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Coarse-scale mixing in a recirculation zone is described with a simple vortex model.
Time-dependent forcing is employed to change the vortex motion and mixing properties. An optimal
mixing problem is defined in which the flux across the recirculation region shall be maximized
under the side-constraints of bounded vortex motion and bounded actuation. Concepts of control
theory and chaotic advection are used to achieve this goal. In particular, controllability is proven
with a transformation into flat coordinates. Thus, a feedforward law for the optimal trajectory and
a feedback law for its stabilization are derived. Observability of the vortex motion is indicated by
a dynamic observer. Mixing in the optimized flow is studied using Poincasps. The
low-frequency modulations to vortex motion are shown to substantially increase mixing in the
average. Generalizations of the mathematical framework for mixing optimization are suggested for
a larger class of models and flows. @04 American Institute of Physics.
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I. INTRODUCTION proven as a powerful methdd!! Typically, emphasis is
placed onunderstanding the mechanismmixing in lami-
Hydrodynamic mixing is an important aspect of many nar flows. For example, Melnikov theory and associated lobe
flow control applications. A major motivation of flow control dynamics is used to study transport and mixing across the
is to increase the performance of flow machines with smaltecirculation bubble of the Batchelor’s vortex pair in a pio-
associated actuation penalties. The performance may be rgeering study of Rom-Kedar, Leonard, and Wigdih®Re-
lated to drag reduction, to an increase of lift, to mixing en-cent results in this direction include extension of dynamical
hancement, or to noise reduction. For turbulent flow, the persystems ideas to aperiodic flof/s>—*°
formance benefits are strongly correlated with mixing In contrast, in the current study, a problem of mixing
enhancement or mixing reduction in free or wall-boundedcontrol and optimizatioris posed in the framework of low-
shear-layers? dimensional point-vortex models, dynamical systems theory,
The effect of hydrodynamic fluctuations and mixing on and control theory. As the dynamics of point vortices can be
the mean flow has been subject of intensive study for morelescribed using a finite-dimensior(elamiltonian system of
than 100 years since the Boussinesq anéB#87) and the  ordinary differential equationgsee, for instance, Ref. 16
Reynolds decompositiofl895 (see, for instance, Refs. 3 Methods of the control theory can be used to achieve various
and 4. Statistical fluid mechanics provides also effectivecontrol  objectives like  stabilization of  vortex
models of fluid-particle mixing based on the inertial range ofconfigurations,*® enhancement of mixin?* and im-
the Kolmogorov cascade, e.g., Richardson’s theory wittprovement of airfoil lift?? Early studies by Cortelezzi and
spectral eddy diffusivitiessee also Refs. 3 and.4 co-workers in this direction are based mostly on modeling
The characterization of large-scale mixing associatednd reduced-order numerical simulations using vortex ele-
with coherent turbulent structures and with laminar unsteadynents(see Refs. 23 and 24 and the references ther&he
flow has become subject of increasing research since the lastimerical approaches have also been coupled to control
two decades. In particular, dynamical systems theory hatheory utilizing mostly linear control theory concepts for the
purpose of stabilization. By now there is a large amount of
literature on this topi¢®2®
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model using point vortices. An optimal control problem is
posed with a mixing objective, namely flux through a distin-
guished curve. We identify the optimal vortex motion for that
objective. Then, optimal vortex motion is stabilized with an
observer and a feedback law. This approach is in spirit simi-
lar to that taken in Ref. 19. A feedback-control approach to
this question can be found in Refs. 26 and 27. In the appen-
dix, the control approach of the main body is extendedl to
vortices. In particular, sufficient conditions for controllability
for this system are provided.

This paper is organized as follows: In Sec. Il, the point-
vortex idealization of the recirculation zone is presented. In
Sec. Ill, the natural, forced, and controlled vortex dynamics
are described. In Sec. IV, the mixing associated with natural
vortex motion is characterized based on fluid particle motion
and Poincaranaps. In Sec. V, an optimum mixing problem

for control is posed and solved. Thus, the achievable changes

of flux and residence times are elucidated. In Sec. VI, the
flux is compared with other mixing measures proposed in the
literature. The main conclusions and an outlook is presented
in Sec. VIII.

Il. THE POINT-VORTEX MODEL

In this section, the vortex model for the recirculation
region is outlined generalizing an analytical study of un-
forced flow by Shif®

The flow is described in a Cartesian coordinate system
x,y of which the origin coincides with the corner. The walls
of the corner lie on thex andy axes and the considered
domain is the first quadran®, :={(x,y):x=0, y=0}. The
independent variables are the locatior (x,y) and the time
t. Thex andy components of the fluid velocity are de-
noted byu anduv, respectively.

The potential corner flow is expressed by the stream
function

Vo(x)=k x vy, .Y

or, equivalently, the velocity fieldu=d,WVo=k X, v
=—J,¥y=—Kk y. The constank specifies the magnitude of
the velocity at a given location. Figure (top) shows the
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CorreSpondmg streamlines. The corner flow can be conS|q:|G. 1. Streamlines for the saddle poitop), the four vortices(middle),

ered as one quadrant of a saddle point.

X,=(X,,Y,). The negative sign of the circulation indicates
that the induced fluid motion rotates in a clockwise direction.

The no-penetration condition at the walls is enforced by mirwhere||x— x,|| represents the Euclidean distance between the

and the resulting flow(bottom). The four vortices are indicated by solid
A vortex with circulation—T", whereI’>0, is placed at circles.

ror vortices in quadrants 2, 3, and 4x»t=(—x,,y,), at  locationx and thenth vortex. Figure 1(middle) illustrates

X3=(—X,,—Y,), and atx,=(x,,—Y,), respectively. The the quadrupolelike streamlines of the induced velocity field.
circulation of the mirror vortex in quadramt is given by  The stream function can be considered as a function of the

I',=(—1)"T. For reasons of simplicity, the position of vor- locationx and of the vortex positiow, , since the positions

tex in the domairnQ, is denoted by, =x, and the circulation of all mirror vortices are slaved to the real vortex at each
instant. At the singularitk=x,, Eq. (2) is not valid, since

The stream function induced by the four vortices at lo-the real vortex does not experience a self-induction. The mo-
tion of the real vortex is determined by the potential corner

by I'y=—T in the sequel.

cationx is given by

4T flow and the velocity field induced by the mirror vortices.
P, (x)= E “"In IIx= x|, ) The ;trear_n fu_nctlon associated with the mirror vortices at the
h=1 2 locationx is given by
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4 real we mean that the contral enters in the vortex motion
V()= 2—nln X=Xl (3)  equation(7) in the way it would enter into Navier—Stokes
n=2 £m equation. On the other hand, we are primarily interested in
This stream function describes the effective field for the vor<changing the mixing properties of the fla®), not the vortex
tex atx=x; and is immaterial for other fluid particles. dynamics(7). The control affectd5) both directly through
Actuation is provided by the free-stream perturbationthe inputa and indirectly, by changing the original velocity
a ¥,, wherea represents the time-dependent forcing ampli-field as the position of the vortex has changed.
tude and¥ , the free stream,

V,=V,=kxy. (4) 1. VORTEX MOTION
The stream functiod of the actuated recirculation zone In this section, the vortex motion described in Sec. Il is
contains the contribution of the potential corner flow, thecgonsidered, partially following the work of SKf.In Sec.
actuation, and vortices, II1 A, the equilibrium position of the vortex in a steady strain
V=V +aV,+V, (5) fielq is. identjfied and its stability is_discussed. In Sec. Il B,
i periodic orbits of the unforced motion are described. In Sec.
or, employing Eqs(1), (2), and(4), Il C, the effect of periodic forcing is analyzed. Finally, con-

‘r trollability of vortex motion is studied in Sec. IlI D.

V=(1+a)kxy+ >, —In|x—x,].

i=1 27 A. The fixed point

Figure 1(bottom illustrates the streamlines of this equation The vortex positionx,o=(X,0,Y,0)=(1,1) is readily

at the equilibrium vortex position under vanishing actuation,geen to be a fixed point of EG7). At this point, the induced

a=0. At the vortex positiox=x, , the velocity field due to \g|ocity of the mirror vortices is equal but opposite to the

the real vortex must be discarded, i.8,, of Eq. (2) IS potential corner flow. No further fixed points exist in the

replaced by¥ r, of Eq. (3). . domainx,,y,>0 as can easily be analytically verified. In
The evolution equation for the vortex position is given non-normalized coordinates, the fixed point is expressed by

by X,0=Y,0= VY/2K, i.e., the distance between the fixed point
x,=f(x,)+ag(x,) (6) and the origin increases with the strength of the vortex and

. o . decreases with the magnitude of the potential corner flow, as
and contains the velocity field due to the natural dynam'c%tuitively plausible

f_‘:(ay[qjojupmv]’_ ’?X[qjojupmv])lxqv and the _actuatlon The dynamics of the infinitesimal perturbatigharound

field g::(ﬂy\Ifa,—ax\I’a)|X:XU. At a=0, the evolution equa- X,o are described by

tion has the form of an autonomous system. Otherwise, time , S,

dependence due @ enters in a simple form which is well Xo="Yor Yo7

investigated in control theory. Hence, the fixed point is a center and small perturbations
In the following, all quantities are assumed to be nondi-have angular frequenay = 1. The fixed point is marginally

mensionalized with length scale= \I'/8wk and time scale stable, i.e., an infinitesimal perturbation is neither exponen-

T=1/2k. The original symbols are used for reasons of sim-tally amplified nor exponentially damped. The dimensional

plicity. Thus, employing Eqs(1), (3), (6) yields value of the frequency = 2k increases with potential flow
1 1y magnitude and is independent of the circulation. A similar
XU:§(1+3)XU_ —+ =, (7a  behavior of the fixed point and its small perturbations are
Yo Ty observed by the authors for a single vortex in a more realistic
. 1 1 x, backward-facing step configuratiénh.
yv:_§(1+a)yv+x__r_2| (7b)
v v B. Natural periodic motion
wherer, ==X, +Y,. Note that am=0, the stream function As shown in Sec. llIA, the only critical point
(or Hamiltonian for the velocity field(7) is given by (X,0.Y0) = (1,1) of the vortex dynamics is nonsingular. Tra-
X, Y, X, —— jectories close to the fixed point must be periodic orbits. In
W=—=+In y_) +In V(x;+y;)- (8)  fact, all trajectories in the first quadrant of the plaegclud-

ing the axig have to be periodic orbits, since the topological
The dynamics of the fluid is parametrized by the motiontype of the intersections of constant planes with the Hamil-

of the vortex. The motion of a fluid particle with pOSiti(Xla tonian(8) changes only at critical points. The velocity can

is given by be zero only ify,<1 andy, can be zero only ik,<1. These
o= (0,0, — ﬁx‘l’)|x=xp, (9) properti.es are reflected in numeriqal solutiops pf IEQ

shown in Fig. 2. The computed orbits are periodic trajecto-

whereWV represents the stream functi@®) with the consid-  ries around the fixed point with clockwise orientation.

ered actuation fields. The periodic behavior can also be made physically plau-
The point-vortex idealization of the velocity field mim- sible. If the vortex is displaced from the equilibrium position

ics the main properties of the real fluid mixing problem. By away from the origin, the mirror vortices are too far away to

Downloaded 18 Feb 2004 to 130.149.47.65. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



870 Phys. Fluids, Vol. 16, No. 4, April 2004 Noack et al.

3 1 ) ) Ll ) 3 1 ] ] ) T

yr 7 \A & J

2t - 2t -

1 - 1f -

0 1 1 1 1 L 0 L 1 1 L L

0 1 2 x 3 0 1 2 x 3

FIG. 2. Natural vortex motion of the point vortex in a strain field. The fixed FIG. 4. Trajectory of periodically forced vortex motion with= 0.2 sinf).
point at(1,1) is indicated by a solid circle. An infinitely long trajectory fills a nearly triangular region. The fixed point

of natural vortex motion is indicated by a solid circle.

balance the potential flow and the vortex moves downstream

W',th respect to the corner ﬂow. The cornerrl‘low a£d the¢act in considerations of forced vortex motion. In particular,
mirror vortex 2 supports a motion towards the wgk-0 consider time-periodic forcing with periog=2=/() and

where the vortex experiences the induced upstream velocity, .- qaq bys, i.e.,a(t)=a(t+ 7),|a|< 5. Then, most of the

lc_’f mirro_r vortex 4. r’?‘s thﬁ vhort]?x ;etums below the stream-piqic orbits persist in the forced case for small enosgh
ine \.PO.JPO(l’l) through the fixed point, an upstream mo- ;g persistence can be shown using Moser’s version of the
tion is induced by the mirror vortices 2 and 4. As the vortex, an theorent® and using the fact thatT/dR>0. In other

lmoyes In positivey dwecpon, n;llrror \lllorteg A:Imduces a Ve~ \ords, the vortex motion will be periodic starting from most
ocity component away from the wall and the Vortex Moves;yisia| conditions  if time-periodic forcing is small enough.

downstream above th, =W (1,1) streamline, since the in- e yortex that starts at the equilibrium point will not

duced upstream field cannot be overcome by the increasin(g;rift far from it at any time, assuming again small time-
potential flow component= —ky. Mirror vortex 3 weakens

the induced velocity of the vortices 2 and 4 but is too far
away to annihilate their effect.

periodic forcing, However, the motion of the vortex can be-
come chaotic starting from some initial conditions. These
initial conditions are close to resonant periodic orbits for

The periodT of the vortex motion is numerically 0b- i the period of unforced motion and the period of the
served to increase with the amplitude of oscillatisee Fig. forcing are rationally related

3). This amplitu_de is de_fined as the maximum distance of the Most numerically computed vortex motions with forcing
orbit from the fixed point, frequency Q=1 seem to be nearly quasiperiodic with a

R:=max|x, (t) — X, (100  dominant frequency ned2=1 and a beat frequency which
vt scales with the inverse actuation amplitudé (See Figs. 4
and 5.

C. Periodically forced vortex motion

In this section, the effect of time-periodic actuation is D. Controlled motion

considered. From Sec. Il B, the period of natural vortex mo- In this section, controllability of vortex motion is shown
tion T is found to increase with oscillation amplitude. In and control laws for the actuation amplitudeare derived.
particular, atR<<0.5, this relationship is approximately de-

scribed byT=27 (1+0.24R?). This increase is a useful

3 Ll ) 1
1-5 T T T XV
T2n | . 2
1.3F 1
1.2 . 1
1.1 .
1.0 7 0 1 1 1
0.9 - - - 0 5 10 t2m 2
0 0.5 1 R 2
FIG. 5. Amplitude of periodically forced vortex motion witk= 0.2 sin).
FIG. 3. PeriodT vs amplitudeR of natural vortex motior(see Fig. 2. The x coordinate is shown as a function of tirhe
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In the pioneering mixing study of Rom-Kedar, Leonard,
and Wiggins'? actuation of the vortex pair is assumed to be
periodic. In the present study, we want to prescribe a much
larger class of vortex motion by control laws for actuation as
a function of time and vortex positioa=a(x, ,Y, ,t). This
class includes periodic motion at arbitrary frequencies and at
arbitrary not necessarily small amplitudes. The goal can be
achieved in the framework of control thed¥y*?> The key
element of the strategy is finding a transformation into the

Optimal mixing in recirculation zones 871

so-called flat coordinates

z1=ay(X,,Yy), (113

2= a(X,,Yy), (11b)
such that Eq(7) can be expressed in the form

2,=12,, (129

2,=p(z1,25)+a q(z1,2,). (12b

Isolines of flat coordinates.

FIG. 6. The hyperbolae represent
z,=0.5,1,1.5,..8.5. The distance from the origin increases with #he
value. The rays represent= —0.9,—0.8,...,0.9. The angle from theaxis
increases with the, value. The intersection point of the lineg=1 and

Thus, the first flat coordinate can be prescribed by ar,=o is the fixed poin(1,1) (solid circle.

arbitrary function of timez1=z‘f(t). The first derivative cor-
responds to the second flat coordinale: z§ . Equation(12)

represents the controlled vortex dynamics and any such vor-

tex motion 9,73 is easily seen to arise by imposing the

control law
- d d _d
z,—p(z1,2;
= _dod
a(z1,23)

provided thatq# 0.
Differentiation of the first coordinatél1lg and employ-
ing Eq. (6) yields

13

Zl: Lfal-i- aLgal (14)
with Lie derivativesLtay:=f; dy a1+f; dy a; andLgay

=0y dx @119, dy ay. Comparing Eq(14) with Eq. (128

impliesLya,=0 andz,=L¢ a4, since the first transformed

equation(12a does not contaira. Geometrically, the first
condition requires that the gradient of the flat coordirmtes
everywhere perpendicular to the forcing figjdor, equiva-
lently, that z; is a function of the stream functio® ,

=X, Yy -

Equation(7) can be brought into flat form by straight-

forward computations. The transformation is given by

Z1=X,Yy » (153
2 2
yU_XU
22: r2 y (15b)
the inverse map being
1_22 1/4
X, =z (1+z2) : (169
1+2z,\ V4
Yo=\21 ( 2) (16b)
1-z,

Figure 6 illustrates the flat coordinates.
The dynamics in flat coordinates are described by

(17a

-21222,

Z,=p+aq, (17b

where p=—4x,y, (X, y,—1)/r* and q=—4x? y?/r’.
Hence, vortex motion is controllable. In other words, the
vortex can be moved from an arbitrary poirg;{,z,,) at
time t=0 to another arbitrary pointzg ,,z,,) during the ar-
bitrary time t= 7 by prescribing a functiorz‘l’(t) such that
2(0)=210, 21(0) =240, andz{(7) =2, 2i(T) =27. Then,
controllability follows by applying the control law(13),
sinceq does not vanish in the domaiq ,y,>0.

The control law(13) has to be enhanced by stabilizing
feedback terms to account for transient behavior,

25— p(21,2) — ky(z1— 23) —ka(2,— 29)
a= . (18
0(z1,2,)

The coefficientk;, k, must be chosen such that the devia-

tions e;=2z,— 27, e,=2z,— 725 tend to zero with increasing

time. The dynamics of the tracking error with the modified

control law(18) can be derived from Eq17),
él:e21

(199

ézz - klel— k262 . (19b)

A particular choice of feedback gaikg andk, that make the
tracking errorse; ande, decay can be obtained as follows.
Lete;=e M, then Eq(199 impliese,= —\ e * and from
Eq. (19b the coefficients are given bk,;=\? and k,
=2\. In principle, the controlled vortex motiofl7) and
(18) can be analytically described by the inverse niaf)
for the vortex position and the solution in terms of flat coor-
dinateszn=2ﬂ+ e,, N=1,2. The inverse map can generally
not be analytically expressed and the evolution equafion
is solved numerically employing the control lai48) as a
function of the flat coordinates,= a,(x, ,Y,), n=1,2.

A generalization folN-vortex motion and more general
actuation is proposed in Appendix A.
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IV. NATURAL MIXING

In this section, mixing is analyzed for natural vortex
motion with amplitudeR=0.5. Without loss of generality,
we assume in all results that the vortex crossescthg axis
in clockwise direction at timeé=0. First (Sec. IV A), the
topology of the flow field is briefly described. In Sec. IV B,
the resulting fluid particle motion is classified. This motion is
characterized in terms of the invariant manifolds of a Poin-
care map (Sec. IVQ. Finally (Sec. IVD), a measure for
mixing is proposed based on the analysis of the preceding
sections.

A. Flow field

Mixing is considered for natural vortex motion
(%,(1),y,(1)) at amplitudeR=0.5[see Eq.(10)]. At all in-
stants, the velocity field has three instantaneous stagnation
(zero-velocity points, one at the origin, one on tkeaxis,
and another one on theaxis. The two time-dependent stag-
nation points on thex and they axis are connected by a
streamline, the so-callédstantaneous separatriXhe sepa-
ratrix is employed to define thimstantaneous recirculation
zonebounded by the axis, they axis, and the separatrix. In
this recirculation zone, the streamlines are closed orbits con-
taining the vortex in its interior. Outside the recirculation
zone, the streamlines converge to thand they axis. The
direction of the flow is everywhere in the clockwise direction
with respect to the vortex. The topology of the flow field is
the same as for the equilibrium positiésee Fig. 1 at all
instants. The circulation zone is numerically found to be
stretched in the same direction as the vortex displacement. A
detailed analysis of the flow field in dependence of the vor-
tex position is given in Ref. 28.

B. Fluid particle motion

Under steady conditions, i.e., if the vortex is located at
its equilibrium position(1,1), the pathlines of the fluid par-
ticles coincide with the streamlines. Under the considered
periodic vortex motions, the fluid particle follows the stream-
line only locally at a given instant. Generally streamlines and
pathlines are different. 0 ] f . . .

A numerical study indicates that all fluid particles move 0 1 2 X 3
around the vortex in clock-wise direction in alignment with _ o . )
the instantaneous velocity fields described in Sec. IV A. TGarice. The e poin  indicated by 4 safd cirle. The orit o the vortex
fluid particles can be classified in dependency of the amountotion is illustrated by the thin closed curve.
of revolutionsL around the vortex following a similar sug-
gestion of Ref. 12. This number of loopsis defined to be
the number of intersections of the fluid particle path with thesumed initial vortex position. The amount of revolutions dur-
time-dependent rayhalf-line) starting from the vortex with ing the complete history-«~<t<w is given by L=L"
an inclination of 225°. In other words, the amount of revo-+L~ +L°.
lutions is the amount of the eventg—x,=y,—y,<0. It If L=0 or L=co the fluid particle is considered free or
should be borne in mind that the fluid particle passes througtrapped, respectively. Otherwise, i.es<Q <, the mixing
this ray always in clockwise direction around the vortex. Thefluid particle revolves a finite amount of time around the
amount of revolutions is denoted hy", if the fluid particle  vortex before it escapes. Figure 7 shows examples of free,
is considered at all timeg$0) and byL " if the fluid par-  mixing, and trapped particles. A similar classification has
ticle is considered att&0). L° shall be unity if Xp—X, been proposed for the perturbed vortex pair in uniform
=y,—Y,<0 att=0 and vanishes otherwise. Evidently?  flow."*%
=1 on thex,=y,=x,(0)=Y,(0)~1.301 due to the as- Figure 8 displays a map af* as a function of the fluid
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uns;fable I Iunstablle
fixed point manifold

region B

trapped
particles
L'=e

stable |
manifold

1 1 .
stable |
fixed p
0™ 0—=
0 3 0 1 2 x 3
FIG. 8. Free, mixing, and trapped flow region for natural vortex motion with FIG. 9. Principal sketch of the Poincameap including the fixed points on
amplitudeR=0.5. The curves display the boundary between(thegra) the axisXs, X, , the invariant manifoldswg, W, , and a primary intersec-

number of revolutiond ™ of a fluid particle around the vortex starting with  tion pointqe W;N\'W, . The Poincarenap is constructed for natural vortex
initial position (x,y) and integrated at>0. Trapped particles revolve infi- dynamics with amplitud®=0.1. The fixed point of the vortex dynamics is
nitely long around the vortex.(* ==). The solid circle represents the fixed indicated by a solid circle aft,1).

point.

The fixed pointxg (x,) has a stabléunstablg manifold
particle position X, ,y,) att=0. The map oL~ is symmet- W (x,) (W,(x,)) extending into the domain. Fluid particles
ric to L with respect to the bi-sector=y. The map ofL  which are on the stabl@instabl¢ manifold at timet=0 will
can now easily be pictured as the sum+L~+L° The  stay on this manifold at all positivénegative integral mul-
free particles are located sufficiently far from thand they tiples of the period=nT, n=1,2,... o=—1,-2,—3,...).
axis and outside a nearly circular region centered at the orithe manifolds intersect each other infinitely many times near
gin with a radius of about 2.65. The trapped particles are inhe fixed points* The fixed points and invariant manifolds
a nearly circular region centered around the initial conditioncan be shown to be symmetric with respect to the bi-sector
of the vortex,x,=y,~1.301. The remaining particles are of x=y, since the vortex motion has the same symmetry and
the mixing type, i.e., spend a finite number of rotationssince the initial position of the vortex is on the=y line.
around the vortex and then escape. In particular, the invariant manifolds share a primary in-

The map in Fig. 8 depends on the initial vortex positiontersection pointj on the bi-sectok=y (see Fig. 9. Follow-
at t=0. Yet, the main characteristics of the map are preing [Ref. 12, Fig. 10a)], this point is used to define the
served at other initial vortex positions on the periodic orbit. recirculation regionA. Let x,q (Xq) denote the arc on
. i W, (W) from x, (Xs) to g. The recirculation regiomd is
C. Poincare map defined as the interior of the closed curve consisting of the

The dynamics of the fluid particles are described by arcsX,d, Xsq and the sections on the axis fradrto x, and
nonautonomous dynamic8). For natural or controlled vor- from 0 to xs. The free-stream region is denoted/&s
tex motion with periodT, the resulting velocity field has the The lobes of both manifolds must divide the first quad-
same periodicity, i.e., rant Q, in infinitely many areas. A topological analysis can

) reveal how fluid particles move from lobe to IdBaising

Xp=F(t,Xp), that a particle on an intersection point By(xs) NW,(X,)
where F(t,x,) =F(t+T,x,) for all x,eD. This dynamics must remain on this set and can only be mapped on another
may be characterized by a Poincanap fromD into D, intersection point. Two of these lobes can easily be identified

. in Fig. 9: an entrainment lob€ near thex axis and the

X" =D(x), (20 detrainment lob&® at they axis(compare with Fig. 5 of Ref.
wherex represents the initial conditior,=x at timet=0, 12). Fluid particles starting at=0 in D are in the free-
andx* is the fluid particle positiorx, at timet=T. stream regiorB one period later, while fluid particles located

At small amplitudes, the Poincammap has(at least in & came fromB one period earlier. Figure 10 displays
three fixed points, one at the origin, orgon thex axes, and pathlines of selected fluid particles: two mixing particles
onex, on they axis (see Fig. 9. These hyperbolic points of starting att=0 in the lobesD, £ and one trapped particle
the Poincaremap persist under perturbation. For notationalstarting in regiorF.
brevity, we occasionally refer tgs (x,) as the stabléun- A rigorous analysis of the lobe dynamics, like in Ref. 12,
stablg fixed point according to the corresponding stability exceeds the scope of the present study. The following com-
property of the wall-normal direction. However, both fixed ments may illustrate the implications of Ref. 12 to Shu’s
points have stable and unstable directions aligned withxthe recirculation zone model. Note that the other primary inter-
axis andy axis, respectively. section pointsW;NW, are very close to the fixed points.
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. 0
x 3 0 1 2 x 3

FIG. 10. Pathlines of fluid particles during one vortex period illustrating the FIG. 11. Invariant manifolds of the Poincameap for natural vortex motion
implications of the Poincarenap in Fig. 9. The starting point of the fluid at amplitudesR=0.1(top), R=0.2 (middle), andR= 0.5 (bottom). The solid
particles is marked by a solid circle and is situated in the detrainmentlobe circle represents the fixed point.

(top), the entrainment lob& (middle), and in the interior regiotF (bottom).

The equilibrium point(1,1) of the vortex motion and its periodic orbit with

radiusR=0.1 is included.

The lobe structure of the Poincamneap becomes more

involved with increasing amplitude of vortex motion. Figure
Thus far less lobes can be resolved in Shu’s vortex model akl displays the invariant manifolds at three different ampli-
opposed to the vortex pair representation(Bef. 12, see tudes. The Poincammap considered in Fig. 9 is included for
Figs. 3 and b Neglecting other lobes, the area of the en-reasons of comparison.
trainment and detrainment lobes represent the flux throtigh The Poincaremap (Fig. 11, bottom and the amount of
integrated over one period—at least in the small amplitudgparticle revolutions around the vortékig. 8 are associated
limit. In this limit, the flux can quite generally be shown to with the same natural vortex motion. Apparently, the number
be the sum of the lobe areas divided by one period usingf revolutionsL ™ qualitatively resembles the lobe structure
Melnikov’s method!? For later reference, we call attention to of the stable manifold/V(xs). A corresponding similarity
the intersection region between the primary lobescan be observed for the residence times of the particles. As a
G:=END. good approximation, the stable and unstable manifold em-
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brace the trapped region and the lobes belong to the mixingf the natural vortex motion. The flu@2) in the recircula-

region. tion zone can be increased without actuation by increasing
the amplitude of vortex motion. Roughly, the flux is propor-
D. Mixing measure tional to the amplitude. Engineering interest, e.g., in the case

d of recirculation zones in a combustor, is to maximize flux
with a upper bound on the level of unsteadiness in flows to
reduce material fatigue and undesirable instabilities. Increas-

The invariant manifolds of the Poincameap can be use
to define a mixing measure. The cu@eshall consist of the

sections of the invariant manifolds from the fixed points to . i )
o ) L = — . ing the flux further at given vortex amplitude requires actua-
the first intersection point, i.ex,q andx,q (see Fig. 9. At . . - : -
. X . tion. Typically, limits on actuation shall assure efficiency.
the considered parameters, the curve is nearly circular an . .
The bound on the vortex motion shall be expressed in

represents the bord'er between. the recirculation re,@mmd terms of the amplitud€10). The amplitude of actuation may
the free-stream regioB. In the limit of small amplitude®, . ; :
be characterized by a corresponding quantityapr

the curveC converges to the steady-state separatrix. With
increasingR, the recirculation region grows as can be in- A:=maxal|. (23
ferred from Fig. 11. vt

Mixing is associated with the behavior of an ensemble of . . .
fluid particles over a finite period of time. In a Hamiltonian In addition to the bou_nds_on amplitude and on_acFuat|on, the
system such ag) it is known that good mixing occurs for co.ntr-olled_vo.rt_ex mothn |s-§ssumed 0 be. perlod|c. This re-
unsteady perturbations of steady flows in the region near th triction significantly simplifies the solvability of the prob-

d . ) . em.
separatri¥ In particular, it can be rigorously proven that .
some particles exhibit chaotic behavior. Kolmogorov—Sinai The seBX({), Riax,Amay) Of permissible controlled vortex

entropy was recently introduced as a measure of mixing iﬁnotionsxv(t) Is defined l.)y the follpwing fpur condi.tions.
zones where flow is chaotf€. This entropy is for two- (CD The \_/ortex motl_on Is periodic with prescribed pe-
dimensional incompressible systems the integral of positivé'od E; r,Tiquwa![ently, \{[\{'th gngular;redqtjen@lewl T .
Lyapunov exponent over area. This quantity is, in the case of 'th( ()j t:zvor ex TO |((j)n ;Sth oun ?I'b(') a cireu tar_reg|on
small unsteady perturbations to a steady flow, monotonic:all)\;<\"R radius Rmax centered at the equilibrium point, 1.e}
related to the flux over one peridevhich is the size of the — "max: L

lobe)?® and in turn to Melnikov integral. Thus, mixing may (C3) The actuation is bounded Y= Anay.

be expected to be increased if the fluid exchange actiss i (C4 'I;_he \;orte_?hmotl?nlalmd ic;uaﬂon satisfy the evolu-
increased. In Sec. VI, the characterization of mixing is revis-'oN €dua |'or'1( ) Wi ) contro aw (13). . -
The mixing optimization problem consists of finding a

ited from a more global perspective. . . .
The instantangous reﬂe o?fluid exchange is quantified b ontrol]ed vortex mononxSpt in (€, RiaxAmad Which
aximizes the flux(Q) (22). It should be noted that the
recirculation region depends on the vortex motion.

The optimization problem may be reformulated in terms
of the flat coordinate, i.e., by exploiting the controllability.
Let z,(t) be the prescribed flat output function, then the sec-
whereds represents an arc element®fndu,, the normal  ond coordinate is given by,=Zz;. The associated vortex
component of the velocity. A suitable mixing measy@)  motion is defined by the inverse transformatii6). The

Q= fcdslunL (21

may be defined by the flux averaged over one period, assdociated actuation is given by (13) realizing thatz,
=2z;.
1 1 _ Let Z(Q,R_’max_,AmaQ be the set of all differe_zntiable func-
(Q)= _f dtf dslu,|. (22) tions z,(t) satisfying the following four conditions.
Tlo Je (D1) The flat coordinate has the peridd=27/().

(D2) The associated vortex motioq satisfies(C2).

(D3) The associated actuati@ansatisfies(C3).

(D4) The vortex motion and actuation satigig4).

The optimization problem consists of finding the optimal
V. OPTIMAL MIXING flat output trajectoryz®'e Z(Q,Rmax,Anad Which maxi-
mizes the flux Q).

The equivalence of both optimization problems is easily
en. Condition(D4) is already fulfilled by construction.
Hence V(Q, Rmax:Amnay and Z(Q, Rnax.Amax are equivalent.

In addition, side constrainteC1)—(C3) and (D1)—(D3) are
8quivalent by construction.

Let us consider few limiting cases of the optimal mixing
problem. Natural vortex motion is enforced By,,,=0. The
subset of natural motioW({),Rna0) is always nonempty

In this section, an optimal mixing problem is posed. Thissince the fixed point is contained in it. The optimal vortex
problem may be motivated by starting with a reconsideratiormotion is nontrivial if the frequency is realizabl@,<1 (see

The flux Q vanishes under steady-state conditions.

In Sec. IV, mixing of natural vortex motion is studied
and a flux measure is suggested. In this section, an optimgle
mixing problem for controlled vortex motion is posed. First
(Sec. VA, the mixing problem is defined. In Sec. VB, the
employed numerical methods are described. In Sec. VC, th
mixing enhancements due to control are outlined.

A. Optimal mixing problem
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Fig. 3) and if the only vortex motion at prescribed period 1.6
satisfiesR=R,,,.x. On the other extreme, the optimal mixing
problem with unbounded actuati@y,,,= is likely to have M 5 .
no global solution as outlined in Appendix C.
1.2 1

B. Simplex algorithm

The search for a local maxima is carried out by a direct i ’
variational method and exploiting the reformulation in terms o8k i
of the flat coordinate. This coordinate is approximated by :
a truncated Fourier expansion | i

N
z1=ay+ 2, [a,cognQt)+b,sin(nQt)]. (24) 0.4 T S R
n=1 0.4 0.8 1.2 x 16

The a_ssomated flux is denoted b_@) . In _the following, 6. 12, Optimal controlled vortex motions &t=0.8, 1, and 1.2 subject to
N=3 is assumed. Thus, the flux is a function of seven FOUr<0.5 andAa<0.5.

rier coefficients(Q)=(Q)!(ay,a;,a,,a3,b1,b,,bs) sub-
ject to the side constraint®2) and (D3). For reasons of
simplicity, only symmetric controlled vortex motion with C. Mixing enhancements
b,=b,=b;=0 is considered.

Optimal local solutions are numerically found using a
variant of the simplex methotl. The side constraints are
incorporated with by a penalty function, i.e., the following
functional is maximized:

In this section, the numerical solutions for the optimal
mixing problem aR,.,=Ama=0.5 and for selected frequen-
cies() are discussed.

Table | enumerates the achieved flux€» with an op-
timal flat coordinatez{™ based on expansiot24) with N
G:=(Q)—10 H(A—Ana) — 10 H(R— Ry, (25 =3. The vortex motion is illustrated in Fig. 12 for the opti-
mal numerical solutions of Table I. Apparently, the optimal
orbits touch the circular permissible region. From Table |,
also the maximum bound on control can be seen to be as-
sumed by the optimal orbits. The high-frequency buckles in
the orbits increase the actuation and thus contribute to the
flux. At =1.2, i.e., above the range of natural frequencies,

whereH(x) is the Heaviside function withl =1 atx=0 and
H=0 otherwise.

The amoeba in Ref. 35 ha$+ 2 legs forN+1 coeffi-
cientsag,aq,...,ay . Initially, all legs are in the permissible
set of Fourier coefficients correspondingAe<A,.«x and R

<Rpax- This domain is numerically found to be locally con- . . . . .
vex. The amoeba crawls in the direction of maximum flux.the permitted actuation amplitudeiyq,=0.5 is not large

When the amoeba wants to put one leg over a Heaviside Clnfnough to yield a more full vortex orbit and the achievable

in Eq. (25), it immediately puts the leg back on safe permis- lux {all; tsharlply:t&I)n Aofperé(_jm C, tge effect of the side-
sible ground following the numerical recipes in Ref. 35. constraints n imittz—c 1S discussed.

The algorithm is stable and slow. It should be noted that v 'Ir']heidfrequrfllcr:yinctiepiendher\]% icr)1f Ifipt'Tgl 'f__lu>r< tﬁndsrttrr]el
each function evaluation requires the computationally in-J'Ven side-constrainis 1S sho g. 1s. For the natura

volved determination of the unstable Poincananifold to frequency range{2<1, actuation increases the flux notice-

determine the separatrixfor the flux. Different initial con- ablyl_z;\s dcc;ri%aged to natural vortex motion with the same
ditions for the amoeba have been tested. All simplex tera@MPHUdeR=0.5. . .
Evidently, a larger flux can be achieved by lowering the

tions converged to the same Fourier coefficients in the perf-re ency. However. the freauency may also be emploved to
missible range. This behavior indicates that the numerically quency. Fowever, guency may ploy

found local maxima ofs is either global or has a large range cpntrol_ aqothgr aspect of mixing, for m;tance, thg reS|d§nce
of attraction. time distributions of the fluid particles in the recirculation

3 T T T T T
TABLE |. Optimal vortex motion defined by the flat coordinazg(t)
:E§=0an cosnQt. The solution of the optimal mixing problem assumes the
bounds on the vortex and control amplitude, iRs Ry and A=A 4, <Q> i T
respectively.
21 -
Q 0.8 1.0 1.2
ao 1.1294 1.1049 1.1353 i 7
a; 0.5894 0.5827 0.4152
a, —0.0566 —0.0608 0.0176 1 1 1 1 1
as 0.0655 0.0435 0.0129 04 0.8 12 Q 1.6
R 0.5 0.5 0.5
A 0.5 0.5 0.5 FIG. 13. Averaged fluxQ) associated with optimal controlled vortex mo-
(Q) 2.3417 2.0736 1.1469 tions at()=0.5 to 1.5 subject td(R<0.5 andA<0.5. The horizontal line

refers to the flux associated with natural vortex motiofRat0.5.
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FIG. 14. Residence time distribution of mixing particles under natural
(top) and optimal vortex motiofbelow) at(1=0.8, =1, and()=1.2. The

thin vertical line indicates the average residence time. The recirculation
region is defined by the Poincaneap for the associated vortex motion. The
considered fluid particles start in the recirculation regiot=a®. The PDFs

are normalized to yield the area of the mixing particles upon time integra-
tion.

zone A. The residence time is defined as the total time
which a mixing particle spends during its historyo<t
< in the recirculation region. Only mixing particles are
considered which are il att=0. Thus, the escape of par- Yr T
ticles can be monitored. Figure 14 shows the probability den-
sity functions(PDF) based on an ensemble of 50800 par- 2] T
ticles in the region &x,y<3. The PDFs are normalized so
that the integral over the complete distribution is the ratio of
the mixing region to the complete recirculation zone. The
average residence time is indicated by the thin vertical line in 1F 1
Fig. 14. This time increases with increasing frequency.
Flux and residence time behavior can be explained with B .
the Poincarenaps associated with the optimal vortex motion
(Fig. 15. The area of the lobes indicate the mass ejected per
period. This area af)=0.8 is significantly larger than the 0 1 2 X 3
one at()=1.2. Hence, the flux df =0.8 can be expected t0 . 15, same as Fig. 11, but for optimal vortex motior(kt 0.8 (top),
be larger, even correcting for the smaller periodlat 1.2. Q=1 (middle), andQ = 1.2 (bottom.
At 0=0.8 and 1.0, the overlap regigh=DU £ represents a
significant portion ofD and&. Particles inG have been ab-
sorbed from the free-flow regiafi less than a period ago and

are ejected t@® during the next period. Hence, the residence q d d WiaaiBsob ianifi
time 7 of these particles ind is between & 7<2T, say, Rom-Kedar, Leonard, and Wiggirisobserve signifi-

around one period. The large overlap regithus explains caqtly .Ionger residence times over dozeps of periods for their
the pronounced single maximum in the residence time pppPeriodically perturbed vortex pair. The difference can be ex-
At Q=1.2, the overlap region is small and a significant por-Plainéd by the large amount of dynamically relevant lobes in
tion of the fluid in the entrainment lob@ (see Fig. 9has to  their Poincarenap. In contrast, the displayed Poincamaps

wait at minimum another period before it moves to the defor Shu’s model appear to be dominated by two lobes and
trainment lobeD where it gets ejected in the following cycle. their overlap region. In a later study, Rom-Kedar and Foje
Hence, the PDF has two pronounced maxima associated wigprove that the flux vanishes in the limi3—0 and()— o
areasDPN & (first maxima and with £-D (second maxima  for a large class of Hamiltonian dynamics, including the vor-
The PDF is also flatter partially due to the larger residualtex pair model. These aspects are considered in Appendixes
region A-D—-E-F. B and C.
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FIG. 16. Stretching and folding of a material fluid particle linet&t=0, 0 0.5 1 X 2

0.2, 0.4, 0.6, 0.8, and 1. The vortex motion is the solution of the optimiza-

tion problem atRy,,=0.5 and(2=1. The thickness of the material curves g1 17 Averaged Okubo—Weiss parameter for the vortex motion of Fig.

decreases with increasing time. The equilibrium point of the vortes at 16. The value of this parameter is indicated as an interpolated gray tone

is indicated as a solid circle. from white at 0 to black at-2000 or less. The equilibrium point of the
vortex at(1,1) is indicated as a solid circle.

B. Euleri tretchi
VI. MIXING CHARACTERIZATION vierian sirefehing measures

A necessary but not sufficient condition for a good fluid

In this section, the flux-based mixing optimization in mixer is a nonvanishing strain rate of the velocity field. An
Sec. V is related to other mixing characterizations and goalsexample of a good mixer is Aref’s blinking vortex model.
While the employed mixing measure is elegantly related toAn example of a bad mixer is a single Oseen vortex in am-
the Poincaremap analysis, it may not be aligned—even bient flow, since the fluid particles cannot escape the circular
contradict—other mixing goals. In Sec. VI A, the qualitative streamlines.
implications of mixing, i.e., stretching and folding, are illus- The Okubo-Weiss parameter is often used to discrimi-
trated for the recirculation zone. In Secs. VIB and VIC, nate between good and bad strain rates. For planar flow, this
Eulerian and Lagrangian measures of stretching are digparameter is defined as the determinant of the velocity Jaco-
cussed. In Secs. VID and VIE, good mixing between twobian,\ :=det(Vu). The parameter is positive for regions with
fluids and two regions is quantified for the recirculation solid-body-like rotation and small fluid exchange and is
zone. Finally(Sec. VI B, a refined mixing measure is pro- negative for saddle-point-like regions which enhance stretch-
posed for combustor-related problems. All results presenteohg. Figure 17 illustrates the time-averaged Okubo—Weiss
in this section refer to the optimal vortex motion of Sec. V C parameter for the recirculation-zone model. Evidently, the
at frequencyQ)=1 and oscillation amplitud&®=0.5 if not  valley of this parameter follows closely the orbit in Fig. 12.

stated otherwise. This behavior is not surprising, since the instantaneous pa-
rameter has a sharp singularity at a potential vortex which
A. Qualitative consideration of stretching and folding scales withr ~#, wherer represents the distance to the vor-

The qualitative implication of mixing is a process with tex. For the numerical computation, the vortex has been

stretching and folding of fluid particlés’ Figure 16 illus- regulf”zed b%’ a glf‘”t')‘i”ev\fo.re of radius 0'03'
trates this process for a material line of fluid particles. The ence, the ubo—\Weiss parameter does not appear

material line is released on a sectioER<0.2 of the hori- V€YY useful for characterizing mixing in the recirculation
zontal liney=3 att=0. Evidently, this curve experiences a zone. This parameter may be more appropriate for less sin-

significant amount of stretching before fluid particles getgular vorticity distributions, for instance a von Kaan vor-
folded in the mixing region. In contrast, material lines out- tex street.

side the mixing region are only stretched by the dominan
stagnation point flow and are not folded.

Typically, the stretching and folding process of laminar Eulerian stretching measures like the Okubo—Weiss pa-
flow in a closed domain is associated with a nonvanishingameter can be conveniently computed. However, the long-
shear rate of the velocity field, with an exponential diver-term effect of stretching on individual fluid particles is more
gence of infinitesimally close fluid particles, and with a moreadequately quantified by a Lagrangian quantity. This quantity
uniform distribution of initially distinct groups of fluid par- follows the fluid particles and monitors their neighborhoods
ticles. While all these properties are typically desirable, theover a period of time. The most prominent example is the
attempt to quantify good mixing is a difficult and subjective largest Lyapunov exponent.
undertakind’ The infinite-time Lyapunov exponent characterizes well

%:. Lagrangian stretching measures
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the stretching in a finite domain of which the fluid particles 3
cannot escape. For the mixing particles of the recirculation
zone, these exponents adopt the vatuef (1), i.e., charac-
terizes the stretching of the far-field stagnation point flow
dx/dt=kx, dy/dt=—kx. For a finite mixing region in uni-
form flow, the exponent even vanishes for almost all fluid 2
particles'? The applicability of finite-time Lyapunov expo-

nents has been studied extensively by Rom-Kedar, Leonard,

and Wiggins'? Those authors suggest the stretching ratio of

fluid particles before and after the mixing zone as an alter-

native mixing measure to the Lyapunov exponent. This ratio 1
is, of course, preserved in uniform free stream motion. In

Shu’s model, however, such a definition is complicated by

the saddle point flow in the far field, i.e., a continued stretch-

ing outside the mixing region. Thus, any finite-time stretch-

ing analysis for Shu’s model has a large subjective bias. We 0
shall not pause to carry out such a study. 0 1 2 X 3

<

. . FIG. 18. Concentrationc(X,y) of mixing particles for the vortex motion of
D. Two fluid mixing Fig. 16. The value of the concentration is indicated by an interpolated gray
tone from white at 0 and black at 1. The equilibrium point of the vortex at

The discussions of the preceding sections directly relatgll 1) is indicated as a solid circle.

to the stretching and folding of fluid particles. A variety of
flow control applications target more specifically at a good
mixing between two kinds of fluids. For instance, boundary-  The entropy! based on this concentration decreases
layer separation in an adverse pressure field may be delayggm 1.37 for natural vortex motion &=0.5 to 1.13 for
by a good mixing between high-momentum fluid of the freegptimal vortex motion aR=0.5 andQ=1. In other words,
stream with the low-momentum fluid in the near-wall the optimization of the flux by actuation leads to a decrease
region In a combustor, as another example, good mixingef the uniformity measure, indicating an inverse correlation
shall be achieved between the incoming cold and fuel ricthetween both quantities. Indeed, the inted@8) is corre-
fluid and the hot combustion products in the recirculation|ated with the area where the concentration is near the maxi-
region. mum of cIlnc on Osc<1, i.e., nearc~1/e. For open flow
A necessary but not sufficient condition of efficient two- problems, the flux due to mixing particles need not be related
fluid mixing is a nearly constant concentraticnof each {5 the entropy. An enhanced entropy may, for instance, be
specimen. A uniform distribution maximizes the information 5,sed by more unsteady lumps of mixing particles which do
entropy not entrain other fluid. For confined flow, however, an instan-
taneous entropy measure has successfully been employed to
|:=_f dvelne, (26)  monitor mixing enhancemeni. Like the Lyapunov expo- .
nent, the entropy may be more adequate for the characteriza-

tion of confined flow.
which can thus be taken as a quality meastiré.

. Targeting combu.stion—related prpblems, the entr®@® £ 10 region mixing

with the mixing particle concentration may be taken as an ) ) ) )
alternative measure. Le{xo,yo,to) be the residence time of ~ The underlying assumption of the two-fluid consider-
a fluid particle passing througk=x, at timet=t,. This  ationis that their properties become homogenized by stretch-
residence time accumulates all periods of timestiduring ~ ing and folding, while the fluid particle advects its un-
the whole life of the particle- *<t<+c. The characteris- Cchanged property. A related view is a flux between two
tic function for the mixing particles is given by regions.A andB. Here, the underlying assumption is a de-
x(Xo0.Yo.to) =1 if 7(Xq.Yo.to)>0 and zero otherwise. The Sirable transformation of a fluid-particle property as it passes
concentratiore is defined by the time average of the charac-from one region to another one. An example is, again, the

teristic function, combustor, where the fuel-rich cold fluid from the oncoming
flow B shall ignite as it passes in the hot recirculation region
c(X,Y) =(xc(X,y,1)). (270 A.Inthis framework, the flux appears a good candidate for a

mixing measure.

Figure 18 visualizes the concentration distribution. The  From a chemical perspective, the residence time of a
concentration vanishes around the equilibrium point of thefluid particle in the dead-water regiod is an important
vortex and in the free stream. The distribution has a hillparameter. If the residence time is larger than the ignition
around the core and near the axes. The figure indicates tane, the particle has undergone the desired transformation
smooth decline of the concentration near the inflpw3.  from a cold to a hot particle. Figure 19 displays the
Particles released in the interval 8.%<1 may or may not residence-time distributionr(x,y,t) of all fluid particles
be entrained ind depending on the instant of the release. which are inA at timet=0. The nearly circular core around
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FIG. 19. Spatial residence time distributie(x,y) for the vortex motion of
Fig. 16. The contour curves represetit =0.5,1,1.5,2,.,10. Theequilib-
rium point of the vortex at1,l) is indicated as a solid circle.

the vortex equilibrium point has an infinite residence time. In
contrast, the large white banana-shaped region represent
region with small residence time<T/2. The resulting PDF

of the residence time of all mixing particles has been dis

played in Fig. 14 and been discussed in Sec. V C. It should

be noted thatr(x,y,0) is symmetric with respect to the bi-
sectorx=y, since the residence time comprises the past an
the future of the particle ind. In contrast, the loop number
distributionL™ in Fig. 8 is asymmetric since only the future
t>0 has been considered.

Figure 20(top) illustrates the depletion of fluid particles
which were initially in the recirculation zond. The deple-

S

Noack et al.

recirculation region. Evidently, the enhanced flux by control
action has decreased the amount of trapped particles as com-
pared to natural vortex motion which is indicated by the thin
line.

Figure 20 (bottom illustrates the depletion function
F.(t):=(F(0)—F(t))/(F(0)—F(x)) containing only the
mixing particles. In a good approximation, the decay is ex-
ponential with a half-time of 0.93. For natural vortex mo-
tion, the decay is smaller and does not follow an exponential
law. An analogous mixing analysis of the perturbed vortex
pair also yields parameters with and without exponential de-
cay (see their Figs. 16 and 17 in Ref.)12

F. A refined mixing measure

The mean flux Q) through the recirculation zone is in-
duced by mixing or by trapped particles. Free particles have,
by definition, a vanishing residence time hand can thus
not contribute to the flux. Mixing particles entering will
eventually leave4 and thus contribute two times to the flux.
Hence(Q)/2 is the upper bound for the flux of new particles
egteringA.

This conditioned fluX Q). can be expressed in terms of
the characteristic function,

The inflow boundary has been set\gq,,=3 which guar-
anteesv <0 at all times and is well above the recirculation

region. However, the definition is independentygfion as
long as no backfloww <0 can occur. In addition, the inte-

(Q)et

fo dxv (X, Yinfiow ) Xc(X, Yinfiow s t) ) - (29)

d

tion functionF(t) is defined as the ratio between the area ofgration in(28) can be restricted to€x< 3, sinceu>3 at all

fluid particles which are itd at timet and the corresponding
area at the initial instank converges to a finite value which
is the ratio between the core defined {),y,0)=c and the

2

4

6 t2n 10

FIG. 20. Depletion of particles from the recirculation zone for the vortex
motion of Fig. 16(thick line) and the natural vortex motion with the same
amplitude (thin line). The top figure display$, and the bottom one

logioFc -

-3
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x=3, y=0. In other words, no fluid particles releasedxat
>3 andy=3 will enter the recirculation region, i.e., the
characteristic functiory.(x,3t) vanishes identically.

The conditioned flux is numerically computed by con-
tinually releasing fluid particles at the inflow boundayy
=3, 0<x<3. The particle passing theinterval [ x,x+ dx)
in the time interval t,t +dt) has the area-v(x,3t) dtdx
The resulting conditioned flux is 90% of the upper bound
(Q)/2. This implies that only 10% of the flux are induced by
mixing particles passing through the recirculation region
more than once or by trapped particles.

The conditioned flux elucidates that the chosen ensemble
of considered fluid particles can effect the mixing measure.
Figure 21 displays the ensembles considered so far.

(i) An ensemble of mixing particles which are released at
the inflow boundaryy=3 at O<t<T, calledflux en-
semblein the following.

(i) A Poincareensemble of mixing particles released in
thex,y plane att=0.
(i) A statistical ensemble of mixing particles released at

0=<t<T in thex,y plane.

The Poincareensemble dominates the current study
since mixing can be described and understood in terms of the
lobe dynamics. The statistical ensemble has been employed

for the concentration study of Sec. VID.
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y In addition to the choice of the ensemble, the definition

RS of the recirculation zone has to be revisited if no Poincare

plane of IC < WW’ plane of IC map is available, e.g., for nonperiodic flow. In this case, we

for flux f’:"’:’z‘:‘:':’:" i for Poincare _sugg_est following definition of a recwcul_atlon region: the
XSS ensemble interior part of the boundary curve of this region sh@l

ensemble ¢ \“.“" '\"
A KA '

=T

volume of IC
for statistical
ensemble

connect thex andy axis, (ii) enclose the vortex, andii)
minimize the time-averaged flux with respect to infinitesimal
curve deformations. The influence of the chosen ensemble
and chosen definition of the recirculation region on the given
mixing measure requires an extensive parametric investiga-
tion and might serve as an inspiration of some future studies.
This definition of the recirculation zone, the flux ensembile,
and the conditioned flug8) can be applied to a large class
of periodic and nonperiodic flows.

t recirculation region A

FIG. 21. Principal sketch of the considered fluid particle ensembles. A mix/|| TRACKING WITH OBSERVATION-BASED
ing particle of a given ensemble has a trajectory with an initial condition EEDBACK
e

(IC) on the specified plane or in the specified rectangle and which passes t

recirculation region at least once. The feedback flow control of the preceding sections re-

quires the knowledge of the vortex position at all times
(complete information contrilin this section, an observer is
The effect of the choice of the ensemble can be Signiﬁ‘designed which determines the vortex positiﬂg&/v) from

cant. This is shown in Fig. 22 for the distribution function 3 single-component fluid velocity sensor near the wall. Thus,
P(t) of the Poincareand flux ensemble. This functio®(t) g single-input control based on wall measurements may be
is the normalized integral over the PDF and specifies thglesigned. A global observer for all velocity position is diffi-
percentage of particles with residence timest. The aver- ¢yt to construct because of the level of nonlinearity in the
age residence time of the mixing particles of the Poincargortex model. Hence, we trade globality for simplicity and
ensemble is 2.23 whereupon the corresponding value of for ropustness and develop in Sec. VII A a constant structure/
the flux ensemble is 0.66. The flux ensemble comprises gain observer that will be valid in a neighborhood of the
also many miXing particleS released at the inflow Secy-on equi”brium point Q(U ,yv)z(lll) That neighborhood will
=3, 0.5<x<1 aroundt~0.5 which briefly scratch the pe Jarge enough to include optimized reference vortex trajec-
boundary of the recirculation zone and thus reduce the restpries. In Sec. VII B, a simple dissipative controller will be
dence time. These particles are not contained in the preseped to drive the vortex from the far field to the observer
Poincareensemble focusing on the timés=nT, n=---,  domain. This controller does not need an observer. In Sec.
—1,0+1,.... It may be noted that this discrepancy is largelyy/|| C, the switching algorithm between the near-field ob-
an artifact caused by the definition of the mixing particles viageryer and far-field controller is outlined. More details are
>0 in a more or less arbitrarily defined recirculation re- provided in Refs. 37 and 38.
gion. The discrepancy is much smaller if only fluid particles
with a nonvanishing and finite number of loopsaround the A Observer design
vortex are counted. The characteristic function in the condi-

tioned flux may be easily be tuned to include only those N this sectlodn,han ob§|_ebrv_er IS d_e5|g?er:j based on a lin-
particles of interest, e.g., particles with<@ < instead of ~Saization around the equilibrium point of the vortex motion

0<7<. In the small-amplitude limit, both considerations (1,). Let (u,’”) denpte the(norrr_lalize.d Carte;ian compo-
may coincide under suitable conditions nents of fluid velocity. In our viscosity-free idealization, a

fluid velocity sensor will be located at a wall poitt,0), «
>0. The transversal componentvanishes because of the
no-penetration condition. The tangential velocity component

1 ' ' — | u is given by
= ux ensemble
P & u=0y(1+a) ¥+ ¥,)|,-u y-0
0.6 1 . 8ax,y, -
04k B 2( a)a (X2+yi+a?)2—4a?x3 @9
¢ Poincare ensemble
0.2 ] Since the component (1a) «/2 of u adds no information,
* we shall use a modified definition of the observation signal
0 L L L U=u—(1+a) «/2, where this component is removed.
0 1 2 t/T 4 Moreover, we focus on the selection ef=1, by which the

sensor is closest to the unactuated equilibrium point.
The observer is based on the same flat coordinates used
for tracking control. The dynamic observer is based on the

FIG. 22. Distribution functiorP of the residence times of the mixing par-
ticles. The distribution function of the Poincagasemble is compared with
the pendant of the flux ensemble.
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integration of a duplicate of Eq17) adding a linear feed- 2.5
back term. This feedback term vanishes if the correct loca-
tion in state space has been found and the term corrects th 2
observer system in proportion of the difference between ob-
served and predicted signal. The dynamic observer reads 1.5

2=2,+4,(0-V),

PP - (30
Z,=pt+ag+{(U-V),

where the hat *” indicates an estimated variable. In particu-

lar, p, §, andU are obtained by evaluating, g, andU, at
2, , and where the correction ternfs are to be determined

by the measured tracking errofU=0—U~ d2,U- 624 0.5
+3d,,U-6z;. The simplest option is that of using a constant
linear gain §k(U—U)=—Lk5U%—Lk(aZIU-521—1— (922U —10 . 5 5 ) 5 5 s 3
- 0Z,). This linearization leads to a small-deviation model

for estimation-error dynamics

FIG. 23. The maximal real parts of eigenvalues of the localized phasor
dynamics model as a function of the gaip (with L,=0) for two nominal

d 52, Acr Acpo 5z, trajectories.
— = ' , 31
dt| 0Za] |Acor Acol 622 )
where single point, and linearization about that point is time invari-
Ae11=—L1d, U, ant. This enables stability analysis in terms of eigenvalue
locations, as a function of design gains. Figure 23 depicts the
Ae1=1-L19,U, maximal real parts of these eigenvalues, as a functidn, of
1 for a number of reference trajectories. As it turns out, its
A= 1-29 41,9, U], pre_dlct_lons are conservative. However, it does prowde an
ezl (_f( 2l a ) indication of stability and guidance for the selectionLof
e[1,2].
1
A922:222 1+a__ _L2(72 U i ) . )
' Z; 2 B. A simple dissipative measurement feedback
The selection of gaink; should stabilize this system. A In this section, we describe a feedback policy that uses

heuristic guidance comes from Tadmor and Bana¥zuk sensor readings to drive the vortex from the far field into the
where Lyapunov stability analysis is carried out of the frozengbserver domain. In the absence of an observer, it is based on
time system, i.e., matrik is evaluated at a constant pomt  the dynamics of stored energy,

It is a basic fact that iR 11, A¢ 2,<0 and not both zero, and

|f. Ac12-Ae21<0 then the froz_en time system is stgble. The a((1+a) V4T, )=av,. (32)

signs ofd, U andd,,U determine what values af; bring A,

to that form. A numerical computaticimitted herg¢ reveals

that bothaku, k=1,2, are positive over the neighborhood

of interest of the equilibrium pointl,1). This suggests a 2

selection ofL;=0 and of a sufficiently positivé. 150 i
Our use of a tentative language is due to the fact that
stability of each frozen time system might not imghbyr be 1+ ]

implied by) stability of a time varying/nonlinear system. Lo-
cal stability has thus to be verified by additional analysis or R RS A
numerical simulations. Since we are interested in a near o !'41 i RSV IV (VI A 7
periodic behavior, our analysis was based on a very low or- ’ |
der (third harmoni¢ approximate dynamic phasor motfel -9-3
which was linearized about the reference trajectory. The dy- _,|
namic phasor model describes the dynamics of harmonic co
efficients in a Fourier expansion over a sliding interval -1.5
[t—T,t], of a nearT-periodic signal. It is derived from the

original differential equation, governing the time trajectory.
The approximate model is obtained by compression to a few_s, . . . . . ) . . . .
low harmonics, with inevitable distortions in a highly non- 10 20 30 40 50 60 70 80 90 Time 110 120

linear S_yStem’ such as ours. The advantage of the phaspis. 24. plots ofz; (solid) and a(low pass filterefl u—u (dashedl under
model is that each periodic trajectory is represented by #&w gain actuation that stabilizes the equilibrium point.
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By Eq. (32), any control satisfyin(aW <0 is dissipative, 3 ' ' ' ' '
and drives the vortex towards the equilibrium point. More-
over, under low-gain actuation and a nearly periodic dynam-,4
ics, the same holds &(V.—V.) <0, whereWV . is the aver-
age over a period ana is zero mean. Figure 24 shows,
—W¥.andU—U as a function of time. Hered) is a low-pass
filtered version of the observation signal. This filter is based
on a normalized cut frequency of 0.5 rad, or half the nominal 1.5 .

natural frequency of vortex motion, near the equilibrium /ﬁ.‘

point. These trajectories are associated with a trajectory o | / |
the original system that spirals towards the equilibrium point.

The phase match is obvious. During large deviations we thus \__

implement a low gain negative integral feedback — 5(U 0.5- 1

—U). In fact, the trajectory used in Fig. 24 was obtained
under this policy. o . . s . .
The following comments concern some practical issues 0 03 ! 18 X 28 8
of that policy. First, it is noted that in order to implement it, FIG. 25. Closed-loop tracking of a reference vortex orbit. Asterisks, track-

one needs to be able to estimate both the instantaneous (@8 reference orbit; bold, actual vortex trajectory.
riod of the unactuate¢or low-gain actuatedsystem and of
the instantaneous level of its stored energy. The period is

— . control decision. The feedback controller then switches to
needed to computd. The level of stored energy is used as e gissipative mode, but the dynamic observer continues.

an indication of vortex residence in the domain of observe»when the lower level is crossed it is concluded that the ob-
stability, and thus, as a trigger for the switch to an observeggqor might run into instability, and its dynamics are re-

pased tracking cgntrol..A sgrrogate for the fluctuation Ievelp|aced by a stable, oscillatory second-order dynamics with
in (nearly periodic motion is the value af,=W¢, at the g equilibrium point ag=(1,0), a long time constant and a
trajectory’s intersection with the rayz:z,=0}={(X,y):X  period compatible with higher fluctuation levels of the unac-
=ye(0,1]}. Simulations(left out herg reveal monotonous  ated system. The purpose of the first modes is to safely
dependencies of both, the period and the fluctuation level ofatyrn the vortex to the stability zone. The purpose of the
the minimum absolute value &f, over a period. These de- second mode is to safely drive the observer state into the
pendencies can thus be tabulated and used in the suggestgdpility zone. Additionally, a key aspect of the switch
control scheme. Since period length ranges betw@en  mechanism is a hysteretic delay: a waiting time of about half
10.5] time units, the minimum ofU| over an 11 time units  a period from the last switch must elapse before the system
interval is identical to the needed minimum over a period returns to the tracking control mode. A shorter waiting time
and is used for that purpose. is imposed for the observer to re-engage, once it was disen-
A second issue concerns the fact that the calculated gaged.
—U is not perfectly zero mean. Under pure integration, ac-  Plots of two closed loop trajectories are depicted in Fig.
cumulated errors will create an undesirable drifeinAs a  25. The optimized tracking references have frequeficy
matter of standard practice, the pure integrator is replaced by 0.5 and(2 =1. The initial vortex position, in both, is in the
a low-pass filtefsay 1/6+0.1)]. far field; it is first driven to closer proximity of the equilib-

In closing, it is worth noting that the energy shaping rium point, where the local observer-based tracking control-
scheme can be utilized also in simple tracking tasks, wherter takes over to produce asymptotic tracking of the reference
the target orbit is an equipotential orbit of the uncontrolledtrajectory.
system. Examples are provided in Ref. 38.

VIIl. CONCLUSIONS AND OUTLOOK

C. The combined compensator ) . . .
An idealized problem of controlled fluid mixing has

The combined compensator is based on patching of theen examined which shares important flow features and
two control modes suggested above. Switching between diimethodological aspects of realistic applications. One aspect
ferent controllers is a delicate job, even under more favorablgs that the control affects the velocity field but the objectives
circumstances, where a detailed observation is available. Isire specified in terms of particle motion. Enhanced mixing
sues include stability under the switching procedure andhas been achieved in a recirculation zone using a vortex
avoiding chatter. We used a relatively simple hysteretic heumodel for the natural and forced dynamics and employing
ristic for the switching logic, as follows. An indicator for control theory to prescribe the vortex motion. Controllability
leaving the observer region is triggered either by the obhas been exploited to formulate an optimal mixing problem
server state leaving a set neighborhoodlof), or when the  under suitable side constraints. Thus, the shape of the orbits
minimum |U| over a fixed period descends below a sethave been modified by control laws to enhance mixing. The
threshold. Two thresholds are used. When the fiigghep  effect of actuation on hydrodynamic mixing has been derived
level is crossed, the observer state is considered unsafe fitnom the invariant manifolds of Poincamaps at periodic
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vortex motion. For instance, the regions of in- and out-goingshown to be of large importance at backward-facing
fluid, the fluid exchange across the recirculation region, thestep4®#! and in dump combustofé, but this effect is ne-
region of the trapped fluid, and the residence time distribuglected in the present study. Similarly, the non-negligible ef-
tion have thus been elucidated. fect of turbulent fluctuations is not considered. Qualitatively,
The present study was inspired by the Rom-Kedarthe oscillatory motion of the separating streamline is plau-
Leonard, and Wigging investigation of laminar mixing for a  sible but the quantitative relationship to a hydrodynamic in-
vortex pair in free stream with periodic actuation and bystability mechanism is not clear. However, experiments of
studies of CortelezZi?* on studying control of fluid flows periodically forced flow behind a backward facing step give
using point vortex methods. It should be noted that theise to similar periodic velocity fields. This similarity in-
present corner flow configuration is more complicated, since€ludes, for instance, the behavior of the instantaneous sepa-
we have to consider four real and mirror vortices in a saddlg¢ating streamline and the motion of the lower separation
point potential flow as opposed to only two vortices in point** Some observed features of the Lagrangian mixing
simple uniform flow. Hence, part of the investigations cannotdynamics can hence be expected to be generic for a large
be carried out with the same analytical rigor. A main distin-class of recirculation regions. These features include the fluid
guishing feature of the present approach is the application dfitake near the separation point at the lower wall, the fluid
control theory for actuation. Control theory gives access to dlischarge near the separation point at the vertical wall and
larger class of vortex motion as opposed to periodic forcinghe long(ideally infinite) residence time of the fluid trapped
employed in the above-mentioned publication. around the vortex, neglecting viscous and turbulent diffusion
The present study allows to enhance time-averaged flugffects. A study of the authors based on a three-dimensional
by more than 25% as compared to natural vortex motiordirect numerical simulation and refined vortex models of the
with same fluctuation amplitude. The higher harmonics inbackward-facing step confirm similar flow and particle
the flat coordinate contribute to the increase of the mixingoehavior® Hence, several conclusions from the present con-
measure. The size of the mixing region and the flux is aptrol study can be expected to qualitatively hold in real flows,
proximately proportional to the amplitude of oscillation at €.g., that an increase of the frequency gives rise to a increase
constant frequency. The area embraced by the lobes of botif the average residence time.
invariant manifolds increases strongly with increasing ampli- ~ Numerous generalizations of the present framework may
tude. Thus, the average residence time decreases with ihe envisioned and may help to guide industrial applications.
creasing flux. At large amplitudes, a larger portion of fluid Control of coherent shear-layer structures under longitudinal
particles stays less than one period in the recirculation reand transverse actuation may be investigated in a similar
gion. However, the overlap area between both manifolds camanner with point vortices or vortex blobs. Present investi-
be decreased at a nearly constant mixing region with smafations at UTRE" indicate that the excitation of certain vor-
changes of the frequency. Thus, the flux and the averagiex configurations are beneficial for transversal mixing and
residence time can to some extent be independently compressure recovery in high-Reynolds number diffuser flows.
trolled by suitably choosing the desired vortex motion andThe control of this process requires understanding of vortex
the corresponding control laws. This possibility represents @nerger control, a topic pursued in Ref. 45. Actuation em-
clear advantage over the concept of periodic open-loop forcploying control theory for a larger number of vortices might
ing, in which the frequency difference between the naturarequire a re-formulation in the problem: In the Appendix of
and the forcing frequency may lead to quasiperiodic beathis paper we show that in order to control trajectorieNof
phenomena. Periodic vortex motion at non-natural frequenvortices, generall\N actuating potential fields are necessary.
cies cannot be excited. The class of controlled vortex moHowever, control laws need not necessarily depend on a
tions is significantly larger than the class associated witlsingle vortex position, but may be based on properties of an
periodic forcing and thus allows for the specification of dif- ensemble of vortices, of an ensemble of fluid particles, or of
ferent mixing measures. the instantaneous velocity field sensed at one or more
A potentially interesting consequence of our work is thelocations?*?*4€For higher-dimensional vortex methods the
shape of the optimal flux curve that arises from our optimalreceding horizon technique in which a quantity is optimized
mixing setup. Namely, we were able to show that adding ever a finite period of time, might be employed. In addition,
low frequency modulation to periodic vortex motion can in- optimization strategies for actuator positions may be carried
crease flux substantially over longer time scales. Thus, theut in the present framework. Model-based flow control
perturbation of the system by control does not have to be obased on Galerkin models, and using control theory with
the samépossibly fasttime scale as the natural dynamics of flatness concept is successfully applied to reduce vortex
the system in order for control objective to be reached. Thisheddind'” Current research in this direction is in progress
coincides with results in several experimental setups that wey many authors.
know of (A. Glezer, private communicationHowever, the
flux is also mcrea;gd by multiple border-.crossmgs of MiXing \ ~ N OWLEDGMENTS
particles. A conditioned flux measure is suggested which
takes into account the identity of the fluid particles. We appreciate valuable stimulating discussions with
The fluid dynamics of a recirculation region is highly John Baillieul, Jeff Cohen, Luca Cortelezzi, Andreas
idealized by the present vortex model. For instance, th®illmann, Hans-Hermann Fernholz, Ahmed Ghoniem,
shear-layer dynamics at the upper stagnation point has be&@eorge Haller, John Hauser, Phil Holmes, Hans-Joachim
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X
+ arcta+ —}
y—c

. (A4)

Kaltenbach, Alex 1. Khibnik, Rudibert King, Satish y—cC
Narayanan, Anatoly Neishstadt, Mark Pastoor, Bill Proscia, Wa(x)zarcta+7
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F49620-00-1-0361, by the National Science Foundation ) . )
(NSP) under Grant No. ECS-0136404, and by the Deutschérhe _correspondlng analytical expressions for the vortex dy-
ForschungsgemeinschaldFG) under Grant No. NO 258/ Nnamics and the con'grol laws can become rather long and we
1-1. Support of the Collaborative Research Cef@dh) 557  Shall not pause to discuss them. _
“Control of Complex Turbulent Shear Flow” funded by the ~ Another generalization holds for the casefofvortices
Deutsche Forschungsgemeinschaft and hosted at the TechHjder the influence dfl potential fields, the stream functions
cal University Berlin is acknowledged. of WhICh are denoted_ t_)}lfJa,_J :_1,. ...N. The equations of
motion for vortex positions, , i=1,... N are expressed by
N j
X, :&—\II’_ +2 ﬁ’;
ayv =1 ayv

y+c
+ arcta T

APPENDIX A: GENERALIZATION FOR N-VORTEX
MOTION AND MORE GENERAL ACTUATION

o _ L A 2
The considerations given in Sec. Ill D can be generalized y) =— — — 2 aj—r-
to the case of single vortex motion in an arbitrary domain X, j=1 0 0%,

driven by a potential velocity field with stream functidf,.  The Hamiltonian vector field corresponding 0, is called

The equations of motion for the vortex are given by control vector field
A P In analogy to Eqs(11) and(12), N coordinatesz,; _1,i
X, = +ta—2o, =1,... N have to be found such that
dYy, IV
Z5i_1=12y, A53g)
- o 57‘1,3 2i—1 2i ( )
Vo= — —-a . N
J X J X _ .
’ - , _ zi=pi+ >, ajql. (A5b)
The stream function of the control field can again be =1
chosen as a flat coordinaig,= "V, . The other coordinate, The time evolution ok, _, is described by
is chosen such that; =z,. Thus, \
25— IV 9z IV
S i WA W =2 S T T o
2V T X, Y, 9 Y, d X, =1 % Yy Yo %
i i i NS Gz 0VE oz 9P
where{V¥ ., ¥} is the notation for a Poisson bracket of func- +3 a8 Li-19%a 0Z3i-10%a
tions ¥,,¥. The derivative of the second coordinate reads ELNE od oyl eyl axd

z,={{¥, v}, V}+al{{¥,,V},V,}. Examining the above expression, we conclude that the

Thus, the motion of a single vortex in a container of arl:)itraryterr.n multiplying Ak VamShis if we find a functioh; that is
n integral of motion for'; . Thus, we can set,;_;=H;.

shape under the influence of a potential field with a strea .2 . .
function W, is controllable if ﬁo have the terms multiplying adl, vanish, and to bring the

system in the required forrfA5), N independent functions
{P, ¥}, }+#0 (Al) H;,i=1,... N, we mustfind which are integrals of motion

. . . simultaneously for the Hamiltonian vector fields generated
on the domain. Corresponding dynamics and control Iaw% o K f

. . Dby Hamiltonians¥, k=1,... N. Then, the equations of
have also been derived and studied for other local actuanon:F:ﬁotion acquire the required forrA5) with z,, ,—H |
The actuators are sourcésinkg on the axes. The no- d q -1

penetration condition is violated only at the actuator position: L...nand
and is enforced elsewhere by mirror sources. The studied N H; o¥  gH, IV
actuator configurations includ@) a source at the origin, Zyi= 2 ={H;,V}.

Siox Y ayhax

, (A2) From

T.(x)= arctar%
N
(b) a source at positive axis (c,0) with the corresponding Zi={{H; ¥}, V}+ 2 a{{Hi ,‘P},\Ifg},
image at (c,0), k=1
a sufficient condition for controllability can easily be de-
, (A3) rived. This condition is a nonvanishing determinant ldet
#0 where the components of the matfik are given by
and (c) zero-net flux source-sink combination at¢pand  H;,={{H; ,\I’},\Pg}. In the caséN=1, this clearly reduces to
(c,0) with corresponding images, condition (A1).

y
V.(x)= arctar%m

y
+arctan——
+x+c
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The condition on simultaneous integrability fcontrol
vector fields (i.e., the existence ofN functions H;, i
=1,... N, which are integrals of motion for each control

vector field seems severe. But, the control vector fields aris-
ing in the context of vortex motion are special as it is imme-

diate that they are integrable: the control Hamiltoniﬁrﬁ
can be expressed as

N
WEE Ly, X ,y5‘)=i221 PR Y.

Thus, eachy*(x ,y!), i=1,... N is an integral of motion
for the control vector field with Hamiltonia’X . It is easy

to check that these are also integrals in involution so the
control vector fields are integrable Hamiltonian systems.

This does not mean that the integraf§x. ,y!) can be com-

bined in a simple manner to find joint integrals of motion,

but makes it easier to search for them in examples.

The conditions obtained here are sufficient for controlla-

bility but are not necessary. In general they are too strong,

Noack et al.

0
0

1 2
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FIG. 26. Low-frequency limit of controlled vortex motion. The flat coordi-

nate is given by(B1). The permissible vortex region is illustrated as a gray

8Srcle. The vortex moves on the shown straight bi-sector in the permissible

control terms are used to overwhelm the natural dynamics akgion. The vortex positions at tinte=0 andt=T/2 are indicated by open

vortex motion. Less stringent conditions can be obtained bymd solid circles, respectively. The thick circular &rcepresents the recir-
culuation region as defined by the Poincarap. The thin curves are stream-

utilizing natural vortex motion in the control proceddré'®

A general form for arbitrary potential flow control fields
V¥, is given by z,=V,, z,=2,=04,(f;¥V,), z,=p+aaq,
where p=4;[f; 9;(f;¥o)] and g=a;;[9; W] di[d(fxWa)]
using Einstein summation conventiof), for the partial de-
rivative with respect to théth component ofx, and the
antisymmetric tensaa,,= —a,;=1 anda;;=a,,=0. For all

lable, i.e.,q does not vanish in the domaiq ,y,> 0.

APPENDIX B: LOW-FREQUENCY LIMIT OF OPTIMAL
VORTEX MOTION

missible regiorR<0.5 and the actuation bouf<0.5. The

for instance, prescribed by the following flat coordinate:

43 V2| [11 v2
287 2|28 2
A straightforward calculation showR=A=1/2 in the limit

Q1 —0. In that limit, the corresponding controlled vortex po-
sition moves on the bisectar=y and touches the boundary
of the permissible region at=0 and hits the actuation bound
|a|<1/2 att=T/2 whereT=2#/Q. The vortex motion is
guasisteady, i.e., the position at tirneepresents the equilib-
rium point of the steady probleriY) under the frozen actua-
tion a(t) at that instant.

At t=0, the vortex is located at,=y,=1+1/,/8 and
the separatrix, defined by the Poincamap(20), coincides
with the streamlinel =0, shown in Fig. 26. Obviously
=0 on the positivey axis defines the unstable fixed poiqt
of (20). By symmetryu=0 speficies the stable fixed poix

Z,= + cos()t. (B1)

lines associated

with the vortex positiontatT/2.

line W=0. The initial partx,q, xq of the invariant mani-

folds are well aligned withW =0, since the fluid particles
) _ =~V slide from the unstable to the stable fixed point on the
considered local aCtUat|OnS, the vortex motion is Control-zo curve in the very end of the diverging period in the limit

1 —0. Hence, the instantaneous flux througlvanishes at

that instant.

At the opposite phase=T/2, the vortex is on the op-
posite side of the orbit, =y, = \2/3. Figure 27 displays the

In this appendix, the low-frequency limit of the optimal VOrtex position and the streamlines at titneT/2. The cor-
vortex motion is discussed. To simplify the discussion, we'€sponding flow field induces a flux of 6.94 throughFig-
consider a periodic controlled motion which respects all sidd!re 27 displays the flux as a function of time. In the quasi-
constraints of the optimization problem, in particular the per-Stéady limit—0, Q depends ornt/T independently of(.
The averaged fluxQ) is 2.86. This value is above the opti-
resulting flux thus serves as the lower bound for the optimamal fluxes displayed in Fig. 13 at 6:3)<1.5. This value is

vortex motion in Appendix C. Such a controlled motion is, the lower bound for the optimized flux in the limé2 — 0.
Hence, the flux in Fig. 13 must increase towafls 0.

The numerical computation of the recirculation region
with the Poincaras very difficult at low Q without simpli-
fying assumptions. The reason lies in the long integration

8
<Q>
6
4
2

0

N\

0 1/4 12 t/T

1

- > FIG. 27. Instantaneous flux in dependency of the time for the vortex motion
of that map. Both fixed points are connected by the streamef Fig. 26. The thin horizonal line represents the average flux.
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unbounded actuation does not seem to be well posed. In this
case, infinite actuation is achieved with infinite control fre-
quency, e.g., by moving to higher and higher harmonics of
the prescribed frequendy. As the actuation increases with-
out bound, also the flux through any given curve will in-
crease without bound while the vortex orbit shrinks towards
its equilibrium. This ill-posedness of the optimization prob-
lem is plausible, but a rigorous analysis would have to in-
clude the effect of optimization and the change of the recir-
culation region with frequency.
1 -0.5 0 log €2 1 A second conclusion is that the bound on the actuation
] ) _ . reduces the oscillation amplitude and thus the flux at l&ge
FIG. 28. Actuation amplitud&\((2,R) of the controlled vortex motion in

dependency of the frequendy and the oscillation amplitud®. The flat (see Flg' 13 Ir_]_th_e limit _QHOO’ the Vort_ex orbit shrinks
coordinate is prescribed byC1). The thin curves show the isolines  around its equilibrium point and the flux is only caused by
=0.1,0.2,0.3, and 0.4. The thick curves represest0.5,1.0,1.5, etc. the finite oscillatory actuation field¥,. In this limit, the
time-averaged flux is independent of the oscillation fre-
) ) o ) ) _quency and does not vanish. Again, the nonvanishing flux
times and in the large sensitivity of the fluid particle posi-jim;t is a plausible hypothesis which is suggested by the
tions on the initial condition near theaxis. present study but which still must be rigorously examined.
It should be noted that Rom-Kedar and ﬁéyaagorgusly Rom-Kedar and Pojé rigorously prove that the flux
prove for the large class of perturbed vortex motions that,anishes ag)— = for a large class of periodically perturbed
(Q)—0 asQ—0. This class contains their vortex pair in \ortex motions. Like the low-frequency behavior, also this

uniform flow perturbed by four far-field vortices. All those high-frequency study corroborates that the present motion
vortices are at fixed locations and the circulation of the far4yges not seem to fulfill all of their premis¢al)—(A3).

field vortices serves as the control parameter. Thus, the phe-

nomenon of a free-stream-like flux due to a displaced vortex
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