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The onset of three-dimensionality in the von K&man vortex street behind a circular cylinder is 
investigated by carrying out the first global, nonparallel, three-dimensional stability analysis of 
the periodic flow. This flow is found to become unstable at a Reynolds number of 170 by a 
critical, three-dimensional Floquet mode with a spanwise wavelength of 1.8 diam. The spatial 
structure of this mode indicates that the onset of three-dimensionality is due to a near-wake 
instability and not caused by a stagnation-line or a boundary-layer instability. 

Experimental’~2 and numerical investigations3 indicate 
that the periodic two-dimensional flow around a circular 
cylinder becomes unstable by three-dimensional perturba- 
tions which are periodic in spanwise direction. The ob- 
served critical Reynolds numbers range from 150 (Ref. 4) 
to 200 (Ref. 5). Unfortunately, there exist no published 
experimental or theoretical quantitative investigations 
about the spanwise wavelength. The physical origin behind 
this instability has not been elucidated so far. The specu- 
lations about this origin include a stagnation-line, a 
boundary-layer, and a near-wake instability. Yet, the clar- 
ification of the physical processes involved in the transition 
is of great interest for approximate analytical theories and 
for local stability investigations. 

This clarification can be achieved by a global, three- 
dimensional stability analysis of the periodic flow. For this 
purpose, the two-dimensional Gale&in method6’7 has been 
generalized to three dimensions8*9 employing Zebib’s” 
transformation of the Navier-Stokes equation [see his Eqs. 
(4)-(7)]. Here, the incompressible velocity field u in terms 
of the cylindrical coordinates r; #J, z, and the time t is 
expressed by u=VXYez+VXVX@ez, where e, is the unit 
vector in spanwise direction and Y, Q, can be considered as 
“generalized streamfunctions.” In the present Galerkin 
method, these functions are approximated by the finite 
expansions Y==R(“)(r)sin~+80k__1~3=--4~~=oal!~(t) 

(’ XR{‘)(r)@j(4) Z,(Z) and Qr=+2~=124=--4~~=)=0ajj~(t) 

xRi2)(r) aj($) Z,(z). The radial modes R(O), RiK) (K 
= 1,2) and the azimuthal modes @j are constructed so that 
the resulting velocity field satisfies the boundary conditions 
at the cylinder and at infinity for all choices of the 189 
Fourier coefficients a!$. The spanwise modes Z- 1 
c (l/6) cos(kg>, Z,= l/G, Z1 = (l/J;) sin(kg) 
induce a periodicity in spanwise direction with the wave- 
length L and the wave number kz=2n-/L. Detailed de- 

scriptions of the Gale&in method are provided in Refs. 
6-9. 

The Floquet stability analysis of the two-dimensional, 
periodic flow is based on the numerical integration of the 
linearized evolution equations. The computation of the 
Floquet multipliers ,u~ and the corresponding Floquet 
modes follows the traditional guidelines.6 It should be 
noted that there always exists a Floquet multiplier + 1, 
which corresponds to a phase shift on the limit cycle. This 
multiplier is neglected in the sequel, since the phase shift is 
immaterial for the Poincare stability properties of the limit 
cycle. 

Figure 1 displays Floquet spectra for two Reynolds 
numbers and three wave numbers k,=2?r/L. All Floquet 
multipliers which are associated with two-dimensional Flo- 
quet modes lie within the unit circle, i.e., the periodic flow 
is asymptotically stable with respect to two-dimensional 
disturbances. This stability property is confirmed for all 
considered Reynolds numbers from the onset of the peri- 
odicity at Rez50 up to 500. Similarly, the three- 
dimensional Floquet multipliers are seen to be almost in 
the origin for sufficiently large wave numbers. In other 
words, three-dimensional disturbances with small spanwise 
structures are dissipated within one shedding period. For 
large spanwise wavelengths, however, there exist no similar 
dissipation processes and the periodic flow is seen to be 
neutrally stable-due to three-dimensional Floquet multi- 
plier near + 1. This neutral stability, which is evidenced for 
all regular and transitional Reynolds numbers, explains the 
experimental observation of laminar vortex formations 
with large spanwise structures, like oblique vortex shred- 
ding, chevron patterns, etc. ’ l-l3 

The instability occurs first at the critical wave number 
of kz,Crit= ( 1.75 &0.01)/R and the critical Reynolds num- 
ber of Re,,+*=== 170 f 1, when the positive three-dimensional 
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FIG. 1. Floquet multiplier configurations in the complex plane, for Re 
= 150 (left column), 200 (right column) and the two-dimensional sta- 
bility analysis (first row), &=0.1/R (second row), &=1.75/R (third 
row), &=4.0/R (fourth row). Each solid square represents one two- 
dimensional Floquet multiplier pm which is, by definition, independent of 
the spanwise wave number. Open squares denote &-dependent three- 
dimensional multipliers pm. W(p) and 3(p) denote the real and imagi- 
nary axis, respectively. 

Floquet multiplier leaves the unit circle (see Fig. 1) . This 
critical point has been determined by carrying out 36 Flo- 
quet analyses for Re= 150,160,...,200 and 
k,= 1.5,1.6,...,2.0 and interpolating the position of the crit- 
ical multiplier for 150 < Re < 200 and 1.5 < k, < 2. 

The corresponding Floquet mode is displayed in Fig. 2. 
This mode is normalized to yield similar spanwise velocity 
amplitudes as the asymptotic three-dimensional solution 
for the same wavelength and Reynolds number. The larg- 
est spanwise velocity components are concentrated in the 
near-wake region, where the streamlines have the largest 
curvature. The resulting velocity field of the Floquet mode 
superimposed on the periodic solution displays two 
counter-rotating vortices in downstream direction per 
spanwise wavelength. After half a period, these vortices 
occur at the other side of the cylinder with opposite orien- 
tation. In the boundary layer, no spanwise flows are ob- 
served within the accuracy of the employed Galerkin 
method. Hence, the Rloquet analysis indicates that the on- 
set of three-dimensionality in the periodic cylinder wake is 
caused by a three-dimensional near-wake instability. This 
three-dimensional instability may also be excited at sub- 
critical Reynolds numbers by a periodic acoustic field.r4 

The dependency of the critical Floquet multiplier merit 
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FIG. 2. Two-dimensional periodic solution (top) and three-dimensional 
Floquet mode (middle, bottom) for Re=200 and kE=27r/L=1.75/R at 
the same instant. The periodic flow is visualized with streamlines. The 
velocity flow of the Floquet mode is shown in planes with constant span- 
wise coordinate z=O (middle) and z= L/4 (bottom). The large solid 
circle represents the cylinder. The arrows illustrate the magnitude and 
direction of the tangential velocity component. The diameter of a circle in 
the lower picture is proportional to the absolute value of the velocity 
component in spanwise direction; its sign is positive (negative) for solid 
(open) circle. 

(with the largest modulus) on the Reynolds number and 
the wave number is illustrated in Fig. 3. Clearly, the peri- 
odic flow is seen to be neutrally stable for k,-tO. For large 
k,, 1 ,ucrit 1 is constant since this quantity is associated with 
a k,-independent two-dimensional Floquet mode. At k, 
z kz,crit = 1.75/R, the amplification rate 1 pcrit 1 displays a 
sharp peak, thus indicating that the characteristic spanwise 
wavelength is Lcti,z3.6R = 1.8D, where R and D repre- 
sents the cylinder radius and diameter, respectively. This 
length is very pronounced and can be seen in our experi- 

FIG. 3. Spectral radius IpCcrit 1 =max,=t,...,NI~FLm] of the three- 
dimensional Floquet spectrum in terms of the wave number /c, . The open 
(solid) symbols represent the values for Re= 150(200). 
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flow-visualization wire the cylinder wake,18*19 since this model can be considered 
as a continuous chain of dissipatively coupled near-wake 
oscillators.20 

w cylinder 

FIG. 4. Experimental streak surface for Re=2OO. The flow direction is 
from left to right. The flow-visualization wire is positioned parallel to the 
cylinder axis in the near wake. For further details of the experimental 
setup see Ref. 13. 

mental flow visualizations (see Fig. 4) obtained in a water 
towing tank with a hydrogen bubble technique. Based on 
these results, one would expect that it is very difficult to 
“excite” other spanwise wavelengths by external perturba- 
tions. These expectations are experimentally confirmed by 
Sheridan’s group” in Clayton, Australia. 

The obtained spanwise wavelength with maximal am- 
plification, Lcrit=== 1.8D, agrees well with the corresponding 
value of L=rR z 1.60 chosen by Karniadakis and 
Triantafyllou3 and by Tomboulides et al. l6 for their numer- 
ical simulation of the three-dimensional cylinder wake. Ex- 
perimentally, a wavelength of approximately L= 1.70 is 
obtained for a Reynolds number of 200 (see Fig. 4). In 
Fig. 4, each pair of tangles with hydrogen bubbles corre- 
sponds to one pair of oppositely oriented vortices in down- 
ward direction, i.e., one spanwise wavelength. (Some ex- 
perimentalists take the distance between two neighboring 
tangles as a spanwise wavelength, thereby obtaining half 
the theoretical value.) It should be noted that the spanwise 
wavelength with maximal amplification slightly decreases 
with increasing Reynolds number.15 Hence, the experimen- 
tal wavelength for Re=200 is somewhat lower than the 
theoretical one for Re= 170. Since Karniadakis, Trian- 
tafyllou, and Tomboulides’ numerical simulations are also 
carried out for Re>200, they obtain better results with a 
slightly lower wavelength than the onset value of the 
present stability analysis. Taking this into account, theo- 
retical and experimental results are in good agreement. 

It can be concluded that the two-dimensional periodic 
flow is asymptotically stable with respekt to two- 
dimensional disturbances and is only neutrally stable with 
respect to three-dimensional disturbances. The instability 
of the periodic flow at lie- 170 is due to a three- 
dimensional near-wake disturbance with a pronounced 
spanwise wavelength of L= 1.80. The origin of this three- 
dimensionality for very large and critical spanwise wave- 
lengths is of fundamental importance for modeling pur- 
poses. It verifies that the three-dimensional local stability 
analysis for near-wake profiles” may be expected to de- 
scribe three-dimensional wake structures-at least qualita- 
tively. It also explains the large predictive power of the 
Ginzburg-Landau model for three-dimensional effects in 
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