A Reduced Order Galerkin Model for the Reacting Bluff Body Flame Holder

Fu Li* and Gilead Tadmor†
Communication & Digital Signal Processing Center,
Northeastern University, 440 Dana Research Building, Boston, MA 02115, U.S.A.

Bernd R. Noack‡
Hermann Föttinger-Institut für Strömungsmechanik, Sfb 557,
Technische Universität Berlin, Straße des 17. Juni, 10623 Berlin, Germany

Andrzej Banaszuk§
United Technologies Research Center, MS 129-15,
411 Silver Lane, East Hartford, CT 06108, U.S.A.

and Prashant G. Mehta¶
Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

A low dimensional Galerkin model is developed for the near wake flow behind a flameholder. The model includes the two leading proper orthogonal decomposition (POD) modes, representing the first von-Kármán vortex shedding harmonic, characteristic of the non-reactive flow, and a shift mode, capturing energy balancing with a dynamic mean field correction. The model is used to demonstrate the attenuating effect of heat release on vortex shedding. In particular, vortex shedding suppression due to combustion can be explained by the emergence and the stabilizing effect of a hot shift mode, associated with expansion due to heat release.

I. Introduction

The dynamics of the premixed 2–D bluff body flameholder has been studied extensively as a geometrically simple benchmark for important applications, such as combustion instabilities in turbine and rocket engines. The non-reacting cold flow gives rise to von Kármán vortex shedding beyond a critical Reynolds number \((Re \approx 50) \), varying with the specific configuration. This instability is recognized as a symmetry breaking, resulting from growth of unstable modes through Hopf bifurcation\(^1\)–\(^3\). Both experiments and numerical simulations show that combustion leads to vortex shedding suppression and an increasingly symmetrized flow\(^4\),\(^5\). Yet the mechanism of transition from an asymmetric vortex shedding to a more stable and symmetric flow is not fully understood. Baroclinic vorticity generation has been suggested\(^5\)–\(^11\) as a dominant mechanism for the suppression of von Kármán instability in the reacting flameholder. Another stabilizing factor that has been considered\(^5\) is the increased kinematic viscosity of the reacted fluid. Yet a recent study\(^1^2\) demonstrated

*Post-Doctoral Fellow
†Professor, CDSP Director
‡Ass. Professor
§UTRC Fellow and (acting) Control and Embedded Systems Group Leader
¶Assistant Professor

Copyright © 2006 by F. Li, G. Tadmor, B.R. Noack, A. Banaszuk & P. Mehta. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission.
that a key stabilizing effect is rather the dilatation due to combustion heat release. That paper showed that
the near wake dynamics of the reactive flameholder is dominated by the vorticity generated at the
bluff body walls, while baroclinic vorticity has a significant impact on the far field vortex dynamics. In the
present article we use a low dimensional model to further substantiate the role of dilatation in near wake
stabilization of the reacting bluff body dynamics: We develop an extended proper orthogonal decomposition
(POD) model for the premixed combustion in a single rectangular bluff body flameholder in a channel. The
model captures the dynamics of dominant attractor structures in the cold and the reacting flow, as well as
transients connecting such attractors. It demonstrates the stabilizing effect of a mean field dilatation mode,
associated with combustion, in the near wake.

Since the pioneering work of13,14, POD based low dimensional modeling has been widely applied for
coherent structure analysis of turbulence and other unsteady flows. Extensive discussions and numerous
references are available in15,16. Studies of low order models for vortex shedding behind the nonreactive
bluff body have proceeded along two parallel fronts: In one direction, low dimensional models have been
used to explore the dynamics of vortex shedding. On the other front, model-based control aims to design
robust feedback control for the wake flow, using low order models. We can mention only few examples of the
voluminous and rapidly growing literature. POD modeling of the wake flow past a circular cylinder and a
grooved channel was was introduced and investigated in17. That seminal study showed that the asymmetric
vortex shedding is well represented by the first two POD modes, and that dynamics of deviations from the
attractor can be described by a six dimensional Galerkin system. An extension to the three dimensional wake
is presented in18. A POD model based vortex shedding control, using a neutral system, was developed in19.

Optimal and physics based control for the oscillatory rotating cylinder and the dependence of performance
on model selection, were investigated, e.g., in20–22. Extensive numerical and experimental studies of POD
based control of the vertically oscillating cylinder have been carried at the US Air Force Academy23,24. A
POD model and model based control for a confined square cylinder were developed in25.

A main appeal of the POD approach is its efficiency in providing high (kinematic) resolution with
relatively low order models. The 95\% resolution of the perturbation energy in a 2–D laminar cylinder
wake flow, with a single mode pair, is a case in point17,26. A major drawback of this method, however, is its
fragility: The associated Galerkin dynamic system tends to be highly sensitive to changes in flow conditions,
such as in the Reynolds number (Re), and it is often incapable to provide ample transient representation. To
alleviate these shortcomings, the authors introduced the concept of a shift mode26. The shift mode captures
the stabilizing effect of the mean field correction, noted by several earlier studies27,28. Its inclusion in an
augmented model reduces model sensitivity and is an enabling for the low dimensional representation of the
transient manifold, connecting the unstable steady solution to the attractor. A series of subsequent studies
investigated model calibration issues, compensating for energy flow and pressure term distortions, intrinsic
to very low order Galerkin models29,30, tuned models that improve resolution over long transients31, the
incorporation of control32, and the use of such models in control design29,31,33.

In the present article we demonstrate that an augmented POD model comprising the two POD modes
of the leading harmonic and a shift mode, provides a good dynamic representation of both the cold and the
reactive 2–D flameholder wake flows. We further show that, the mean-field correction, shift mode, changes
in the reactive flow, and is then dominated by the contribution of a mode capturing the dilatation effect
in the simulation model. This change results in an elevated stabilization effect in the associated Galerkin
system, explaining the role of dilatation in suppressing Von Kármán vortex shedding.

The paper is organized as follows. Section 2 outlines the main features of the benchmark studied in this
paper and briefly review the POD approach. The three dimensional Galerkin model for the non-reacting
cold flow is presented in Section III. the bulk of the paper is occupied by Section IV, where a counterpart
model is developed for the reacting flow, and the stabilizing effect of combustion, captured by the mean field
correction, are demonstrated. Our numerical results and conclusions are discussed and summarize in Section
5.

II. Preliminaries

A. The flameholder and its simulation model

The configuration of a 2–D rectangular bluff body flameholder, placed in a channel, is shown in Fig. 1. The
channel height is denoted H and the flameholder height is $h = 0.25H$. The origin $(0,0)$ is placed at the
midpoint of the bluff body leading edge, and the bluff body midline is coincident with the channel midline.
The horizontal incoming flow U_∞ is specified at the upstream entrance, which provides a constant influx of reactants of density ρ_u. The Mach number is assumed to be low, so both the reactants of density ρ_u and the products of density ρ_b can be treated as ideal gases. Combustion is assumed to be infinitely fast compared to the flow and a thin flame sheet model is used for the reacting flow. The two flame sheets are generated from the two front corners of the flameholder $(0, \frac{H}{2}), (0, -\frac{H}{2})$. We are investigate here the onset of the von Kármán instability, in the early wake. A short computational domain is selected accordingly

$$\Omega \doteq \{x = (x, y): x_{\min} = -0.5H \leq x \leq x_{\max} = 2.0H, -0.5H \leq y \leq 0.5H \} \subset \mathbb{R}^2.$$ (1)

The no-slip and impermeability boundary condition are imposed on the bluff body walls. In the simulation model used in this paper, combustion is modeled by a Lagrangian flame sheet model (the G-equation34) and the unsteady nonreacting and reacting flows are simulated by a Lagrangian vortex element method, where the flame sheet and the flow field are discretized over a number of elements. Details of the numerical procedure and a detailed discussion of combustion effects on flow dynamics, analyzed in terms of numerical simulations with that model, can be found in12.

Combustion results in heat release and subsequently, mass volume expansion expressed as an irrotational dilatation. Following the observations that baroclinic vorticity becomes a significant factor only further downstream, the model used here includes only the dilatation effect on the reacting flow. As will be seen, vorticity generated by combustion through that process tends to suppress vortex shedding, transforming flow dynamics from the asymmetric Von Kármán vortex shedding to a more symmetric form.

B. POD Galerkin Models for the incompressible Flow

Empirical Galerkin models are based on experimental flow data or on a direct numerical simulation of the flow. The flow domain is denoted Ω (e.g., the computational domain in (1)) and velocity fields are embedded in the Hilbert space of square-integrable vector fields $L^2(\Omega)$, with the inner product

$$\langle u, v \rangle_{\Omega} := \int_{\Omega} dV \ u \cdot v, \ u, v \in L^2(\Omega).$$ (2)

The Galerkin approximation of the flow is in the form

$$u^{[N]} = u_0(x) + \sum_{i=1}^{N} a_i(t) \ u_i(x),$$ (3)

where u_0 is a chosen base flow (e.g., the time-averaged field) and where $u_i, i = 1, \ldots, N,$ form an orthonormal set of Karhunen-Loève modes of the perturbations from the base flow, with respect to the inner product (2). Time dependence is restricted to the Fourier coefficients a_i. In the snapshot method15,16, the Karhunen-Loève modes u_i are constructed as linear combinations of the fluctuation snapshots $u_{t^m} - u_0$, $m = 1, \ldots, M$,
\(M \geq N \). The chosen combinations coefficients are the top eigenvectors of the the correlation matrix of the perturbation snapshots. This selection is optimal in the sense that it minimizes the averaged energy residual of the Galerkin approximation (3), given the allowed number of modes.

A standard way to obtain a dynamical (Galerkin) system for the evolution of the Fourier coefficients is the Galerkin projection of the Galerkin ansatz (3) onto the Navier-Stokes equation, which yields a system of ordinary differential equations15,16.

\[
\frac{d}{dt} a_i = \frac{1}{Re} \sum_{j=0}^{N} l_{ij} a_j + \sum_{j,k=0}^{N} q_{ijk} a_j a_k \quad \text{for} \ i = 1, \ldots, N,
\]

Here the linear and quadratic terms represent the viscous and convective Navier-Stokes terms, respectively, with constant coefficients \(l_{ij} := (u_i, \Delta u_j)_{\Omega} \), \(q_{ijk} := (u_i, \nabla \cdot (u_j, u_k))_{\Omega} \). The pressure term may change the coefficients \(q_{ijk} \), but not the form (4)30. It is well known, however, that the Galerkin projection may lead to dynamic distortions, especially in very low order models30,35 due to truncation of the energy cascade and effects of a compact computational domain. We shall therefore use parameter estimation techniques35–37 to determine the Galerkin system coefficients.

III. Low dimensional model for vortex shedding in the nonreacting flow

Here we review a variant of the enhanced POD Galerkin model26 of the nonreacting flow past the bluff body. The flow satisfies the continuity and the incompressible, unsteady Navier-Stokes equations

\[
\nabla \cdot \mathbf{u} = 0
\]

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \frac{1}{Re} \Delta \mathbf{u},
\]

The flow velocity in (5)-(6) is nondimensionalized by the incoming flow velocity \(U_\infty \), length, by the width of bluff body \(h \), time, by \(h U_\infty \), and the pressure field \(p \), by \(\rho U_\infty^2 \), where \(\rho \) is the density field. The Reynolds number is defined here, based on these normalizations \(Re = \frac{U_\infty h}{\nu} \), where \(\nu \) is the kinematic viscosity of the flow. Unless otherwise specified, the flow is analyzed at \(Re = 1000 \).

The natural attractor is dominated by von Kármán vortex shedding at period \(T \approx 1.575 \). To analyze the attractor in terms of its POD modes, flow snapshots were sampled at \(\Delta t = 0.05 \). Fig. 2 present the top ten eigenvalues of the correlation matrix of snapshot perturbations from the attractor mean. The eigenvalues represent the energy in the corresponding POD modes. As is typical to the von Kármán instability17,26, the flow is dominated by the first mode pair, \(\mathbf{u}_i, i = 1, 2 \), which is approximately anti-symmetric with respect to the horizontal equator, resolves the first vortex shedding harmonic and accounts for about 90% of the total perturbation energy. These two modes are thus sufficient to capture the dominant characteristics of the shedding instability. The next, symmetric mode pair, \(\mathbf{u}_i, i = 3, 4 \), represent the second harmonic and account for some 6% of the perturbation energy.

It has been observed in other bluff body studies17,26 that while POD modes lead to highly efficient Galerkin approximations of the attractor, the associated Galerkin systems (4) are fragile, and their dynamic
prediction power is, at best, limited to a small neighborhood of the attractor. The reason is that the approximation is derived, in the first place, from kinematic, rather than dynamic considerations. As a non-equilibrium model for transient flow, the authors have elaborated the need for a shift-mode in26,33. This shift-mode u_s is an orthonormalized mean-field correction. Physically, the shift mode captures the dynamics of energy balancing between an instability, such as the von-Kármán vortex shedding, and the mean flow. It therefore has a stabilizing effect and its incorporation in the model is an enabler for transient representation that includes the saturation of the instability level, on the attractor. These observations are in agreement with earlier studies, indicating the significance of mean-field corrections27,28. In the closely related 2–D cylinder wake flow, the shift mode was estimated as the difference between the unstable steady Navier-Stokes solution u_s and the time-averaged flow u_0. Here we shall estimate the shift mode from POD analysis of transient data: Under the mean-field correction ansatz, the non-oscillatory component of transients leading to the attractor are dominated by the shift mode. We shall exploit the symmetry of the flameholder configuration, which implies both the anti-symmetric structure of the first harmonic, and the symmetry of the mean-field correction. Thus the shift mode will be extracted as the dominant symmetric and non-oscillatory flow transient component.

In all, we shall use a Galerkin approximation of the form

$$u(x, t) = u_0(x) + \sum_{i=1}^{2} a_i(t) u_i(x) + a_s(t) u_s(x)$$ \tag{7}$$

where u_0 is the time-averaged mean flow, u_i, $i = 1, 2$ are the first two POD spatial modes and u_s is the shift mode. Fig. 3 shows isocontour line of the first two POD modes u_i, $i = 1, 2$, and the shift mode u_s.

![ISOCONTOUR LINE](image)

Figure 3. The POD modes u_i, $i = 1, 2$ and the shift mode u_s, depicted by stream function isocontours.

The structure of the phase-averaged dynamic Galerkin system of ODEs for the Fourier coefficients is derived from the Galerkin projection of the NSEs (6)

$$\frac{d}{dt}\begin{bmatrix} a_1 \\
a_2 \\
a_s \end{bmatrix} = \begin{bmatrix} 0 & -\omega - \gamma a_s & -\beta a_1 \\
\omega + \gamma a_s & 0 & -\beta a_2 \\
\alpha a_1 & \alpha a_2 & -\sigma_s \end{bmatrix} \begin{bmatrix} a_1 \\
a_2 \\
a_s \end{bmatrix} + \begin{bmatrix} 0 \\
g \end{bmatrix}$$ \tag{8}$$

where $\sigma, \omega, \gamma, \alpha, \beta$ are all positive parameters. An equivalent system is based on the cylindrical coordinates
\(a_1 = r \cos(\phi) \) and \(a_2 = r \sin(\phi) \). In these terms

\[
\begin{align*}
\dot{r} &= -\beta a_s r \\
\dot{a}_s &= -\sigma a_s + \alpha r^2 + g \\
\dot{\phi} &= \omega + \gamma a_s
\end{align*}
\]

(9)

As in the case of the cylinder wake\(^{26}\), this structure readily reveals key system properties: The existence of a periodic attractor, the instability of the steady solution, the stabilizing effect of the shift mode, and the dependence of the shedding period on changes in the mean flow. As noted earlier, coefficient values obtained by the Galerkin projection tend to reflect energy flow rate distortions that are intrinsic to low order Galerkin models. As in the cylinder wake model\(^{35}\), we therefore obtain corrected coefficient values in (8) by least mean squares (LMS) matching with empirical data. Fig. 4 demonstrates a good agreement of the Fourier time series, as predicted by the estimated Galerkin system (8) and from numerical simulation of the NSE (6). In particular, the Galerkin system accurately predicts the radius of the limit cycle \(r \approx 0.46 \) and the attractor frequency, and a good estimate of the growth rate associated with the instability. This comparison demonstrates the stabilizing role of the shift modes, as well as the fact that the second (and higher) harmonics have no decisive effect on the dynamics and can thus be safely neglected in a low order model.

IV. The Reacting flow model and the stabilizing effect of combustion

A. A simplified physical representation

Combustion and the inclusion of the thermodynamical process and energy evolution results with more complicated flow dynamics, including compressibility. Thus, the divergence free property (5) is no longer
satisfied. The compressible continuity and momentum equations then take the form

\[
\frac{1}{\rho_k} \frac{D \rho_k}{Dt} + \nabla \cdot \mathbf{u} = 0
\]

(10)

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho_k} \nabla p + \frac{1}{Re} \left[\Delta \mathbf{u} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{u}) \right]
\]

(11)

where \(\frac{D}{Dt} \) is the material derivative, the density is nondimensionalized with respect to the unburned mixture density \(\rho_u \), so that \(\rho_k = \frac{\rho}{\rho_u} \), and the pressure term \(p \) is nondimensionalized with respect to \(\rho_u U_\infty \).

Most POD-based low dimensional models to date were derived for the simpler, incompressible flows. In a recent parting from this tradition\(^{38}\), thermodynamical and velocity variables were combined in POD-based low dimensional modeling of a compressible flow. Leveraging the properties of the near wake flow under consideration, we follow\(^{12}\) and maintain a focus on the velocity field variable, rather than on the thermodynamics variables, both in the simulation and in the reduced order Galerkin models. Directing the reader to\(^{12}\) for details, we note here that the model is based on the approximation that, in the near wake, the flow may be roughly divided into a pre-reacted fluid region, where \(\rho_k \equiv 1 \), and a post combustion, reacted fluid region, where \(\rho_k \equiv \frac{\rho_b}{\rho_k} \). The two regions are therefore each characterized by a fixed density, incompressible flow, separated by the flame sheets. Combustion intensity is characterized by the difference between the density of the reactant and that of the product with a nondimensional parameter \(\mu = \frac{\rho_u}{\rho_b} - 1 \). All other variables remain as defined earlier.

B. POD approximation

POD analysis of the attractor of the reacting reacting, hot flow, is performed in complete analogy to the non-reacting case; that is, based on velocity field snapshots and using the respective attractor mean as the base flow. We maintain our focus on the first harmonic Galerkin approximation

\[
\mathbf{u}(x, t) = \mathbf{u}_{h0}(\mu, x) + \sum_{i=1}^{2} a_i(t) \mathbf{u}_{h1}(\mu, x)
\]

(12)

where \(\mathbf{u}_{h0}(\mu, x) \) is the mean of the reacting flow and \(\mathbf{u}_{h1}(\mu, x), i = 1, 2 \) are the first two POD modes of hot flow perturbations from \(\mathbf{u}_{h0} \). As an example, Fig. 5 depicts the associated time trajectories of the Fourier coefficient \(a_i(t), i = 1, 2 \), for \(\mu = 2.5 \). The amplitude of these Fourier coefficients is significantly lower than in the nonreacting flow (depicted in Fig. 4), demonstrating the suppression of vortex shedding by combustion.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{Hot attractor trajectories of the 1st harmonic POD Fourier coefficients \(a_1(t), a_2(t) \), at \(\mu = 2.5 \).}
\end{figure}

This POD approximation demonstrates the vortex shedding suppression phenomenon, but does not elucidate its underlying dynamic mechanism. The ensuing analysis will lead to the development of a unifying dynamic modeling framework, akin to (8). It will be valid from the low combustion level of \(\mu = 0.25 \), to \(\mu = 2.75 \), where shedding is strongly attenuated. The dynamic model will be used to reveal the direct stabilizing effects of combustion on vortex shedding dynamics. The nonreacting mean of the cold flow attractor, \(\mathbf{u}_0 \), will be a shared base flow, in the underlying Galerkin approximations, which as in the cold flow, will include the first vortex shedding harmonic and a mean field correction.
the value of that the shift mode captures energy exchange between the mean field and instability, it is worth noting that is a measure of the mean field change of the reacting hot flow from the nonreacting cold flow. Recalling paper, the mean field correction has a stabilizing effect in models of the form of (8). Once (8) is extended, to cover the reactive flow, higher values of \(f(\mu) \) will have an increasingly stabilizing effect on the attractor, providing a dynamic model for this phenomenon.

Fig. 6 depicts the dominant eigenvalues of the correlation matrix of perturbations of the flow field, \(\mathbf{u}(\mu, x, t) - \mathbf{u}_0(x) \), for four values of the combustion parameter \(\mu \), ranging from the nonreacting \(\mu = 0 \) to \(\mu = 2.5 \). In considering these values it should be noted that the use of \(\mathbf{u}_0 \) as a joint base flow leads to the appearance of the steady mean field correction, the normalized \(\mathbf{u}_0 - \mathbf{u}_{h0} \) as a POD mode associated with the steady state effect of combustion. This static mean field correction becomes dominant for larger values of \(\mu \) (e.g., \(\mu = 1 \), in Fig. 6). The results for \(\mu = 0 \) have already been provided in Fig 2, showing the dominance of two leading eigenvalues, associated with the first harmonic of the asymmetric vortex shedding. The relative magnitude of the corresponding eigenvalues pair is reduced in the reacting flow. At \(\mu = 1.0 \), the steady mean field correction becomes the leading mode, accounting for about 60% of the perturbation energy and the two antisymmetric modes have receded into a secondary place; at \(\mu = 2.5 \), the steady mean field correction mode accounts for about 98% of the total perturbation from the cold mean flow.

A Galerkin approximation formalism, parameterized by the combustion parameter \(\mu \), takes the form

\[
\mathbf{u}(\mu, x, t) = \mathbf{u}_0(x) + \sum_{i=1}^{2} a_i(t) \mathbf{u}_{h0}(\mu, x) + a_{hs}(t) f(\mu) \mathbf{u}_{hs}(\mu, x)
\]

(13)

Here the hot shift modes, \(\mathbf{u}_{hs}(\mu, x) \), represent the effects of combustion in both static and dynamic mean-field corrections. They are obtained from the POD analysis of the hot attractors, as described above. Equivalently, for each combustion level \(\mu \), the hot shift mode is the normalized difference between the mean of the reacting hot flow \(\mathbf{u}_{hs}(\mu, x) \), and the mean of nonreacting cold flow, \(\mathbf{u}_0(x) \)

\[
f(\mu) = ||\mathbf{u}_{hs}(\mu, x) - \mathbf{u}_0(x)|| \quad \Leftrightarrow \quad \mathbf{u}_{hs}(\mu, x) = \frac{\mathbf{u}_{hs}(\mu, x) - \mathbf{u}_0(x)}{f(\mu)}.
\]

(14)

Here \(f(\mu) \) is the average mean field correction norm over the \(\mu \)-attractor. Under the normalization of \(a_{hs} \) in (13), the average attractor value of \(a_{hs} \) is one, for all \(\mu \).

It is implied by the system geometry that the velocity field \(\mathbf{u}_i(x) \), \(i = 1, 2 \), are antisymmetric and the mean field correction \(\mathbf{u}_{hs}(\mu, x) \) is symmetric. Thus, these three modes form an orthonormal system. It is also noted that the change in the symmetric base flow from (12) to (13) will have no bearings on the antisymmetric \(\mathbf{u}_{hs}(\mu, x) \), which are therefore identical in the two expressions. In Sections C and D we shall show that a reasonable model can be obtained with \(\mu \)-independent modes, enabling the sought unified model and unified analysis of the effect of combustion on the von Kármán instability.

In closing this section we examine the normalizing function \(f(\mu) \), as plotted in Fig. 7. The value \(f(\mu) \) is a measure of the mean field change of the reacting hot flow from the nonreacting cold flow. Recalling that the shift mode captures energy exchange between the mean field and instability, it is worth noting that the value of \(f(\mu) \) at higher values of \(\mu \) exceeds the cold attractor’s amplitude. This indicates the energetic contribution of combustion, in accelerating the near wake fluid. More significantly for the objective of this paper, the mean field correction has a stabilizing effect in models of the form of (8). Once (8) is extended, to cover the reactive flow, higher values of \(f(\mu) \) will have an increasingly stabilizing effect on the attractor, providing a dynamic model for this phenomenon.
C. The hot shift mode

The impact of the combustion level μ on the orientation of the hot shift mode $u_{hs}(\mu, x)$ is naturally assessed in terms of the function space angle between these modes, for various values of μ. Equivalently, it is evaluated in terms of the respective $L_2(\Omega)$ inner products $(u_{hs}(\mu_1, x), u_{hs}(\mu_2, x))_{\Omega}$. Over the range of $\mu \in [0.25, 2.75]$, these inner products ranged within the interval $[0.986, 1]$, revealing a very small effect of μ on the hot shift mode. As an illustration, Fig. 8, depicts trajectories of the hot shift mode Fourier coefficient for the attractor at $\mu = 2.75$, when shift modes for various values of μ are used to compute the Fourier coefficient $a_{hs}(t) = (u(x, t), u_{hs}(\mu, x))_\Omega / f(2.75)$.

To understand the structure of the mean field correction and its near μ-independence, we consider the contributions of two obvious candidates: The dynamic, cold shift mode u_s, and the velocity field associated with the volumetric expansion due to heat release. We denote the latter by $u_d(\mu, x)$ and note that it is characterized in terms of the mass conservation equation $\frac{1}{\rho} \frac{D\rho}{Dt} + \nabla \cdot u_d(\mu, x) = 0$. It has been established that under the shallow flame angle assumption, valid here, the expansion velocity can be approximated by a linear solution

$$u_e(x) = u_d(\mu, x) / s(\mu), \quad s(\mu) = ||u_d(\mu, x)||.$$

This velocity field is normalized, to obtain an expansion mode:

The linear dependence of $u_d(\mu, x)$ on μ means that the expansion mode is independent of μ.

Exploring the approximation of the hot shift modes $u_{hs}(\mu, x)$ in terms of the cold shift mode $u_s(x)$ and

Figure 8. Comparison of $a_{hs}(t)$ and $||a_{hs}(t)u_{hs}(x)||$ using three different hot shift mode $u_{hs}(\mu, x)$ for a reacting hot flow of $\mu = 2.75$. (a). $a_{hs}(t)$; (b). $||a_{hs}(t)u_{hs}(x)||$. dotted line when using $u_{hs}(1.0, x)$; dashed line when using $u_{hs}(2.0, x)$; solid line when using $u_{hs}(2.5, x)$.
the expansion $u_c(x)$, we solve the least mean squares (LMS) approximation

$$\min_{\eta_e, \eta_s} \|u_{hs}(\mu, x) - \eta_e u_e(x) - \eta_s u_s(x)\|.$$ \hfill (16)

Table 1 shows the optimal values of η_e, η_s and the corresponding norm residual, $err = \|u_{hs}(\mu, x) - \eta_e u_e(x) - \eta_s u_s(x)\|$, for $\mu \in [0.25, 2.75]$. The table reveals three basic facts: (i) The approximation in (16) leads to less than a 2% norm error (less than 13% error in energy content). (ii) The hot shift mode $u_{hs}(\mu, x)$ is dominated by the contribution of the μ-independent expansion mode $u_e(x)$, explaining its near independence of μ. (iii) Nonetheless, the hot shift mode contains a meaningful contribution – up to 33% of its perturbation energy – from the cold shift mode, representing nonreacting fluid dynamics.

<table>
<thead>
<tr>
<th>μ</th>
<th>a</th>
<th>b</th>
<th>err</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.985</td>
<td>0.113</td>
<td>0.0159</td>
</tr>
<tr>
<td>0.5</td>
<td>0.985</td>
<td>0.113</td>
<td>0.0173</td>
</tr>
<tr>
<td>1.0</td>
<td>0.988</td>
<td>0.080</td>
<td>0.0171</td>
</tr>
<tr>
<td>1.5</td>
<td>0.979</td>
<td>0.148</td>
<td>0.0203</td>
</tr>
<tr>
<td>2.0</td>
<td>0.980</td>
<td>0.146</td>
<td>0.0172</td>
</tr>
<tr>
<td>2.5</td>
<td>0.975</td>
<td>0.176</td>
<td>0.0160</td>
</tr>
<tr>
<td>2.75</td>
<td>0.977</td>
<td>0.160</td>
<td>0.0166</td>
</tr>
</tbody>
</table>

Table 1. Result of a, b and corresponding error for different μ of expression (16). $err = \|u_{hs}(\mu, x) - au_e(x) - bu_s(x)\|$.

D. The hot first harmonic modes

Here we explore the sensitivity of the POD modes $u_{hi}(\mu, x)$, $i = 1, 2$, to changes in the combustion intensity parameter μ, over the studied range. To begin with, we consider the correlation matrix of the entire family $\{u_{hi}(\mu_k, x)\}_{i=1,2,k=1,...,7}$ where the seven values μ_k are those used in Table 1. Fig. 9 depicts the first eight eigenvalues for this matrix, normalized by the eigenvalues’ sum. It reveals that two leading eigenvalues represent about 90% of the total variation. This indicates that the collection of all first harmonic POD modes is well represented by a single mode pair.

Figure 9. Eigenvalues or correlation matrix of POD modes u_1, u_2 of reacting flow for different μ.

American Institute of Aeronautics and Astronautics Paper AIAA-2006-3487
As a matter of convenience for the comparison of the subsequent dynamic models with the cold flow model, we prefer to use the cold POD modes. To justify this selection, we also analyzed the 4 × 4 correlation matrices of the subsets \{\mathbf{u}_i(x), \mathbf{u}_h(\mu, x)\}_{i=1,2}$, separately, for each μ. The resulting eigenvalues of these matrices are listed in Table 2. As seen, each of these matrices is strongly dominate by a single eigenvalues pair, with relatively small variations, even as μ reaches the value of 2.75. In particular, in each case, projection on the subspace spanned by the dominant POD modes pair of the nonreacting flow, $\mathbf{u}_i(x)$, $i = 1,2$, should provide an ample representation of the instability.

![Table 2. The first four eigenvalues for correlation matrix of hot POD modes with different μ.](image)

E. The reduced order Galerkin system for the reacting flow

Following the conclusions, above, the Galerkin approximation (13) is replaced by an approximation in terms μ-independent modes

$$\mathbf{u}(\mu, x, t) = \mathbf{u}_0(x) + \sum_{i=1}^{2} a_i(t) \mathbf{u}_i(x) + a_{hs}(t) f(\mu) \mathbf{u}_{hs}(x).$$

(17)

The Galerkin projection would, ideally, produce a system of ordinary equations for the time evolution of the Fourier coefficients $a_i(t)$ and $a_{hs}(t)$. The contribution of the combustion intensity parameter μ, in such a system, would be via the function $f(\mu)$. In compact form, the Galerkin system would be a variant of (8), where added diagonal terms account for the fact that the base flow is no more the attractor mean.

$$\frac{d}{dt} \begin{bmatrix} a_1 \\ a_2 \\ a_{hs} \end{bmatrix} = \begin{bmatrix} \beta(\mu) & \omega(\mu) - \gamma a_{hs} & -\beta(\mu) a_1 \\ \omega(\mu) + \gamma a_{hs} & \sigma_r(\mu) & -\beta(\mu) a_2 \\ \alpha(\mu) a_1 & \alpha(\mu) a_2 & -\sigma_{hs}(\mu) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_{hs} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ g[\mu] \end{bmatrix}$$

(18)

and its cylindrical coordinates counterpart

$$\dot{r} = (\sigma_r(\mu) - \beta(\mu) a_{hs}) r$$

$$\dot{a}_{hs} = -\sigma_{hs}(\mu) a_{hs} + \alpha(\mu) r^2 + g(\mu)$$

$$\dot{\phi} = \omega(\mu) + \gamma(\mu) a_{hs}$$

(19)

The convention that $a_{hs} \approx 1$ on each of the hot attractors – as opposed to $a_s \approx 0$, intrinsic in the cold flow model (18) – readily implies that here $\sigma_r(\mu) = \beta(\mu)$. The attractor size is determined by

$$r_{hs}(\mu) = \sqrt{(\sigma_{hs}(\mu) - g(\mu))/\alpha(\mu)}$$

(20)

Using the transient flow from cold flow to hot flow $\mu = 2.5$, we can obtain the three dimensional system for hot flow $\mu = 2.5$. Fig. 10 shows the comparison of Fourier coefficient between three mode model and Navier-Stokes simulation for this transient leading to reacting flow $\mu = 2.5$. Similarly, using the transient flow from cold flow to hot flow $\mu = 2.75$, we can obtain the system for reacting flow $\mu = 2.75$. Fig. 11 shows the comparison of Fourier coefficient between our three dimensional model and NS simulation for reacting flow $\mu = 2.75$. When μ is increased from $\mu = 0.0$ to $\mu = 2.75$, σ_r is increasing, σ_{hs} is decreasing and they have destabilizing effect on the system; However, g and α is increasing and thus stabilize the system.

References

Figure 10. Comparison of Fourier series from low dimensional model and NS simulation for reacting hot flow $\mu = 2.5$. The solid line is from model, the dotted line from NS simulation. (a). $a_1(t)$; (b). $a_2(t)$; (c). $r(t) = \sqrt{a_1^2 + a_2^2}$; (d). $a_{hs}(t)$.

Figure 11. Comparison of Fourier series from low dimensional model and NS simulation for reacting hot flow $\mu = 2.75$. The solid line is from model, the dotted line from NS simulation. (a). $a_1(t)$; (b). $a_2(t)$; (c). $r(t) = \sqrt{a_1^2 + a_2^2}$; (d). $a_{hs}(t)$.

American Institute of Aeronautics and Astronautics Paper AIAA-2006-3487

