and the spanwise grid spacing
Az-in addition to the 2-D grid. Therefore, the performance
of the finite-difference scheme is studied for the different
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TABLE m. Parameters of the grids used for the 3-D validation.

No. Grid Az L

1 A 0.1 3
2 B 0.1 3
3 C 0.1 3
4 C 0.1 6
5 C 0.1 9
6 C 0.05 3
7 C 0.2 3

2-D grids A, B, and C and various spanwise resolutions and
domain sizes. In Table III, the parameters of the employed
3-D grids are listed. The first three entries #1, #2, and #3 in
Table III correspond to grids A, B, and C with the same
spanwise spacing Az= 0. iD and the same spanwise dimen-
sion L = 3D. In the 3-D grids, #3, #4, and #5, the spanwise
wavelength is varied: L =3D, 6D, and 9D, using grid C and
the same spanwise resolution Az= 0. ID. In the cases #3, #6,
and #7, the spanwise resolutions are Az= 0.1D, 0.05D, and
0.2D, respectively, while the 2-D grid and spanwise dimen-
sion remain the same.

Table IV lists the corresponding numerical results for the
developed 3-D solution, including Strouhal numbers, mean
drag coefficients, RMS amplitudes of the lift coefficients,
and RMS and maximum values of the spanwise velocity w
averaged along a line parallel to the z axis for x/D = 1.5 and
y=O. The values for wRms and wm.u: can be viewed as am-
plitudes of three-dimensionality, since they vanish for 2-D
flow. The Reynolds number chosen for this validation is 300,
at which experiments show that the 3-D wake is dominated
by fine-scale structures with a spanwise wavelength of about
1D.27 Using 3-D grid #1 with the smallest 2-D domain, the
St and CD values are significantly larger than for the other
grids (see Table IV). For grid #2 with the coarse discretiza-
tion of the x,y plane and for grid #7 with a coarse spanwise
resolution, WRMS and wmax are significantly smaller than that
of finer grids, indicating that the 3-D instability processes
seem to be insufficiently resolved.

Therefore, we use grid C as the x,y projection for the
3-D computations. Thus, reasonably accurate 2-D solutions
and a good resolution of the 3-D fluctuations in the x,y plane
are guaranteed. A spanwise grid spacing of Az= 0. iD ap-

TABLE LV. Strouhal number St, mean drag coefficient CD, RMS amplitude
of the lift coefficient C,, RMS and maximum value of the spanwise veloc-
ity component, wpm5 and wm,, at Re=300 for the 3-D grids, listed in Table
111. The statistics of the spanwise velocity component are spatiotemporal
averages with respect to the time and the z coordinate for x/D = 1.5 and
y=

0
.

No. St CD C. WRM5 Wm,

1 0.232 1.432 0.4217 0.0828 0.3376
2 0.210 1.292 0.4470 0.0667 0.2827
3 0.212 1.311 0.4507 0.0854 0.3637
4 0.212 1.278 0.4387 0.0886 0.3725
5 0.212 1.260 0.4298 0.0895 0.3736
6 0.212 1.308 0.4513 0.0901 0.3764
7 0.212 1.312 0.4506 0.0683 0.2984

U 
L>~

w~~~
y 

FIG. 4. Principal sketch of the test section. The cylinder C is mounted
vertically. The hydrogen-bubble wire W is mounted at the end plates E.

pears to be fine enough to resolve the small secondary vortex
structures with spanwise wavelengths around 1D. For 3-D
structures of much larger wavelength, a slightly larger span-
wise spacing of 0. 15D is used for economical reasons.

Ill. EXPERIMENTAL SETUP

The experiments have been carried out in a water chan-
nel. A hydrogen-bubble method is applied to obtain a visual
image of the cylinder wake. The channel is especially opti-
mized for investigations at free-stream velocities between 3
and 15 cm/s. The honeycomb and various screens are modi-
fied so that a stationary, uniform velocity profile is achieved
in the test section, which is 250 mm wide and 330 mm high.
A detailed description of the channel is given by Fey.21 Here,
only the main features will be summarized.

The visualizations of the cylinder wake are carried out in
the test section just behind the 4:1 contraction of the nozzle
(Fig. 4). The cylinders have a polished surface and are made
from stainless steel. Their diameters are 2, 3, and 4 mm, the
corresponding aspect ratios and end conditions are listed in
Table V. Thus, the transition range (180<Re<300) is cov-
ered by the above velocity range, for which the channel is
optimized. The cylinders are mounted vertically in the test
section and are bounded by end plates or end cylinders in
order to minimize end effects.

A 25 ,um diam platinum-iridium wire is located at dif-
ferent positions in the test section and serves as the
hydrogen-bubble wire. This wire is fixed directly at the con-
fining end plates or at the end cylinders (see Fig. 4). By
rotating the cylinder around its axis, the bubble wire can be
located in different angular positions with respect to the front

TABLE V. Employed experimental setups.

No. D (mm) LID End conditions

1 2 133 End plates
2 3 50 End cylinders
3 3 93 End plates
4 4 71 End plates
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stagnation point of the cylinder. Thus, the hydrogen bubbles
can be introduced in different sheets of the separating shear
layers. In the transition range, the location of the hydrogen-
bubble wire proves to be an important parameter for the
structures that can be observed in the cylinder wake. In some
locations, the visualization wire can have the effect of a con-
trol wire, the presence of which may drastically change the
wake features. In another configuration, the effect of the vi-
sualization wire on the wake features is avoided by placing it
15 cylinder diameters upstream and slightly offset from the
plane y = 0. In the present investigation, this configuration is
employed for reasons of comparison. This aspect is dis-
cussed in detail in the following sections.

The Reynolds number of the hydrogen-bubble wire is of
the order of unity in the present experiments. Hence, this
wire cannot give rise to vortex shedding. A hydroelastic cou-
pling of this wire with the vortex street behind the cylinder
cannot a priori be excluded and is carefully examined. Typi-
cally, vibrations are easily observed by eyesight, since the
characteristic frequency of the vortex shedding is only a few
Hertz. For a more precise detection of possible wire vibra-
tions, a nearly unidirectional light source is used. This light
source is directed on the visualization wire at a small angle
and a photodiode is located in the light ray reflected from the
wire. Thus, small vibrations of the wire are indicated by the
photodiode device. Hardly noticeable oscillations of the wire
are only detected for a position near (x,/D;y,/D)'(1,0).
This setup corresponds to the retarded onset of three-
dimensionality described in Sec. IVE. The wire remains
steady for all other investigated positions in the whole regu-
lar and transitional Reynolds number range.

Images of the wake flow in the x,z plane are recorded by
a CCD camera connected to a videotape recorder and a digi-
tal image processing system controlled by an IBM-
compatible PC. Before each experiment, the velocity in the
test section is determined optically. A hydrogen-bubble wire
is fixed between the upper and lower tunnel walls at x= -60
mm, y =-66 mm and is pulsed to generate vertical time
lines in the test section. At this location, the wire is inside the
core region of the test section and has no noticeable influ-
ence on the cylinder wake. The velocity is determined from
the time interval between two pulses and the distance of the
corresponding time lines. This method proved to be of high
accuracy and reproducibility.

The characteristic spanwise wavelength is measured
manually from digitized images of the CCD camera. First,
the x,z view section of the camera is determined by refer-
ence marks. Then, the camera records several hundred shed-
ding periods. After an evaluation of the video, selected pic-
tures are digitized and employed for measuring the length of
the spanwise structures.

IV. PHENOMENOLOGY OF THE CYLINDER WAKE

In this section, numerical and experimental evidence for
four distinct 3-D instability processes, which give rise to
different transition scenarios, are presented. In Secs. IV A
and IV B, Williamson's 4 vortex dislocations-our vortex-
adhesion mode-and Williamson's 27 A and B mode with
spanwise wavelengths of 4 and 1 diameters, respectively, are

experimentally reproduced and for the first time numerically
simulated. In Sec. IV C, the 3-D Floquet mode predicted by
Noack, K6nig, and Eckelmann1 5 with a low-dimensional
Galerkin method is identified as a separate 3-D instability.
This instability has a spanwise wavelength of roughly two
diameters and is called the C mode in the following. Thus,
the three global shedding states, the A, B, and C mode, can
easily be distinguished in terms of their characteristic span-
wise wavelengths. A detailed comparison of their spatial
structures is presented in Sec. IV D. In Sec. IV E, a control-
wire technique for the suppression of three-dimensionality
up to a Reynolds numbers of approximately 230 is presented.
Finally (Sec. IV F), the interaction of the four instability pro-
cesses is described.

A. Vortex-adhesion mode

The finite-difference computations can reproduce
Williamsonii 4 spot-like "vortex dislocations" for a suffi-
ciently large domain size L (see Fig. 5). In this figure, the
wavelength of the spanwise domain is L/D=24, which is
one order of magnitude larger than in previous
simulations 2 The isopressure surface from the numerical
data (Fig. 5, top) looks similar to the experimental hydrogen-
bubble-wire visualizations (Fig. 5, bottom). Both structures
identify essentially the primary von Kirmin vortices. These
vortices seem to "adhere" to slowly migrating points on the
cylinder surface. Hence, we propose the term vortex-
adhesion mode for this phenomenon. This mode is self-
sustaining in the range 160<Re<230.

In the experiments, vortex-adhesion points originate at
the ends of the cylinder as the Reynolds number is slightly
increased above the critical value 160. At supercritical values
Re>160, these points occur intermittently along the whole
cylinder span with a nearly uniform statistical distribution
(see Fig. 6, bottom). The amount of adhesion points tends to
increase with the Reynolds number. At Re<180, the von
Kremlin vortices typically shed obliquely between two
neighboring adhesion points. At Re-'180, many regions be-
tween two neighboring adhesion points are often character-
ized by A-mode patterns with a few spanwise periods (see
Sec. IV B). If the B mode (see Sec. IV B) dominates the
vortex shedding at Re>230, no pronounced adhesion points
are observed. As the Reynolds number is slowly decreased
below Re= 160, the adhesion mode is finally replaced by
parallel or oblique shedding. Under suitable conditions, a
self-sustaining adhesion mode is also experimentally ob-
tained in the range 140<Re<160, for instance, when the
Reynolds number is decreased sufficiently rapidly from ir-
regular values, say Re=800, to a subcritical value. Then, the
shedding is characterized by one or a few adhesion points,
which finally assume steady asymptotic positions, which are
constant for the whole period of investigation, i.e., many
thousand shedding periods (see Fig. 6, top).

The process of the creation and the propagation of the
adhesion points suggests that the adhesion mode affects the
vortex shedding in the range 160<Re<230 for arbitrarily
large aspect ratios and any end condition in the post-transient
state. In the present experiments, the vortex-adhesion mode
is observed for four different setups with aspect ratios from
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FIG. 6. Experimental flow visualization of the vortex-adhesion mode at a
subcritical Reynolds number Re=152 (top) and at a supercritical value Re
=176 (bottom). Each figure displays the cylinder (left), the two end plates
(see the top and bottom side of the frame), and the hydrogen-bubble wire
being fixed at the end plates (the beginning of a streak surface). The aspect
ratio is given by LID=133 and the wire is located at
(x,1D;y,1D)=(l6;2).

FIG. 5. Illustration of the vortex-adhesion mode from the numerical com-
putation (top) and from the experimental flow visualization (bottom). The
view section is given by -0.5<x/D<16, O<z/D<24. In both illustra-
tions, the cylinder is situated at the left and the flow direction is from left to
right. The numerically obtained vortex-adhesion mode (top) is described by
an instantaneous isopressure surface p= -0.2 at Re= 160. In the experi-
ments (bottom), the wake structures at Re=161 are visualized with a
hydrogen-bubble wire positioned at (xfD;y,/D)=(l.5;0). Thus, the hy-
drogen bubbles (dark regions) concentrate on both sides of the von Kxrmin
vortex street. The aspect ratio of the cylinder is given by L/D = 93. Similar
structures are also obtained with a wire located far upstream xID-50 and
far downstream (see Fig. 6).

50 to 133 and two kinds of end conditions (see Table V).
Naturally, the transient time in which the adhesion points
reach the midspan region increases with the aspect ratio. This
situation is analogous to the transient "phase fronts" be-
tween parallel and oblique shedding in the regular Reynolds
number range 50<Re<160. These phase fronts originate at
the cylinder ends and move toward the midspan region with
constant speed. 5,28 Finally, the whole span of the cylinder is
governed by a chevron pattern or oblique shedding. Thus,
even laminar shedding seems to be always affected by the
end conditions for arbitrarily large aspect ratios.

In the numerical simulations, no end conditions are
taken into account. Instead, a spanwise wavelength L is as-
sumed. Hence, the adhesion points cannot be created in the
same manner as in the experiments. In fact, the adhesion
mode does not seem to occur naturally from a slightly three-
dimensionally perturbed 2-D solution in the whole investi-
gated Reynolds number range. Yet, the vortex-adhesion
mode can be induced by inserting a strong localized span-
wise inhomogeneity in the initial conditions provided that
the chosen spanwise domain L is large enough. Once the
vortex adhesion mode is "excited," it is found to be self-
sustaining in the range 160<Re<230. Like in the experi-
ments, the numerical simulations may yield adhesion points
for lower Reynolds numbers 140<Re<160. While most of
these adhesion points slowly decay, some of them seem to be
self-sustaining--depending on the initial conditions. This be-
havior agrees with the experimental finding that the adhesion
mode can only be induced under carefully controlled condi-
tions for subcritical values Re<160.

Williamson's 5 experimental finding of a hard hysteretical
onset of three-dimensionality is numerically reproduced.
This hard transition can be inferred from the discontinuous
behavior of the Strouhal number St, the mean drag coeffi-
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FIG. 7. The same as Fig. 3, but including numerical data for the hard
vortex-adhesion transition (0), for the soft A-mode transition (A), for the
soft C-mode transition (C), and empirical Stroubal data of Kbnig39 for his
oblique shedding mode n = 2 merging into transitional vortex shedding (*).

cient CD, and the RMS amplitude of the lift coefficient CL in
terms of the Reynolds number (open circles in Fig. 7). The
discontinuity can only be observed in the presence of the
vortex-adhesion mode. Otherwise, the global flow quantities
St, CD, and CL depend continuously on the Reynolds num-
ber (open triangles in Fig. 7), like in previous numerical
simulations of Karniadakis and Triantafyllou,9 of Tomboul-
ides, Triantafyllou, and Karniadakis,1 0 and of Noack and
Eckelmann. 11 "12 In these simulations, the chosen spanwise
wavelength L did not significantly exceed three diameters. In
this case, possible adhesion points can be, at most, a distance
L apart. Yet, our experiments and the simulations show that
adhesion points annihilate each other when they are only a
few diameters apart. Upon the annihilation, the von Karman
vortices reconnect from both sides of the adhesion point and
shed nearly parallel from the cylinder. No hysteretical onset
of three-dimensionality and no vortex adhesion has been nu-
merically reproduced before because of the small spanwise
domain sizes in the previous simulations.

Hence, the hard, jump-like cylinder-wake transition
seems to be intimately connected with the existence of the
vortex-adhesion mode. In the experiments, vortex-adhesion
points are always induced by the end conditions for Re>160.
Therefore, the hard vortex-adhesion transition appears to be
the natural onset of three-dimensionality under experimental
conditions, i.e., for cylinders with finite aspect ratio. In the

WI)CD ED SM

FIG. 8. Illustration of the A mode in the view section, 0. 5 <xlD < 1 6,
O<z/D<12. Top: isovorticity surface w,= 0.02 of the numerical solution
at Re =200. Bottom: experimental flow visualization at Re= 196. The aspect
ratio is LID =93. The hydrogen-bubble,% wire is located at
(x,,/D;y.ID) =(2; 1), i.e., only one side of the von Kirmin vortex street is
visualized.

simulations, the adhesion mode is also a self-sustaining shed-
ding state, but it has to be excited by strong inhomnogeneities
in the initial conditions.

B.2A and B made

The finite-difference computations can also reproduce
Williamson's experimental observation of two distinct span-
wise patterns in the transitional Reynolds number range, his
A and B mode. According to Williamson, the A mode "rep-

resents the inception of streamwise vortex loops, for Re
~180 and above" with a spanwise wavelengths around three
diameters, whereupon the B mode "represents the formation
of finer-scale streamline vortex pairs, for Re=230 and
above," with a spanwise length scale around one diameter
(see Fig. 2 in Ref. 14).

For the computations of the A and B mode, nearly 2-D
initial conditions were employed. The simulations were car-
ried out for various spanwise domain sizes L between 6 and
18 diam in order to guarantee that the simulated wake struc-
tures, including the spanwise wavelengths, depend insignifi-
cantly on the numerical boundary conditions.

In Fig. 8, the numerical solution and the experimental
realization of the A mode is illustrated at Re= 200. The mode
displays a dominant spanwise wavelength of four diameters.
Similarly, Williamson's B mode with a spanwise wavelength
of one diameter can be experimentally and numerically re-
produced at Re=250 (see Fig. 9). The hydrogen bubbles
(Fig. 9, bottom) seem to concentrate in the primary von
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FIG. 9. Illustration of the B mode in the view section, -0.5<x/D<16,
0<z/D<18. Top: isovorticity surface &),= t 0.50 of the numerical solu-
tion at Re=250. Middle: isovorticity surface co, = 0. 15 of the same solution.
Note that the top and middle figures illustrate the spanwise and streamwise
vorticity components, respectively. Bottom: experimental flow visualization
at Re=254, the aspect ratio being L/D=71. The hydrogen-bubble wire is
positioned at (xID;yjID)=(2;1), i.e., on one side of the von Karmin
vortex street.

Airman vortices and in the secondary vortices in the stream-
wise direction. The primary and secondary vortices are illus-
trated by numerically obtained isovorticity surfaces for the
spanwise and streamwise component in Fig. 9 (top and
middle, respectively). In the far wake, the secondary vortices
have the tendency to merge in large-scale structures.

The spanwise structure in the near wake is displayed in
Fig. 10 from simulations at different Reynolds numbers. For
Re=200 and Re=240 (Fig. 10, top and bottom) the A and B

3 =

o * I A

1 Gus

0 2 4 zJD 8

FIG. 10. Spanwise structure of the A and B mode. Instantaneous contour
plots of the numerically obtained vorticity component wd in the plane
xID 4 at Re=200, 220, and 240 (top to bottom).

mode, respectively, can be numerically reproduced in a pure
form, while at intermediate Reynolds numbers around Re
=220, both modes generally coexist (Fig. 10, middle).
Williamson2 7 also observes a transition from the large-scale
A-mode to a fine-scale B-mode pattern around Re=230.
While Williamson's wavelength of iD for the B mode is
well confirmed, our numerical and experimental value of 4D
for the A mode is somewhat larger. The value of approxi-
mately 4D is confirmed by a recent global stability analysis
of Barkley and Henderson,2 9 based on a highly accurate
spectral method. The numerically obtained iy-contour dia-
gram for the B mode (Fig. 10, bottom) is in good qualitative
agreement with recent unpublished PiV experiments of
Brede30 for Re=400 and with the elaborate PIV study of

The A mode occurs at Re>180 and gets gradually dis-
placed by the B mode at Re>230. The characteristic B-mode
wavelength of roughly ID can be experimentally and nu-
merically observed up to at least Re= 1000. Without vortex
adhesion, the A-mode transition from 2-D shedding to the
3-D wake is smooth, i.e., the global flow quantities St, CD,

and CL depend continuously on the Reynolds number with a
small kink at the onset of three-dimensionality (open tri-
angles in Fig. 7). In the computations, vortex adhesion at the

cylinder can be avoided by employing suitable 2-D initial
conditions superimposed by a small 3-D perturbation, which
is periodic in the spanwise direction. In the experiments,
localized vortex deformations are generally introduced by
the end conditions, and can be avoided by placing a thin
control wire in the near wake or by employing other control
mechanisms.

C. C mode
In addition to the A and B mode, a different kind three-

dimensionality can be observed, called the C modde in the
following. This mode displays a spanwise periodicity with a
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FIG. 11. Illustration of the C mode in the view section, -0.5<x/D<16,
O<z/D < 18. Top: isovorticity surface wx = 0.05 of the numerical solution
at Re=210. The thin wire is placed at (x,1D;y,1D)=(0.75;0.75). Bot-
tom: experimental flow visualization at Re=215. The setup is the same as in
Fig. 5, except for an aspect ratio of LID =71 and a visualization wire
located at (x,/D;y,/D)=(0.75;0.75).

wavelength of roughly 2D. It can be seen in flow visualiza-
tions for 170<Re<270 (see Fig. 11, bottom) when a thin
wire of diam 0.006D is placed parallel to the cylinder axis
in a narrow region including the locations (xjID;yW/D)
=(0;0.90) and (xID;ywID)=(0.75;0.75).2 1 Of course,
the wire may also be placed symmetrically on the other side
of the plane y=O. Possibly, the wire suppresses the vortex
adhesion and the A mode and impairs the B mode at 230<Re
<270. Thus, the C mode can grow without being replaced by
the other 3D modes. In the present publication, no physical
mechanism for the effect of the wire can be presented.

The effect of the wire can be simulated in the finite-
difference computation by setting the velocity zero on a grid
line (x/D;y/D)=(0.75;0.75). The effective thickness of
the wire is of the order of the grid size, i.e., ~-0.05D. In this
case, also the numerical simulations yield a 3-D spanwise
pattern with a wavelength of approximately 1.8D (see Fig.

_/1 -rg ' 

0 2 4 z/D 8

FIG. 12. Spanwise structure of the C mode. Instantaneous contour plot of
the vorticity component xx in the plane x/D = 7.5 from the numerical simu-
lation of Fig. 11.

11, top, and Fig. 12), i.e., reproduce the C mode. Experi-
ments (see Fig. 45 of Ref. 21) and numerical computations
(open squares in Fig. 7) yield that the C mode significantly
decreases the Strouhal number, as compared to 2-D shed-
ding. This difference is larger than the corresponding fre-
quency drop in the A-mode transition (open triangles in Fig.
7). For Re>200, the shedding frequency is even smaller than
for the vortex-adhesion mode (open circles in Fig. 7). In
addition, the effect of the C mode on the lift amplitude and
mean drag is large compared with the A, B, and vortex-
adhesion modes. Thus, all four kinds of 3-D shedding modes
reduce the St, CD, and CL values, as compared to the corre-
sponding 2-D simulation. Mittal and Balachandar 3 2 confirm
and explain this tendency for the lift and drag of the B mode
in the irregular range.

In Fig. 13, experimental values of spanwise wavelengths
are displayed in terms of the Reynolds number for different
experimental setups. The values are seen to be discretely
grouped around one, two, and four diameters. Hence, the
C-mode instability appears to be distinct from the A and B
mode.

The experimental setup with the control wire leads to a
smooth C-mode transition with a 3-D periodic flow for 170
<Re<200 and a quasiperiodicity with a low-frequency com-
ponent for 200<Re<270. At Re>270, the flow becomes ir-
regular (see Fig. 14). This behavior agrees well with the
transition scenario predicted by the low-dimensional Galer-
kin model of Noack33 and Noack and Eckelmann, 11 ,12 includ-

6

X.ID
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3

2

1

0
200 300 400 Re

FIG. 13. Experimental spanwise wavelengths X, in terms of the Reynolds
number for various experimental setups: (0): aspect ratio L/D=71, thin
wire at (x./D;y.1D)=(-1.04;0.10); ([:): L/D=71, (x,/D;yID)
=(0;1.05); (A): LID=71, (x,1D;y,1D)=(0.53;0.91); (*): L/D=71,
(x,.D;yID)=(0.75;0.75); (0): LID=50, (x.ID;y.ID)=(0;0.90);
and (0): L/D=93, without wire.
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FIG. 14. Experimental power spectra of the C-mode transition at Re= 177,
233, and 317 (top to bottom). The cylinder diameter is 3 mm. The thin wire
is placed at (xaID;yID)=(0;0.9). Thus, a dominant spanwise wavelength
of 2D is obtained (see the solid circles in Fig. 13). The spectra are obtained
from hot-film signals at (x/D;y/D) =(8.7;1.5).

ing the predicted wavelength of 1.8D and the critical Rey-
nolds numbers of 170, 200, and 280 for three-dimensionality,
quasiperiodicity, and irregularity, respectively. The quasiperi-
odicity in the experimental velocity fluctuation (Fig. 14,
middle) is superimposed by some background noise, which
is not present in the Galerkin results.

The most unstable 3-D Floquet mode and the asymptotic
solution of the Galerkin model display two oppositely ori-
ented vortex rolls alternatingly on the upper and on the lower
shear layer in the near wake (see Ref. 3). These vortex rolls
can also be seen in the o),, vorticity distribution of the more
accurate finite-difference simulations (Fig. 12). Hence, the
low-dimensional Galerkin model appears to describe the
transition scenario via the C mode. The wake resolution of
this model seems to be too coarse for the simulation of the A
and B mode. In particular, the azimuthal resolution with a

modified trigonometric system up to only fourth order ap-
pears to be too small.

In the Galerkin model, the C mode evolves naturally as
the most amplified 3-D perturbation without an imposed
wake asymmetry or other control mechanisms. In the experi-
ments, the C mode is excited by an asymmetric location of
the control wire. In order to elucidate the role of this asym-
metry, a symmetric setup with two wires at
(x1,2/D;y1,2/D)=(0.75;+0.75) is numerically investi-
gated. For this case, spanwise vortices with a slightly larger
wavelength of 2.2D are observed. The slight increase of the
wavelength may result from the larger effective cylinder
diam due to the displacement effect of both wires. Thus, the
C mode for an effectively larger cylinder is obtained. The
C-mode structure with a spanwise wavelength of two diam-
eters is also numerically obtained at Re=200 when the cyl-
inder performs a transversal oscillation with a small ampli-
tude and a frequency corresponding to half the natural
shedding frequency. Thus, the C mode is numerically ob-
served for two different symmetric control processes. Hence,
the occurrence of the C mode is not intimately connected to
asymmetric excitation.

D. Comparison of the A, 13, and C mode

The vortex-adhesion mode can easily be distinguished
from the A, B, and C modes. The adhesion mode represents
a local deformation of the primary von Kirmin vortices,
whereupon the A, B, and C modes are associated with glo-
bal, secondary vortices on the von Karmnn vortices. These
three secondary vortices are characterized by different span-
wise wavelengths, but have a similar spatial structure (see
Fig. 10 and Fig. 12). In this section, the A-, B-, and C-mode
structures are compared in detail.

Figure 15 displays the coy vorticity component of the A-,
B-, and C-mode shedding in the centerplane y = 0. The span-
wise wavelength of the A and C mode are seen to character-
ize the near and far wake. In contrast, the B-mode pattern
governs only the near wake. In the far wake, the one diam-
eter vortices seem to merge into larger-scale structures. The
Wy vorticity component of the A mode is nearly uniformly
distributed in the downstream direction. In contrast, the sec-
ondary vortices of the C mode appear to concentrate in re-
gions that are roughly one wavelength of the von Karman
vortex street apart. Similarly, the B-mode vortices intersect
the centerplane near the lines xID = 2, 4, and 6. Clearly, the
"footprints" of the A-, B-, and C-mode vortices in the plane
y = 0 are distinct-apart from the wavelength. Recent PIV
experiments,3 0 and our simulations2 0 reveal that the primary
von Kirman vortices are deformed by the secondary A-mode
vortices to a noticeable extent. In contrast, the von Karman
vortices are hardly deformed by the presence of the B and C
mode. Thus, Williamson 14 concludes from his flow visualiza-
tions that the A-mode pattern is caused by a deformation of
the primary vortices, whereupon the B-mode structure is due
to secondary streamwise vortices. Yet, it must be emphasized
that also the A mode is associated with secondary vortices.
This is experimentally confirmed by Fey.21
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TABLE Vt. Properties and effects of the A, B, and C modes, based on the
numerical results.

A mode B mode C mode

Re range 180-230 200<Re 170-270
Spanwise A z/D -4 XAD-1 XD-2

wavelength
Secondary Near and Near wake Near and

vortices far wake only far wake
von Kirmin Slightly deformed Nearly Nearly
vortex axes (4D wavelength) parallel parallel
von Kirmin Nearly Nearly Pairing in

vortex spacing equidistant equidistant x direction

FIG. 15. Secondary vortices of the A, B, and C modes (top to bottom).
Instantaneous contour plots of the numerically obtained vorticity component
Oy in the x,z plane at Re=200, 240, and 210 (top to bottom). The numerical
solutions for A, B, and C modes are the same as in Figs. 8, 9, and 11.

The primary von Kirmin vortices of A-, B-, and C-mode
shedding are illustrated in Fig. 16. The geometry of the vor-
tex street for the A and B mode are very similar. In contrast,
the C-mode shedding is associated with increased down-

y/D

w1 H

0 4 8 x/D 16

FIG. 16. Primary von Kirmin vortices in the presence of the A, B, and C
mode (top to bottom). Contour plots of the numerically obtained vorticity
component Ao, in the x,y plane for the same instantaneous velocity fields as
in Fig. 15.

stream wavelength X, of the von Karmin vortices. This in-
creased X. value induces a noticeably reduced shedding fre-
quency, discussed in Sec. IV C. In addition, a pairing
mechanism of the von Kirmrn vortices can be seen. The
vortex pairing has also been observed in the C-mode excita-
tion by a transversal cylinder oscillation (see Sec. IV C).
Hence, the secondary vortices of the C mode appear to be
intimately linked with the vortex pairing of the primary von
Karman vortices.

In case of the oscillating cylinder, the vortex pairing is
accompanied by a period doubling in the frequency domain.
This period doubling is externally forced by a subharmonic
excitation. Interestingly, a period doubling is also observed
for a Reynolds number of Re-270 in the Galerkin model of
Noack and Eckelmann.3 The numerical simulation of Kar-
niadakis and Triantafyllou 9 also yields a period doubling
mechanism below Re=300. They chose a spanwise domain
size of LID=1.57, which is slightly below the C-mode
wavelength of XID = 1.8. The spanwise length scale of their
near and far wake structures coincide with the domain size.
Hence, their flow features appear to have more in common
with the C mode than with the A or B mode.

The simulated control wire induces a noticeable asym-
metry in the vortex shedding (Fig. 16, bottom). Yet, it should
be noted that the C-mode shedding is also observed in our
experiments, in which the ratio between the control wire and
the cylinder diam is one order of magnitude smaller and
therefore the asymmetry of the boundary conditions much
less pronounced. Table VI summarizes some similarities and
differences of the A, B, and C modes.

E. Suppression of three-dimensionality

The visualization wire placed parallel to the cylinder
axis may also be used to suppress all four 3-D instability
modes in a part of the transitional Reynolds number range
(for details see Ref. 21). Placing the wire at
(xwID;yw/D)=(1.05;0), the experimental flow visualiza-
tion yields nearly 2-D periodic shedding at Re<230 (Fig. 17,
bottom). In the numerical computation, 3-D fluctuations are
found to decay at Re<250, when the wire is simulated at the
same location, i.e., the stable post-transient solution repre-
sents parallel shedding (Fig. 17, top). The discrepancy for the
experimentally and numerically observed onset of three-
dimensionality at Re=230 and 250, respectively, may be at-
tributed to the larger effective thickness of the numerical
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FIG. 17. Illustration of the suppressed onset of three-dimensionality in the
view section, -0.5<xID<16, O<z/D<18. Top: isopressure surface p
=-0.2 of the numerical solution at Re=220. The thin wire is placed at
(x.,D;y.ID)=(1.05;0). Bottom: experimental flow visualization at Re
=219. The same setup as in Fig. 5 is employed, the aspect ratio being
L/D=71. 'The visualization wire is also located at
(x,,.ID;y,.1D)=(1.05;0).

wire as compared to the experimental one. The effective sup-
pression of 3-D fluctuations by the wire can also be seen in
the Fourier spectra of the experimental velocity fluctuations
(Fig. 18). In the range 240<Re<270, the A-, B-, and vortex-
adhesion mode occur intermittently. At Re>270, the wire is
found to have little influence on the wake dynamics any-
more, and the spanwise wake pattern is dominated by the B
mode.

The employed control-wire technique has been success-
fully applied by Strykowski and Sreenivasan to delay the
onset of periodic vortex shedding3 4 and to control the
boundary-layer transition.3 5 Interestingly, the control-wire
positions, for which vortex shedding is effectively retarded,
is similar to our experimentally determined region in which
the A and B mode is suppressed, i.e., the C mode is excited.
In Ref. 35, the authors emphasize that small vibrations of the
control wire may drastically affect the flow. In our experi-
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FIG. 18. Experimental power spectra at Re=219 without (top) and with
(bottom) a wire at (x,/D;y,/D)=(1.05;0). The cylinder diameter is 4
mm. The aspect ratio is L/D=71. The spectra are obtained from hot-film
signals at (xID;yID)=(6.0;1.5).

ments, the wire displays hardly noticeable vibrations when it
is located in the vicinity of (x,/D;y,/D)"(1,0). Yet, the
independent confirmation of our experimental results with a
simulated stationary control-wire setup clearly shows that the
retarded onset of three-dimensionality is not an artifact of
these wire vibrations. For the C-mode setup (Sec. IV C) and
vortex-adhesion setup (Sec. IV A), the wire did not vibrate
within the experimental resolution.

F. Interaction of the 3-D modes

Figure 19 summarizes the Reynolds number intervals in
which the vortex adhesion, and the A, B, and C modes can be
observed. All four modes can be obtained in "pure" states
along the whole cylinder span, under the conditions specified
in the previous sections. In these shedding states, no notice-
able contributions of the remaining modes are evident. Yet,
there exist several overlap intervals in which these modes
interact. For instance, spanwise A- and B-mode cells, each
consisting of several wavelengths, generally coexist in a
small Reynolds number interval around 230 according to the
simulation. In the experiments, this coexistence appears at

t 2--D mde......... -I_______

1 adhesion mode I
i__ __

1i4 i6

I A l: - - - -

I C I
I I

B

10 2040 220 240 260 Re

FIG. 19. Observed shedding modes and their Reynolds number ranges. The
modes are displayed in solid (dashed) boxes, when they are self-sustaining
(can easily be excited under suitable conditions). For details, see the text.
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slightly smaller Reynolds numbers around 220. For Re<230,
also vortex-adhesion points perturb a neighboring spanwise
region. This region is characterized by large shedding angles
of the von Kirmin vortices and by irregular spanwise
wiggles. The vortex-adhesion points tend to retard the shed-
ding of the von Kirman vortices, i.e., the shedding frequency
is reduced along the whole cylinder span. In the presence of
vortex-adhesion points, the power spectra of the experimen-
tal velocity fluctuations display no peaks at a larger fre-
quency corresponding to the theoretically obtained pure A
mode. For suitable control-wire positions (see Sec. IV C),
C-mode structures without significant A-mode or B-mode
contributions may be observed in the range 170<Re<270.
For Re>230, B-mode patterns with wavelengths of one di-
ameter may occur intermittently in the experiments.

The above phenomenology suggests that all four modes
arise from local or global 3-D instabilities of the 2-D peri-
odic vortex shedding. The end conditions serve as a finite
nonvanishing perturbation for the excitation of the vortex-
adhesion mode, but the end conditions seem unnecessary to
sustain any of the above shedding states. This conclusion is
confirmed by the fact that all 3-D modes can be numerically
computed, assuming a periodicity in the spanwise direction
and without taking end effects into account. The A, B, and C
modes appear to result from unstable infinitesimal perturba-
tions, while the vortex-adhesion mode must be excited by a
finite perturbation. This hypothesis would explain why the
A-mode and C-mode scenario display a soft onset of three-
dimensionality, while the vortex-adhesion mode scenario is
characterized by a hard hysteretical transition.

V. CONCLUSIONS

Williamson's 27,14 experimental observation of three dif-
ferent 3-D shedding modes in the transitional cylinder wake
is numerically reproduced for the first time. These modes
include the vortex-adhesion mode characterized by spot-like
vortex deformations, a large-scale A-mode pattern in the
range 180<Re<230 with a spanwise wavelength around
four diameters, and a fine-scale B-mode structure in the
range 230<Re. In the simulation, periodic spanwise bound-
ary conditions are assumed, i.e., the cylinder is effectively
infinitely long. Experimentally, these phenomena are ob-
served for different aspect ratios and other end conditions, as
employed by Williamson. Thus, all three shedding modes
seem to be able to exist as stable states independently of the
end conditions. In particular, the vortex-adhesion mode is
identified as a self-sustaining shedding state. Hence, the 3-D
modes are likely to arise from instability processes under
nominally 2-D boundary conditions.

The theoretically predicted 3-D Floquet mode originat-
ing at Re= 170 with a spanwise wavelength of 1.8 diameters
(Noack, K6nig, and Eckelmann;' 5 Noack and Eckelmann 3) is
shown to be a separate instability process, called a C mode in
this publication. For the first time, this C mode and the re-
sulting spanwise structure is reproduced in the experiments
and an accurate numerical simulation, placing a thin wire at
suitable locations in the near wake. Experiments indicate a
3-D wake structure with a dominant spanwise wavelength of
roughly two diameters in the range 170<Re<270.

strong 2-D thin
pertur- / shedding control
baton z wire

Re 160 7Re 18 Re 7 170

hard soft soft

|vortex-adh. | |A-mode | C-mode

'chaotic' periodic periodic
I I

Re ; 200 Ret 200

'chaotic' quasi-periodic

Re 230 Re ;30 200

B3-mode
A\~/D ;~ I

FIG. 20. Simplified sketch of the observed transition scenarios: the vortex-
adhesion transition (left branch), the A-mode transition (middle branch), and
the C-mode transition (right branch). The retarded onset of three-
dimensionality, i.e., the direct transition from 2-D shedding to the B mode at
Re-230, is not included in this figure. For details, see the text.

Our present numerical and experimental results for the
transitional Reynolds number range do not suggest the exist-
ence of further distinct localized or global 3-D shedding
modes occurring naturally or under small perturbations.
Even a variety of experimentally and numerically realized
stationary and periodic control processes do not give rise to
three-dimensional structures, which cannot be identified as
one of the four 3-D shedding modes. For instance, the acous-
tically induced "netting pattern" at Re= 143 (Fig. 9 in Ref.
36) appears to be an excited A mode.

Our simulation and experiment yield four different kinds
of transition scenarios: a hard vortex-adhesion, a soft A
mode, a controlled C-mode, and a retarded transition (see
Fig. 20). The vortex-adhesion transition with a hard hyster-
etical onset of three-dimensionality can be induced numeri-
cally by finite localized perturbations in the initial condi-
tions, provided that the spanwise domain is large enough.
This hard transition appears to be common in the experi-
ments, where end effects always give rise to finite localized
3-D perturbations, which originate at the cylinder ends, and
are finally distributed along the whole cylinder span. The
A-mode transition with a continuous onset of three-
dimensionality can be numerically obtained with nearly 2-D
initial conditions. Both the irregular vortex-adhesion mode
and the time-periodic A mode can be considered as stable
coexisting Navier-Stokes attractors roughly in the range 170
<Re<230. The soft C-mode transition, predicted by the low-
dimensional Galerkin model of Noack and Eckelmann, 11"12

can be numerically and experimentally observed when a thin
wire is located in the near wake. Naturally, this is a con-
trolled transition; the C mode appears to be too "weak" in
order to compete with the A and B mode under natural con-
ditions. In the Galerkin model, the A and B modes seem to
be "suppressed" by a rather low azimuthal resolution. Fi-
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nally, a retarded transition at Re=230 can be observed from
parallel shedding to the B mode by placing a control wire in
the centerplane closely behind the cylinder. This suppression
of three-dimensionality with a control-wire technique is an
analog of a similar procedure of Strkowski and
Sreenivasan,3 4 who suppress the onset of 2-D vortex shed-
ding.

Summarizing, most present controversies on the
cylinder-wake transition can easily be explained in the
framework of the A, B, C, and vortex-adhesion modes. This
clarification includes the origin of three different spanwise
wavelengths of roughly one, two, and four diameters in the
literature and the role of the vortex-adhesion mode in the
discrepancy between the experimentally observed hard and
the numerically obtained soft transition. The slow irregular
dynamics of the vortex-adhesion points appears also to be
responsible for the lacking experimental confirmation of the
numerically predicted 3-D time-periodic flow. The described
phenomenological aspects of the cylinder-wake transition
are believed to be of importance for many bluff-body wakes.
Yet, no physical mechanisms for the four distinct 3-D insta-
bilities are proposed in the present publication. Research re-
sults on the physical origin of the A, B, C, and adhesion
mode are the subject of a forthcoming publication.
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