
2008-39754th Flow Control Conferene, June 23-26, 2008, SeattleModel preditive �ow ontrol- Invited paper -R. King∗, K. Aleksi∗, G. Gelbert∗, N. Losse∗, R. Muminovi∗A. Brunn†, W. Nitshe†, M. R. Bothien‡, J. P. Moek‡, C. O. Pashereit‡, B. R. Noak§,Berlin Institute of Tehnology, GermanyU. Rist¶ and M. Zengl¶University of Stuttgart, GermanyIn the last two deades model preditive ontrol (MPC) has been shown to be one of themost powerful and versatile ontrol methods in proess engineering. With the availabilityof onstantly inreasing omputing power and the advent of highly e�ient optimizationmethods MPC is within reah for the use in very fast �ow ontrol appliations as well.This ontribution gives an introdution into MPC and reviews some examples, both insimulation studies and in experimental tests. Although a major advantage of MPC, namelythe inlusion of onstraints is exploited in only one of these �rst appliations, the superiorityover other ontrol methods beomes evident. The appliations range from the ontrol of the�ow around a irular ylinder, the damping of Tollmien-Shlihting waves, the suppressionof thermoaousti instabilities in a burner to the drag redution of an Ahmed body. Modelsused in these MPC-studies omprise ontinuous and disrete-time, linear and non-linearformulations, thereby showing the versatility of the method.Nomenlature
A,B,C state-spae matries J ost funtional
A amplitude k time index
ai Fourier oe�ient or oe�ient of Q,R weightstime-series models t time
bi oe�ient of time-series models u ontrol input vetor
cp normalized pressure U veloity �eld
e(t) error x, x state vetor, streamwise oordinate
f, g plane pressure waves y, y input vetor, wall normal diretion
Gls, Rds, Rus transfer funtions Φ phase of �ow
H horizon τ time-delayI. IntrodutionMuh has been said already about the bene�ts of ative �ow ontrol in omparison or in addition to passivemeans16,24. To ope with unertainties, oming either from external disturbanes or from an inompleteknowledge of the �ow, losed-loop �ow ontrol is a must in a real-world appliation. Open-loop onepts willfail or will yield at most sub-optimal results in suh ases of unertainty. For the synthesis of losed-loop
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�ow ontrollers a variety of methods is available starting from model-free approahes to proedures whihdiretly use a model of the system to be ontrolled inside the ontrol law.Model-free approahes as extremum- and slope-seeking ontrol4 perform an online gradient-based searhto minimize or maximize a ertain ost funtional7,44. The determination of the gradient is done by meansof a sinusoidal pertubation of the plant input. As the gradient an only be extrated when the pertubationis slower than the slowest time onstant of the proess, these methods are very slow. They range in the orderof 10 to 100 harateristi time units of the �ow system. However, extremum and slope seeking ontrollersare very easy to apply, and, if tuned orretly, very robust. We have suessfully used these gradient-basedmethods in a variety of �ow ontrol on�gurations suh as appliations in high-lift, drag-redution of di�erentblu�-bodies, pressure reovery in di�usors, damping of thermoaousti instabilities in a burner, mixing, andnoise redution in turbomahinery. A review of some of these appliations an be found in King et al.25.A detailed study onerning a high-lift on�guration with a swept onstant hord wing is given in Bekeret al.8. Methods to substantially aelerate extremum seeking ontrollers by means of an estimation of thegradient with a Kalman �lter an be found in Henning et al.21.Another lass of ontrol synthesis methods is based on a linear blak-box desription of the �ow. In the�rst plae, the dynami relation between plant inputs and outputs is desribed by so-alled transfer funtionsin the Laplae- or z-domain. As �ow systems are inherently nonlinear, this input-output point of view willonly be valid in the viinity of the operating onditions used to derive the model. Therefore, a family ofblak-box models has to be identi�ed for di�erent operating points and, then, has to be used in a robustontroller synthesis. Popular methods omprise H∞- or QFT-design whih yield ontrollers appliable fora larger region of operation. Experimental �ow ontrol tests for the spanwise non-onstant ontrol of thereirulation length behind a bakward faing step or the drag redution of a 3D blu� body an be foundin Henning et al.23 and Henning et al.22, respetively. The veloity of these methods is in the region of 1to 10 harateristi time units of the �ow system. From a ontrol point of view this is still slow. However,this is not due to the ontrol methods applied, but often a result of the sensor tehnique used to measurean appropriate on-line surrogate value indiating the state of the �ow. The outome of robust and reliablesensors very often have to be averaged, thereby reduing the bandwidth of the losed-loop system.The fastest and/or most e�ient losed-loop system response an be obtained from physially motivatedontrollers. These are based upon or motivated by redued-order models suh as Galerkin33,34,40,41 or vortexmodels. In Pastoor et al.35 a vortex model is used to motivate a one-sided atuation of a 2D blu� bodyyielding the same drag redution as a two-sided version, but with an energy saving of more than 40%. InGerhard et al.18 a Galerkin model is employed to synthesize a nonlinear ontroller based on physial insightof the system. The obtained least-order Galerkin model desribes the vortex shedding behind the irularylinder with just three dynamial states. The ontroller produes a robust losed-loop performane whenapplied to a diret numerial simulation of the Navier-Stokes equation. In King et al.26 di�erent nonlinearontrollers are ompared for this system. Glauser et al.19 build up a Galerkin system to derive a ontrol lawfor a lift ontrol appliation. Siegel et al.41 dampen the von Kármán vortex street behind a ylinder in anexperiment with a similar approah. Depending on the �ow measurements available to lose the loop, thesemethods give rise to a losed-loop bandwidth in the order of the open-loop bandwidth of the �ow system.In all of the above mentioned approahes the manipulated variable is alulated based upon the atualproess output, and, more or less diretly, on a proess model. Negleting the very slow extremum seekingapproahes, the ontrollers are set up in a way to obtain a ertain losed-loop dynamis without aiming atan optimal result nor respeting system onstraints whih may show up at the atual time instant or in thefuture. When a onstrained optimization-based ontrol sheme is formulated, instead, even better resultsan be obtained. This is shown in numerous aademi and espeially large sale industrial appliations inproess industry20,37,38. The basi idea of model preditive ontrol (MPC) is a repeated optimization over afuture ontrol input trajetory. As suh an optimization an be easily formulated with or without onstraints,for linear or nonlinear, for time-ontinuous or disrete-time models, for single-input single-output (SISO) ormultiple-input multiple output (MIMO) systems, MPC presents an extremely versatile method. However, assoon as onstraints are involved and/or the model is nonlinear, the optimization has to be solved numerially.As a onsequene of the numerial burden involved in solving the optimization problem, MPC was mainlyrestrited to slow proesses suh as found in hemial or biohemial industries. For experimental �ow ontrolappliations only one burner study17 is known up to now whih will be reapitulated below. However, newe�ient optimization algorithms open the route for MPC for a wider lass of �ow ontrol appliations aswell. In a reent study, a onstrained MPC was applied in an engine ontrol problem with a sampling rate2 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



of 200 Hz15. Aording to the authors, this frequeny an even be inreased (personal ommuniation).In this paper, a short introdution into MPC is given, omplemented by a review of a ouple of di�erentMPC �ow ontrol appliations. This seletion omprises studies with linear and nonlinear, with ontinuousand disrete-time models, with simulation studies and experimental tests. The paper is organized as follows:The basi idea of MPC is reapitulated in setion II. Appliations to various on�gurations are given insetion III. II. Model preditive ontrolMPC is best explained by means of �gure 1. The basi idea of MPC is to alulate future ontrol movessuh that some performane riterion is optimized. In doing so, system onstraints referring to states x,outputs y and manipulated variables u are respeted. For this purpose, the future ontrol input uf (t) isparameterized by, for example, piee-wise onstant trajetories over a disrete-time horizon Hc. Usually, the
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uh

uf

k
k + 1 k + 2 k + Hc k + Hp tFigure 1. Basi sheme of MPC for a SISO system. In ontrast to the standard �uid dynamis nomenlature, ontrolengineering naming onventions are used here. The manipulated variable is denoted by u and the system output by y.Indies f and h refer to the future and the past, i.e. history, respetively. The referene signal r is spei�ed startingfrom k + 1, beause the atual system output y(k) annot be hanged by the atual or future inputs.sampling period h for the piee-wise onstant ontrol input is �xed. It oinides with the sampling period ofthe model if a disrete-time model of the proess is used. In the study of the von Kármán street it oinideswith half the period of the �ow. A variable sampling period, however, is possible as well, see e.g.43.Let us assume that the atual disretized time instant is given by t = k. Hene, t < k represents thepast and t > k the future. The atual ontrol input for t = k, i.e. u(k) = uf (k), and future ontrol inputs

uf (k + 1), uf (k + 2), . . . are now determined suh that the system output y
f
(k + i) is driven bak to areferene trajetory r(k + i) for H1 ≤ i ≤ Hp in an optimal fashion. If a system with a pure time-delay dis onsidered, the output y will not be in�uened by the atual input u(k) before t = k + d. In suh ases,

H1 should be equal or larger than d. Even without time-delays, a H1 > 1 might be bene�ial for the overallperformane.Due to the piee-wise onstant ontrol input a �nite parametri optimization problem results with opti-mization or design variables uf (k), uf (k +1), . . . . The predition horizon Hp is usually hosen (muh) largerthan the ontrol horizon Hc in whih ontrol moves are allowed. A larger predition horizon in omparison tothe ontrol horizon is bene�ial for losed-loop stability. Otherwise, a terminal penalty has to be inluded38.A possible riterion or quality funtion may read
J =

Hp
∑

i=H1

||r(k + i) − y
f
(k + i)||Q +

Hc
∑

i=0

||uf (k + i)||R
!
= min , (1)3 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



in whih Q and R are symmetri weighting matries used in the norms || · ||, i.e. ||z||S = zT Sz. Both weightsmay depend on the time index k + i as well. With the weights a di�erent importane of manipulated values
uf (k+i) and future errors between referene r(k+i) and system output y

f
(k+i) is aounted for. If hangesin the ontrol input ∆uf (k + i) = uf (k + i)−uf (k + i−1) are ritial to avoid too large atuator amplitudesfrom one sampling instant to the next, these hanges an be inluded in eq. (1) readily. Likewise, if thefuture ontrol input for t > k + Hc is not zero, its ost an be inluded as well. When onstraints have tobe onsidered, these an be dealt with via Lagrange operators or via penalty funtions to name just twopossibilities.So far it was assumed that the optimal ontrol input alulated after proessing the measurement obtainedat t = k ould be immediately applied at the same time instant. If the numerial burden is high, however,the measurements taken at t = k are used to alulate the next ontrol moves starting from t = k + 1. Insuh a ase, the seond summation in eq. (1) would start at i = 1.In MPC, just the �rst ontrol move uf (k) of the alulated optimal input trajetory is applied to theplant. To reat almost immediately when the next measurement y for t = k + 1 ist obtained, preparatoryalulations an be done in the period from k to k + 1. Then, the optimization starts from the beginningat the next sampling instant. By this, the in�uene of unknown disturbanes and model errors is aountedfor as these unertainties show up in the next value of the measured output variable y(k +1). This repeatedsolution of an optimization problem has led to an alternative name of MPC, namely reeding horizon optimalontrol.In the general ase, when the proess model is nonlinear, a numerial solution of the optimization problemhas to be done. This leads to a nonlinear model preditive ontroller (NMPC). A similar approah has to betaken for linear models in ase of equality or inequality onstraints whih have to be met. This numerialsolution, however, is responsible for the large numerial burden involved in solving (N)MPC problems. Thebeauty of the (N)MPC-method rests in its unifying framework. Irrespetive of the kind of model, linear ornonlinear, ontinuous or disrete-time, SISO or MIMO, and irrespetive or the optimization problem to besolved, unonstrained or onstrained, the same priniple an be used to derive a ontrol signal.To show the most simplest version of a MPC-sheme whih leads to an expliit ontrol law, a oupleof assumptions will be made in the following. It is assumed that 1) the proess model is given as a linear,disrete-time state-spae model, 2) the plant output y(k) at time k will not diretly depend on the ontrolinput u(k), i. e. there is no diret feed through, 3) the time for evaluating the ontrol law obtained an benegleted, and 4) no onstraints are onsidered.II.A. MPC formulation for linear unonstrained problems in state-spaeEvery linear system an be desribed by a state-spae model of the form

x(k + 1) = Ax(k) + Bu(k) (2)
y(k) = Cx(k) (3)in whih x, u and y represent the internal state of the proess, the ontrol input and the proess output,respetively. Column vetors are denoted by small, underlined symbols. Matries, suh as the dynamimatrix A, the input and the output matries B and C, respetively, are given in bold apital letters. Atime-dependene of these matries an be inluded. Dimensions are x ∈ R

n, u ∈ R
p, y ∈ R

q, A ∈ R
n×n,

B ∈ R
n×p, C ∈ R

q×n.Starting from time k, the future development of the proess an be predited exploiting eq. (2). If astate predition made at t = k for t = k + j is denoted by x(k + j|k), it follows
x(k + 1|k) = Ax(k) + Bu(k)

x(k + 2|k) = Ax(k + 1|k) + Bu(k + 1)

= A2x(k) + ABu(k) + Bu(k + 1) (4)...
x(k + Hp|k) = AHpx(k) +

Hp−1
∑

i=0

AiBu(k + Hp − 1 − i) .4 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



Hene, the future or predited output for k + j reads
y

f
(k + j) = y(k + j|k) = CAjx(k) +

j−1
∑

i=0

CAiBuf (k + j − 1 − i) (5)in whih u was replaed by uf as future values of the ontrol input are addressed. All future outputs willnow be onatenated in y
p

= (yT (k + 1|k) yT (k + 2|k) . . . yT (k + Hp|k))T , where T denotes the transpose ofa vetor. Aordingly, up = (uT
f (k) uT

f (k + 1) . . . uT
f (k + Hc) . . . uT

f (k + Hp))
T with uf (k + j) = uf (k + Hc)for j = Hc + 1,Hc + 2, . . . ,Hp to aount for a onstant manipulated variable for the last setion of thepredition horizon Hp.All future outputs inside the predition horizon an now be written as

y
p

= Apx(k) + Bpũp (6)with
Ap =
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i=0 CAiB
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uf (k)

uf (k + 1)...
uf (k + Hc)











(7)In the new variables y
p
, ũp, the ost funtional, eq. (1), reads with rp = (rT (k+1) rT (k+2) . . . rT (k+Hp))

T

J = (rp − y
p
)T Qp(rp − y

p
) + ũT

p Rpũp

= (rp − Apx(k) − Bpũp)
T Qp(rp − Apx(k) − Bpũp) + ũT

p Rpũp . (8)The blok diagonal matries Qp and Rp onsist of Q and R matries from eq. (1) on the main diagonal if
H1 = 1. For H1 > 1, the �rst entries in the main diagonal are zero. Equating dI/dũp = 0T as a neessaryand su�ient ondition for an extremum yields for the future ontrol input

ũp = (BT
p QpBp + Rp)

−1BT
p Qp(rp − Apx(k)) . (9)As no onstraints are onsidered, a losed form of the ontrol law is obtained. From ũp = (uf (k) uf (k +

1) . . . ) only the �rst entry, i.e. u(k) = uf (k), is applied to the proess. Then, the optimization starts fromthe beginning using the measurement y(k + 1) to determine a new state x(k + 1), and so forth. To obtaina state estimate, a model-based measuring tehnique suh as a Kalman �lter13 has to be applied if the fullstate vetor x(k + 1) annot be measured.II.B. Alternative formulationsAn alternative formulation an be given starting from an input-output desription of the system in the z-domain or applying the so-alled shift operator q−1 to a time-series model. In suh a ase, no state appearsin the formulas but histori values y
h
and uh, see �gure 1. An example will be given in the burner studybelow. However, for long predition horizons a formulation in state-spae is superior from a numerial pointof view.In the �rst example of a �ow past a ylinder a nonlinear model in ontinuous time serves for predition. Itis solved numerially by a forth-order-Runge-Kutta sheme. State estimation is done employing an extendedKalman �lter. Moreover, input onstraints are onsidered as well. The optimization problem is solvednumerially by applying the lsqnonlin routine from MATLABr, i. e. by a nonlinear least squares method,for more details see2. For the redution of the drag of a blu� body in the last example a linear state-spaemodel is used. However, instead of uf , hanges in uf are introdued in eq. (1).5 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



III. Results(N)MPC will now be applied to di�erent �ow ontrol problems using di�erent model formulations. Inthe �ow past a irular ylinder, see setion III.A, a NMPC will learly outperform the best ontrollerfound in previous simulation studies26. Setion III.B summarizes �rst results of the damping of Tollmien-Shlihting waves exploiting a Galerkin approximation. The last two setions, III.C and III.D, are devotedto experimental MPC-studies for a burner and a blu� body, respetively.III.A. 2D �ow around a irular ylinderThe present ase study fouses on the two-dimensional laminar �ow around a irular ylinder, see �gure 2.The Reynolds number Re is hosen well above the ritial Reynolds number 47, see,31 for the onset of 2D
s e n s o rA )  v o l u m e  f o r c e

B )  c y l i n d e r  o s c i l l a t i o nFigure 2. Prinipal sketh of the atuated ylinder wake. The �gure displays the streamlines of the natural �ow arounda irular ylinder with diameter D = 1 (solid irle). Atuation is provided by transverse ylinder osillation or by atransverse volume fore in the grey irle. The �ow state is sensed with a hot-wire anemometer, loated at a typialposition. Suess of ontrol is monitored in the observation region −5 < x < 15, −5 < y < 5, with x = y = 0 in the enterof the ylinder, see �gure 4 as well.vortex shedding and well below the 3D instability around 180. The ontrol goal is to suppress the stable 2Dvortex shedding at that Reynolds number.III.A.1. Galerkin model for prediting the future developmentA Karhunen-Loève (KL) deomposition of the unatuated �ow shows that 96% of the turbulent kineti energy
E an be resolved with the �rst 2 KL modes, see18 and34. To desribe the transient from the (unstable)steady state solution, Us, of the Navier-Stokes equation (NSE) to the vortex shedding mode, Ui, i = 1, 2,a third so-alled shift mode U∆ has to be inluded in the Galerkin approximation as a key enabler for asuessful approximation34. U∆ aounts for the di�erene between the mean and steady �ow. With these3 modes, a Galerkin approximation reads

U(x, y, t) = U s(x, y) +

2
∑

i=1

ai(t)U i(x, y) + a3(t)U∆(x, y) (10)in whih U(x, y, t) desribes the spae- and time-dependent 2D veloity pro�le. For more details see34.The term a1(t)U1(x, y) + a2(t)U2(x, y) approximates the osillatory �utuation assoiated with the vonKármán vortex street due to a nearly sinusoidal behavior of the Fourier oe�ients a1(t) and a2(t).Two di�erent atuators are skethed in �gure 2, namely a transverse osillations of the ylinder and avolume fore. The seond approah will be onsidered in this paper. A pratial implementation may bedone with a magneto-hydrodynami fore. The �ow state is sensed with a hot-wire anemometer, loated ata typial position, see �gure 2. As a result, a SISO set-up with one input and one output is onsidered.Inluding the volume fore in the momentum equation leads to the following modi�ed Navier-Stokesequation
∂U

∂t
+ (U ·∇)U = −∇p +

1

Re
△U + bu . (11)The ontrol input u ∈ R1 desribes the amplitude of the foring on a ompat support given by b in thearea shown in �gure 2. A Galerkin system as a low order model is derived by projeting the NSE onto themodes and then applying a Krylo�-Bogoliubov ansatz, see34. The resulting Galerkin system has a more6 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



simple struture in polar oordinates. With a1 = A cos Φ, a2 = A sin Φ the low order model is given by






Ȧ

Φ̇

ȧ3






=







(σr − βa3)A

ω + γa3

αA2 − σ3a3






+







gc cos (Φ − θ)

−(gc/A) sin (Φ − θ)

0






u . (12)As a result, the state vetor reads x(t) = (A(t) Φ(t) a3(t))

T . It should be pointed out that the modelparameters α, β, γ, σr, σ3, ω, and gc, are obtained from a projetion from an open-loop referene simulation.This may impose a major hallenge when a ontroller is employed in a Navier-Stokes simulation. The lowdimensional model is only valid in the viinity of the operating onditions whih were used to derive the PODmodes. To aount for this limited validity, Gerhard et al.18 suggested that the ontrol should not drive thesystem too far away from the manifold desribed by eq. (12). To this end, they proposed a �rst nonlinearontrol law whih is based on physial insight, see �gure 3. In this ontrol law a piee-wise onstant ontrol
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Figure 3. Fourier oe�ients ai obtained in a losed-loop ontrolled DNS by applying the ontroller based on physialintuition from18 (left) and NMPC (right). State estimation is done with an extended Kalman �lter. The suess of theontrol is observed by a2

1
+ a2

2
whih desribes the major part of the turbulent kineti energy.input u is applied. The magnitude of u is alulated suh that the amplitude of the osillation dereases,i.e. Ȧ < 0, see eq. (12). Its sign is synhronized with cos (Φ − θ). By this, the mean impat on Φ̇desribing the harmoni vortex shedding is minimized, as the right hand side of this equation is shifted by90◦ with respet to the ontrol input. In King et al.26 a simpler version of this ontrol law was found andompared to di�erent formally derived nonlinear ontrollers. Examples omprise input-output linearization,bak-stepping, Lyapunov-based approah, et. None of the formal methods ould outperform the physiallymotivated ontroller whih was named energy-based ontrol. In a later improvement2, bak-stepping andLyapunov-based approah resulted in better performanes, though. However, as these methods are moreinvolved, the energy-based ontroller will serve as a referene here.To relax the problems oming from a limited validity of the model, an extended Kalman �lter for stateestimation will be implemented in the losed loop desribed below. By this, part of the model unertaintiesan be aounted for when the system is driven away from the situation for whih the POD modes weredetermined.III.A.2. Closed-loop ontrolFor the well-known benhmark of the �ow past a irular ylinder, a NMPC ontroller is build next. Thepredition in the NMPC algorithm is based on eq. (12). As no experimental set-up is available, the obtainedontrol law is tested in simulations studies using a diret numerial simulation. The simulations are performedon a grid with 8712 nodes. For state estimation based on the veloity measurement depited in �gure 2, anextended Kalman �lter is applied. Details an be found in Aleksi et al.2.A very simple ost funtional is used here instead of eq. (1)
J =

∫ t+Hp

t

e2(l)dl with e(t) = r(t) − â1 , (13)7 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



i.e. the ontrol e�ort is negleted. The salar referene r(t) is hosen as a sinusoidal signal with exponentiallydereasing amplitude. This hoie is motivated by the limited validity of the low dimensional Galerkin system.The variable â1(t) denotes the estimated value of the state variable a1(t). To make the optimization problemeasier, we use even more physial knowledge about the proess. From the physially motivated ontroller itis known that good results are obtained when a piee-wise onstant u is synhronized with cos(Φ− θ). Thisknowledge is exploited here as well. No arbitrary sampling period h, see �gure 1, is hosen, but one thatexatly mathes the physis of the proess. Inside a sampling period, uf is hosen to be onstant.To respet the vaildity of the model, the alulated future ontrol inputs are onstraint to |uf (t+l)| < 0.1.For more details see3. A omparison in �gure 3 shows the superiority of NMPC whih is muh faster thanenergy-based ontrol and leads to a reirulation zone of length 5.2 in ontrast to 4.1 for the energy-basedontrol. With no other ontroller using the very same measurement information and the same atuationonept suh good results were found in King et al.26. Even with the improved versions of the baksteppingand Lyapunov-based ontrollers in2, a poorer performane was obtained. Figure 4 shows a plot of thestreamlines of the unatuated and the atuated ase with the NMPC ontroller at t=165. The dampinge�et of the atuation and the signi�ant mitigation of the instability is learly visible in the observationregion.
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Figure 4. Left: Unatuated �ow. Right: Atuated �ow with an NMPC ontroller shown for t = 120. The �gures displayisoontours of the stream-wise veloity omponent U. Negative values are indiated by thinner urves and show theextent of the reirulation region.III.B. Damping of Tollmien-Shlihting wavesThe �nal goal of this study will be the damping of Tollmien-Shlihting (TS) waves to delay transition froma laminar to a turbulent regime. Sturzebeher and Nitshe42 performed an ative anellation of Tollmien-Shlihting (TS) instabilities on a wing using multi-hannel sensor atuator systems to delay transition. Theontrol law is based on a high order �ltered x-LMS method. With an error and a referene sensor a ontrolinput is alulated suh that at the loation of the error sensor a signi�ant mitigation of the TS waves isobtained, see as well Wu and Breuer.45 Evert et al.14 use a nonlinear blak-box model based on Volterra�lters for the same purpose. A similar attenuation of the instability in an experimental wind-tunnel test anbe obtained using a signi�antly simpler approah. In this ase, experiments with extremum seeking ontrol- whih was roughly explained in setion I - give rise to an attenuation of the rms-value of surfae hotwiremeasurements of > 60% when arti�ial TS waves are introdued (unpublished results).In this study, damping will be performed either by syntheti jet atuators or by atively ontrolled �exiblewalls. With both set-ups, �rst promising results are obtained in experiments. When staked syntheti jetatuators are used, sensors an be plaed in between a pair of atuators, whereas in the ase of a �exiblewall measurements are possible only in front and after the �exible wall segment. This latter more di�ultsituation will be onsidered in the following. As true TS waves appear in pakets (whih we are able to detet)and as these pakets onsist of TS waves with a spetrum of di�erent frequenies, these �rst investigationswill fous on a more simple situation. By arti�ially introduing harmoni pertubations in an upstreamsetion, e.g., by a syntheti jet atuator as well, a ontinuous TS wave with a �xed frequeny is triggered.Conerning the appliation of MPC to dampen TS waves only preliminary results an be given here.Therefore, only simulation studies are onsidered. The simulation is performed with a two dimensional DNSsolver, see Rist and Fasel39 and27. This solver omputes the �ow on a 850x90 retilinear grid over an areaof 0.683865 to 4.6399 non-dimensional units in x and 0 to 0.0956 in y. This orresponds to a displaement-thikness Reynolds-number of 450 to 1180 in x. It is assumed that a wall-normal veloity an be measured8 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975
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Figure 5. Domains onsidered for the damping of TS waves. Subregions I,II and III are used for POD and Galerkin-projetion. A blak-box model is identi�ed for the e�et of atuation on subregion II. x represents streamwise, ywall-normal diretion.at the loations given in �gure 5. The y position is hosen for ease of alibration, as this is the v-veloitypro�le's maximum. In experiments, however, it was already shown that TS waves an be estimated as wellwith surfae hotwires (unpublished results).In the atuation strip, i.e. subregion II, the boundary value of the wall-normal veloity is set by aontroller. This has a similar e�et as a wall displaement, as the �ow reats to the veloity pro�le presribedat the wall. The wall veloity pro�le in streamwise diretion in the atuation strip, see �gure 5, is restritedto a half-sine as funtion of x with a time-variable amplitude to math membrane displaements in laterexperiments. In the perturbation region upstream, disturbanes are seeded to trigger arti�ial TS waves.This is done by setting appropriate boundary onditions.III.B.1. Galerkin model for prediting the future developmentA Galerkin approximation of the 2D �ow over a �at plate is used similar to the irular ylinder study shownbefore to derive a low dimensional model. A major hallenge in reating the low dimensional Galerkin systemis, as always, the inlusion of the ontrol input. As modes Ui(x,y), suh as POD modes, desribe globale�ets, the inlusion of a loal atuation is di�ult. To this end, a new approah is proposed here.In a �rst step, POD modes are determined for the unatuated ase for the whole region overing subregionsI, II and III, see �gure 5, when TS waves are triggered by the pertubation upstream. Note that the areasdiretly at the wall (5 losest DNS nodes) and lose to the perturbation have been omitted from the PODbeause the wall region`s steep gradients negatively a�et the alulation of the Galerkin projetion. Likewise,as lean TS waves are only developed some distane downstream of the pertubation strip, this part is notused either. Figure 6 displays the �rst two most energeti modes.From the modes derived, a Galerkin projetion is performed to obtain a Galerkin system desribing thetime evolution of the Fourier oe�ients, see setion III.A. These Fourier oe�ients will be named a
(u)
i (t)as they are obtained from an unatuated situation. The resulting Galerkin system is further modi�ed usingphysial insight to o�set numerial errors. For example, the prodution terms alulated by the projetionare set to zero, as they only arise from numerial errors. As no atuation is used in the snapshots fromwhih the modes are derived, this Galerkin system desribes the evolution of the unatuated �ow`s Fourieroe�ients desribing TS waves only.In the next step, di�erent atuation signals u(t) are applied in the simulation. This simulation will yieldexperiments for a system identi�ation. It is performed without triggering TS waves with the upstreampertubation. The obtained snapshots of the veloity pro�le of the �ow are then projeted onto subregionII of the modes found in the �rst step. This projetion resulting in atuated Fourier oe�ients a

(a)
i (t) isonly done in subregion II, as no upstream e�et of the atuation an be observed, and the downstream e�etoutside the atuation area is onvetive. Thus, we onentrate on the e�et on subregion II.Now, system identi�ation methods are used to derive a blak-box model desribing the relation between9 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



Figure 6. Most energeti POD-modes for the �ow over a �at plate. The normalized wall-normal veloity omponent isshown as a funtion of the streamwise and wall-normal omputation nodes for subregions I, II and III, i.e. exludingthe 5 losest DNS nodes to the wall. A non-equidistant spaing is used for the nodes.applied ontrol input u(t) and the time evolution of the �rst two atuated Fourier oe�ients a
(a)
1 (t) and

a
(a)
2 (t). It should be noted that still the same POD modes are assumed to be valid, even though only a 'loal'part of them is used. Thus, the derived e�et on the oe�ients is also only loal. A state-spae model isidenti�ed using a predition error method from the MATLABr system identi�ation toolbox.If TS waves are triggered upstream by the pertubation and an atuation signal u(t) is applied in theatuation region at the same time, the overall Fourier oe�ients obtained for subregion II are given by asuperposition, i.e. ai(t) = a

(u)
i (t) + a

(a)
i (t). This is on�rmed by simulation studies. Hene, a ombinationof the two models, Galerkin system and blak-box model, an be used to estimate the �ow state in theatuation region. To improve this estimation, the state of the Galerkin system is orreted by an extendedKalman �lter using the two sensors in subregion I.Based on an atual estimate of the �ow state, a predition of the future development is alulated next.In the unontrolled ase, the Galerkin system, i.e. a

(u)
i (t), desribes how this future evolution would looklike. Theoretially, the negative value of this trajetory a

(u)
i (t) ould be used as a referene input r(t) forthe blak-box model. If a model preditive ontroller is now able to synthesize a ontrol input u(t) suh thatthe response of the atuated system a

(a)
i (t) equals the negative value of the unatuated ase, a superpositionwould lead ai(t) = 0. However, suh an approah would not be physial. Therefore, r(t) = −Ka

(u)
i (t) ishosen with a small K, e.g. K = 1/65.Based on this idea, a MPC sheme is build. The presented results are for a predition and ontrol horizon

Hp = 5, Hc = 1, respetively.Using this ontrol sheme, the amplitude of disturbane of the �ow an be redued by > 80% at x/dx =10 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



Figure 7. Snapshot of the disturbane veloity �eld without (top) and with atuation (bottom), see �gure 6 for moreexplanations.
850 (see �gure 7). This value ould be further inreased by mathing the atuation pro�le perfetly to thewavelength of the TS waves, but this was not the fous of this study. Rather, it is shown that MPC an beused for TS waves even without perfet atuators or measurements in the atuated region.III.C. Control of thermoaousti instabilities in a burnerLean-premixed ombustion o�ers a way to meet restritive, low emission levels for modern gas turbines.However, the leaner a ombustion system operates the more it is prone to suddenly ourring large pressureosillations11,28,36. These so-alled thermoaousti instabilities arise from the interation of unsteady heatrelease and the aousti �eld in the engine. If the two mehanisms interfere with an unfavorable phaserelation, high amplitude pressure pulsations our, whih have a detrimental e�et on the ombustion proess.Ative ontrol an be used to suppress thermoaousti instabilities. Model-based losed-loop ontrol ofombustion instabilities was shown to be e�etive in reduing the pressure osillations onsiderably. Morgansand Dowling30, e.g., used Nyquist tehniques to build a stabilizing ontroller. The simplest form of losed-loop ontrol is a phase-shifted pressure feedbak by the so-alled phase-shift or time-delay ontroller12. Here,the ombustor pressure is fed bak via aousti or fuel modulating atuators. In the Laplae domain theontrol law reads C(s) = Ke−sτ (K being the gain and τ the delay). The two ontrol parameters K and τare either tuned empirially or optimized by an adaptive sheme5,29.The ombustor test rig onsidered in this investigation is shown shematially in �gure 8. A swirl-stabilized burner, generating an aerodynamially stabilized �ame, is mounted in a ylindrial silia glassombustion hamber. The usual operating range omprises equivalene ratios from φ = 0.5 to stoihiometrilevel and a thermal power of about 80-240 kW. Several 1/4" ondenser mirophones are mounted up- and11 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975
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Figure 8. Shemati of the test rig set-up. Linear sub-models Rus(s), Rds(s) and Gls(s) are identi�ed for the dashedupstream and downstream box and the atuator, respetively.downstream of the burner to allow for the deomposition of the plane aousti �eld. More information isgiven in Gelbert et al.17. For model identi�ation and ontrol, atuation is provided aoustially by speakersmounted up- and downstream of the �ame.III.C.1. Blak-box model for prediting the future developmentThe mathematial model used in the following linear MPC algorithm is exlusively based on input/outputdata. For this, the ombustion system is divided into an upstream and a downstream part, as shown in�gure 8. The aousti harateristis of eah part are represented as omplex re�etion oe�ients Rus and
Rds, relating the re�eted to the inident plane aousti wave in the frequeny domain. These two partsare identi�ed with system identi�ation methods from pressure signals obtained when a one-sided atuationthrough a loudspeaker is applied. For identi�ation, hirp signals are used. More details about this non-trivialidenti�ation of an unstable plant an be found in Gelbert et al.17 and the referenes therein. Atuation istaken into aount by modeling the left traveling wave g(s) of the downstream part as in Bothien et al.9 bya part whih is a result of the re�eted right traveling wave f(s) and another part oming from the ontrolinput u(s)

g(s) = Rds(s)f(s) + Gls(s)u(s) . (14)
Gls is the atuator transfer funtion and u(s) is the manipulated variable in the Laplae domain, respetively.State spae matries, as introdued in setion II, relate to the transfer funtions in the Laplae domainaording to G(s) = C(sI − A)−1B if a ontinuous representation is hosen. Combining Eq. (14) with therelations for the upstream re�etion oe�ient, f(s) = Rus(s)g(s), and for the pressure, p(s) = f(s) + g(s),leads to the total plant transfer funtion Gs(s),

p(s) = Gs(s)u(s) = Gls(s)
1 + Rus(s)

1 − Rds(s)Rus(s)
u(s) . (15)Equation (15) relates the salar input ommand u(s) to the salar output y(s) whih equals the pressure

p(s) = y(s) at a referene plane (see �gure 8). Hene, a SISO problem is onsidered again. A Bode plot, i.e.
|Gs(jω)| and arg{Gs(jω)} as a funtion of ω, is shown in �gure 9 (left).The MPC algorithm has to be implemented in a disrete-time fashion on a rapid prototyping hardware(dSpae® DS1103-PPC ontroller). Therefore, a disrete-time version of eq. (15) written as a time-seriesmodel is exploited in the form
p(k +1) = −a0p(k)−a1p(k−1)−· · ·−anap(k−na)+ b0u(k−d)+ b1u(k−d−1)+ . . . bnbu(k−d−nb) (16)in whih d is a time-delay in the general ase. As the absolute value of poles of disrete transfer funtionstends to move loser to 1 when the sampling frequeny is inreased, numerial problems our with thedisrete model if too large sampling frequenies are hosen. Therefore, the sampling frequeny is set to

1000Hz. In future implementations, a formulation with a disrete-time state-spae desription as outlinedin setion II will be used instead. Then, sampling frequenies of 3000 or more Hz will be possible. Detailsabout the atually implemented algorithm an be found in Gelbert et al.17.As this thermoaousti system and the identi�ed model are unstable, a predition of the future develop-ment of the plant is likely to lead to numerial problems in the MPC algorithm, irrespetive of the formulation12 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975
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 f in HzFigure 9. Bode diagrams of identi�ed systems. Left: Transfer funtion Gs of the plant to be ontrolled. Right:Stabilized system Gc (blak solid) and redued order model of order 10 (red dashed).whether in state-spae or in the z-domain. Therefore, two ontrol loops are build up. In an inner loop theaforementioned phase-shift ontroller C(s) stabilizes the system, see �gure 10. The loation of the referenepressure sensor is hosen suh that a time-delay τ = 0 results, i.e. C(s) = K. The MPC algorithm thendetermines the set-points umpc for this inner loop. As a onsequene, the model used in the MPC is not
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Gs(s), but
Gc =

KGs

1 + KGs

. (17)This leads to a transfer funtion of order na = 40. To simplify the alulations in the MPC algorithm, aredued order model with a similar frequeny response in the frequeny range of interest is determined. TheBode plot of Gc and the redued model of order 10 an be seen in �gure 9 (right) as well.The output of the MP ontroller, denoted by umpc in �gure 10, equals the �rst ontrol move of the MPCalgorithm, i.e. umpc = uf (k).As in setion II, an unonstrained optimization is solved again giving rise to an expliit formula toalulate the next ontrol move. However, when the next output of the MPC algorithm umpc is proessed bythe inner loop, a violation of physial onstraints with respet to the loudspeaker input signal u may appearthrough u = K(umpc − y). These input signals are therefore limited in an ad ho fashion by an implementedsaturation blok to −0.9V < u < 0.9V , see �gure 10. A better way to aount for suh onstraints would bean inlusion into the optimization problem whih will be part of future work. In the algorithm implemented,as well old values of the ontrol input (and output) our, as it is based on a desription as shown in eq.(16). To aount for a saturated input to the loudspeaker uapp in the next predition, this information isgiven to the MPC algorithm as well, see �gure 10. More details an be found in17. Using a state-spae basedMPC, a orretion would only be neessary in the Kalman �lter. Here, all past information is ontained in13 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975



x(k).III.C.2. Closed-loop ontrolThe test rig is operated with natural gas at an equivalene ratio of 0.62 and a thermal power of 110 kW.This operating ondition auses a high amplitude thermoaousti instability, see �gure 11(a), blak, wherethe aousti pressure is shown. Distint peaks at 81 Hz and its harmonis an be seen. This osillationfrequeny orresponds to the λ/4-mode of the test rig. Peak amplitudes of 155 dB are observed.
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(b) Comparison of the weighted MPC (red) with the un-weighted MPC (blue); baseline ase without ontrol (blak).Figure 11. Spetra of aousti pressureSuppression of the instability with a simple proportional ontroller results in a peak amplitude attenuationof approximately 16 dB (red line in �g. 11(a)). The peak amplitude is still quite high but no harmonis arepresent anymore. Applying the MPC (blue), it is possible to ahieve a signi�antly higher redution. Thepeak amplitude is dereased by 31 dB, i.e. to less than 3% of its initial value. However, higher harmonisshow up whih may be a result of a spill-over e�et resulting in peak-splitting, see as well6.An unweighted MP ontroller is used here with respet to the ontrol error r − y, i.e. Qp = I and
Rp = O, whih means that the ontrol input is not penalized. To aount for dead-times and to improvethe losed-loop behavior the summation in the �rst term in eq. (1) starts from H1 = 40. The preditionhorizon is set to Hp = 150. Only one ontrol move is allowed in the MPC, i.e. Hc = 1.A typial experiment with this ontroller is shown in �gure 12(a) (top). High pressure �utuations areobserved in the beginning when the ontrol is o�. At t ≈ 7 s, the proportional ontroller is swithed on. The�utuations are slightly mitigated. The proportional ontroller is then swithed o� and on again (blak in�g. 12(a), bottom). Starting from t ≈ 37 s, the asaded MPC-sheme using an inner proportional ontrolleris used. A further redution in the amplitude of the aousti pressure ompared to the proportional ontrollerresults.Sine the ontrol signal ump is not weighted at all, large ontrol ommands uapp are applied to theplant (see �g. 12(a) middle). Figure 12(b) shows a magni�ation of the applied ontrol variable uapp (blak)and the ontrol variable ump (red) during ontrol with the unweighted MP ontroller. Obviously, uapp issaturated only slightly.During the ontrol with the proportional ontroller, the ontrol variable uapp does not exeed 0.6 V. Itshould be noted that a further inrease of the ontrol gain does not ause a further derease of the osillationamplitude. Inreasing the gain beyond a ertain threshold even results in an ampli�ation of the instability.In order to avoid u being saturated by the ampli�ers' input limitation, a weighted MP ontroller (Hp =
150, Hc = 10, H1 = 20, Qp = I and Rp = diag(0.1)) is applied next. Additionally, the hanges in the ontrolmoves, i.e. u(k + j + 1) − u(k + j) are penalized as well with the same weight Rp, see17. The spetrum ofthe aousti pressure �utuations orresponding to this ase is shown in red in �gure 11(b). The blak andblue lines are equal to the ones shown in �gure 11(a), i.e. they represent the baseline ase and the result ofMPC without weighting. The system is still stabilized, however, the resulting attenuation of 25 dB of thepeak amplitude is slightly less than in the ase without weighting. On the other side the spetra 13(a) andthe time traes 13(b) of the ontrol input show that the weighted MPC (in red) uses muh less atuation14 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975
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(b) Calulated ontrol signal from the unweighted MPC
umpc (red) and resulting signal driving the woofers uapp(blak).Figure 12. Time traes of the losed loop.power ompared to the unweighted MPC (in blue).
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(b) Setion of the ontrol signals' time responsesFigure 13. Comparison between weighted (red) and unweighted (blue) MPC.III.D. Redution of the drag of an Ahmed bodyIn a ompanion paper by Muminovi et al.32 a robust and a model preditive ontrol of the �ow past a3D blu� body is disussed and ompared extensively. An Ahmed body of 1/4 of the original size proposedby Ahmed1 is onsidered in32 with a onstant blowing through two orner atuators. In this ontribution,we show that the MPC algorithm an as well be applied to the full-sale Ahmed body. Di�erent atuatorsand a harmoni atuation are used here. A sketh of the experimental set-up is given in �gure 14. Theexperiments are onduted in a wind tunnel with a losed test setion (ross setion area ATS = 2.82 m2,length lTS = 10 m). The free-stream veloity is u∞ = 7m/s. The shape of the generi ar model is based on15 of 19Amerian Institute of Aeronautis and Astronautis Paper 2008-3975
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Figure 14. Left: Sketh of the Ahmed Body. Right: Rear part of the Ahmed body.Dieses Bild muss noh bearbeitetwerden...the original geometry of the Ahmed body1 (length l = 1044 mm, height h = 288 mm, and width w = 389mm) with a slant angle ϕs = 25◦ (see �gure 14 left).For blowing, avities are integrated spanwise between the intersetion of the roof of the body and the slantat the rear end (see �gure 14 right). Periodi exitation is applied. The atuation frequeny is set onstantto a value of 60 Hz. The blowing foring intensity is adjustable through a valve. Three more atuators areinluded in the model at the rear orners. However, only results for atuation with the atuator betweenthe roof and the slant are shown here. A total of 27 pressure sensors on the slant and 9 on the base of therear end are installed. Sine it is assumed that the �ow on�guration is symmetri, the sensors are plaedon one side of the body only. Eah pressure reading is desribed by the non-dimensional oe�ient
cp(x, y, z, t) =

∆p

ρ · u2
∞

/2
, (18)in whih ∆p is the instantaneous pressure di�erene between a stern-mounted pressure gauge and a referenepressure, and ρ denotes the density. A six omponent fore balane mounted below the wind tunnel testsetion is used to measure the e�et of the applied �ow ontrol method on the over all drag of the Ahmedbody. Data aquisition and implementation of the ontroller is realized by a rapid prototyping hardware(dSpae® DS1103-PPC ontroller) with a sampling frequeny of 350 Hz.
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our. These vorties impose a low pressure at the rear end of the Ahmed body. The resulting pressuredi�erene between the front and the rear end is the main ontributor to the overall drag. A good orrelationbetween the sensor readings at sensor position 4 (loated at the middle of the slant in the symmetry axis)and the overall drag exists. The aim of this investigation is to in�uene these vorties through periodiblowing in suh a way that the pressure at the rear end inreases and the overall drag dereases, as wasshown in Brunn et al.10.For prediting the future behavior inside a MPC algorithm, a very simple �rst order model is identi�edfrom experiments, see as well32. In the Laplae domain it reads
G(s) =

K

T1s + 1
, (19)and in disrete-time state-spae form aording to setion II

A = e−
h

T1 , B = KT1e
−

h
T1 (e − 1) , C = 1 . (20)The following parameters are hosen: Hp = Hc = 1750, i.e. 5 seonds, Qp = I and Rp = diag(10−7). Hene,the osts of the atuator signal are almost negleted.Figure 15 presents a referene traking experiment applying a linear MPC sheme. As an be seen,the MPC holds the normalized pressure oe�ient at a onstant level of −0.5. At approximately 13s, thevalue of the referene is hanged. The MPC drives the system within 0.5s to the new referene level. Therelatively slow dynami is a result of a rather slow dynamial behavior of the valve used to regulate theblowing intensity. Otherwise, the MPC shows a good performane.IV. ConlusionsThe more is known about a system, the better the ontrol an be. In many lassial ontrollers, models ofa proess are only used during synthesis of the ontroller. In ontrast, MPC exploits a proess model insidethe algorithm. As an optimization problem over a future horizon is onsidered, there are no restritionsonerning the variables whih are used to desribe the suess of ontrol as long as they an be alulatedby that model. Very di�erent riteria an be formulated, ombining di�erent aspets at the same time.Moreover, when enough omputing power is available, equality and inequality onstraints an be inludedin the optimization in a straightforward manner. With no other ontrol tehnique this pratially veryimportant issue an be dealt with so easily.This ontribution reviewed �rst appliations of MPC for �ow ontrol problems. For the �ow past a irularylinder a onstrained nonlinear MPC outperformed other nonlinear ontrol approahes. The suppressionof thermoaousti instabilities in a burner ould be further improved by a linear MPC in omparison to asimple proportional ontroller proposed earlier. First studies of the drag redution of an Ahmed body andthe suppression of Tollmien-Shlihting waves show promising results as well.AknowledgmentsThis work has been partly funded by the Deutshe Forshungsgemeinshaft (DFG) under grant KI 679/5and through the Collaborative Researh Centre (Sfb 557) �Control of omplex turbulent shear �ows� whihis hosted and supported as well by the Berlin Institute of Tehnology. Stimulating disussions with and helpfrom Marek Morzyński, Oliver Lehmann and Gilead Tadmor are aknowledged.Referenes
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