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Coarse-scale mixing in a recirculation zone is described with a simple vortex model.
Time-dependent forcing is employed to change the vortex motion and mixing properties. An optimal
mixing problem is defined in which the flux across the recirculation region shall be maximized
under the side-constraints of bounded vortex motion and bounded actuation. Concepts of control
theory and chaotic advection are used to achieve this goal. In particular, controllability is proven
with a transformation into flat coordinates. Thus, a feedforward law for the optimal trajectory and
a feedback law for its stabilization are derived. Observability of the vortex motion is indicated by
a dynamic observer. Mixing in the optimized flow is studied using Poincare´ maps. The
low-frequency modulations to vortex motion are shown to substantially increase mixing in the
average. Generalizations of the mathematical framework for mixing optimization are suggested for
a larger class of models and flows. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1645276#

I. INTRODUCTION

Hydrodynamic mixing is an important aspect of many
flow control applications. A major motivation of flow control
is to increase the performance of flow machines with small
associated actuation penalties. The performance may be re-
lated to drag reduction, to an increase of lift, to mixing en-
hancement, or to noise reduction. For turbulent flow, the per-
formance benefits are strongly correlated with mixing
enhancement or mixing reduction in free or wall-bounded
shear-layers.1,2

The effect of hydrodynamic fluctuations and mixing on
the mean flow has been subject of intensive study for more
than 100 years since the Boussinesq ansatz~1887! and the
Reynolds decomposition~1895! ~see, for instance, Refs. 3
and 4!. Statistical fluid mechanics provides also effective
models of fluid-particle mixing based on the inertial range of
the Kolmogorov cascade, e.g., Richardson’s theory with
spectral eddy diffusivities~see also Refs. 3 and 4!.

The characterization of large-scale mixing associated
with coherent turbulent structures and with laminar unsteady
flow has become subject of increasing research since the last
two decades. In particular, dynamical systems theory has

proven as a powerful method.5–11 Typically, emphasis is
placed onunderstanding the mechanismsof mixing in lami-
nar flows. For example, Melnikov theory and associated lobe
dynamics is used to study transport and mixing across the
recirculation bubble of the Batchelor’s vortex pair in a pio-
neering study of Rom-Kedar, Leonard, and Wiggins.12 Re-
cent results in this direction include extension of dynamical
systems ideas to aperiodic flows.9,13–15

In contrast, in the current study, a problem of mixing
control and optimizationis posed in the framework of low-
dimensional point-vortex models, dynamical systems theory,
and control theory. As the dynamics of point vortices can be
described using a finite-dimensional~Hamiltonian! system of
ordinary differential equations~see, for instance, Ref. 16!.
Methods of the control theory can be used to achieve various
control objectives like stabilization of vortex
configurations,17,18 enhancement of mixing,19,21 and im-
provement of airfoil lift.22 Early studies by Cortelezzi and
co-workers in this direction are based mostly on modeling
and reduced-order numerical simulations using vortex ele-
ments~see Refs. 23 and 24 and the references therein!. The
numerical approaches have also been coupled to control
theory utilizing mostly linear control theory concepts for the
purpose of stabilization. By now there is a large amount of
literature on this topic.18,25

Here, however, our focus isdestabilization and mixing
of fluid particle motion. Our approach consists of the follow
ing steps. Fluid flow is described by a finite-dimensional
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model using point vortices. An optimal control problem is
posed with a mixing objective, namely flux through a distin-
guished curve. We identify the optimal vortex motion for that
objective. Then, optimal vortex motion is stabilized with an
observer and a feedback law. This approach is in spirit simi-
lar to that taken in Ref. 19. A feedback-control approach to
this question can be found in Refs. 26 and 27. In the appen-
dix, the control approach of the main body is extended toN
vortices. In particular, sufficient conditions for controllability
for this system are provided.

This paper is organized as follows: In Sec. II, the point-
vortex idealization of the recirculation zone is presented. In
Sec. III, the natural, forced, and controlled vortex dynamics
are described. In Sec. IV, the mixing associated with natural
vortex motion is characterized based on fluid particle motion
and Poincare´ maps. In Sec. V, an optimum mixing problem
for control is posed and solved. Thus, the achievable changes
of flux and residence times are elucidated. In Sec. VI, the
flux is compared with other mixing measures proposed in the
literature. The main conclusions and an outlook is presented
in Sec. VIII.

II. THE POINT-VORTEX MODEL

In this section, the vortex model for the recirculation
region is outlined generalizing an analytical study of un-
forced flow by Shu.28

The flow is described in a Cartesian coordinate system
x,y of which the origin coincides with the corner. The walls
of the corner lie on thex and y axes and the considered
domain is the first quadrantQIª$(x,y):x>0, y>0%. The
independent variables are the locationxª(x,y) and the time
t. The x and y components of the fluid velocityu are de-
noted byu andv, respectively.

The potential corner flow is expressed by the stream
function

C0~x!5k x y, ~1!

or, equivalently, the velocity fieldu5]yC05k x, v
52]xC052k y. The constantk specifies the magnitude of
the velocity at a given location. Figure 1~top! shows the
corresponding streamlines. The corner flow can be consid-
ered as one quadrant of a saddle point.

A vortex with circulation2G, whereG.0, is placed at
xv5(xv ,yv). The negative sign of the circulation indicates
that the induced fluid motion rotates in a clockwise direction.
The no-penetration condition at the walls is enforced by mir-
ror vortices in quadrants 2, 3, and 4 atx25(2xv ,yv), at
x35(2xv ,2yv), and atx45(xv ,2yv), respectively. The
circulation of the mirror vortex in quadrantn is given by
Gn5(21)n G. For reasons of simplicity, the position of vor-
tex in the domainQI is denoted byx15xv and the circulation
by G152G in the sequel.

The stream function induced by the four vortices at lo-
cationx is given by

Cv~x!5 (
n51

4
Gn

2p
ln ix2xni , ~2!

whereix2xni represents the Euclidean distance between the
location x and thenth vortex. Figure 1~middle! illustrates
the quadrupolelike streamlines of the induced velocity field.
The stream function can be considered as a function of the
locationx and of the vortex positionxv , since the positions
of all mirror vortices are slaved to the real vortex at each
instant. At the singularityx5xv , Eq. ~2! is not valid, since
the real vortex does not experience a self-induction. The mo-
tion of the real vortex is determined by the potential corner
flow and the velocity field induced by the mirror vortices.
The stream function associated with the mirror vortices at the
locationx is given by

FIG. 1. Streamlines for the saddle point~top!, the four vortices~middle!,
and the resulting flow~bottom!. The four vortices are indicated by solid
circles.
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Cmv~x!5 (
n52

4
Gn

2p
ln ix2xni . ~3!

This stream function describes the effective field for the vor-
tex atx5x1 and is immaterial for other fluid particles.

Actuation is provided by the free-stream perturbation
a Ca , wherea represents the time-dependent forcing ampli-
tude andCa the free stream,

Ca5C05kxy. ~4!

The stream functionC of the actuated recirculation zone
contains the contribution of the potential corner flow, the
actuation, and vortices,

C5C01aCa1Cv ~5!

or, employing Eqs.~1!, ~2!, and~4!,

C5~11a!kxy1 (
n51

4
Gn

2p
ln ix2xni .

Figure 1~bottom! illustrates the streamlines of this equation
at the equilibrium vortex position under vanishing actuation,
a50. At the vortex positionx5xv , the velocity field due to
the real vortex must be discarded, i.e.,Cv , of Eq. ~2! is
replaced byCmv of Eq. ~3!.

The evolution equation for the vortex position is given
by

ẋv5f~xv!1ag~xv! ~6!

and contains the velocity field due to the natural dynamics
fª(]y@C01Cmv#,2]x@C01Cmv#)ux5xv

and the actuation
field gª(]yCa ,2]xCa)ux5xv

. At a[0, the evolution equa-
tion has the form of an autonomous system. Otherwise, time
dependence due toa enters in a simple form which is well
investigated in control theory.

In the following, all quantities are assumed to be nondi-
mensionalized with length scaleL5AG/8pk and time scale
T51/2k. The original symbols are used for reasons of sim-
plicity. Thus, employing Eqs.~1!, ~3!, ~6! yields

ẋv5
1

2
~11a!xv2

1

yv
1

yv

r v
2 , ~7a!

ẏv52
1

2
~11a!yv1

1

xv
2

xv

r v
2 , ~7b!

wherer vªAxv
21yv

2. Note that ata[0, the stream function
~or Hamiltonian! for the velocity field~7! is given by

C5
xvyv

2
1 ln S xv

yv
D1 ln A~xv

21yv
2!. ~8!

The dynamics of the fluid is parametrized by the motion
of the vortex. The motion of a fluid particle with positionxp

is given by

ẋp5~]yC,2]xC!ux5xp
, ~9!

whereC represents the stream function~5! with the consid-
ered actuation fields.

The point-vortex idealization of the velocity field mim-
ics the main properties of the real fluid mixing problem. By

real we mean that the controla enters in the vortex motion
equation~7! in the way it would enter into Navier–Stokes
equation. On the other hand, we are primarily interested in
changing the mixing properties of the flow~5!, not the vortex
dynamics~7!. The control affects~5! both directly through
the inputa and indirectly, by changing the original velocity
field as the position of the vortex has changed.

III. VORTEX MOTION

In this section, the vortex motion described in Sec. II is
considered, partially following the work of Shu.28 In Sec.
III A, the equilibrium position of the vortex in a steady strain
field is identified and its stability is discussed. In Sec. III B,
periodic orbits of the unforced motion are described. In Sec.
III C, the effect of periodic forcing is analyzed. Finally, con-
trollability of vortex motion is studied in Sec. III D.

A. The fixed point

The vortex positionxv05(xv0 ,yv0)5(1,1) is readily
seen to be a fixed point of Eq.~7!. At this point, the induced
velocity of the mirror vortices is equal but opposite to the
potential corner flow. No further fixed points exist in the
domain xv ,yv.0 as can easily be analytically verified. In
non-normalized coordinates, the fixed point is expressed by
xv05yv05Ag/2k, i.e., the distance between the fixed point
and the origin increases with the strength of the vortex and
decreases with the magnitude of the potential corner flow, as
intuitively plausible.

The dynamics of the infinitesimal perturbationxv8 around
xv0 are described by

ẋv852yv8 , ẏv85xv8 .

Hence, the fixed point is a center and small perturbations
have angular frequencyv51. The fixed point is marginally
stable, i.e., an infinitesimal perturbation is neither exponen-
tially amplified nor exponentially damped. The dimensional
value of the frequencyv52k increases with potential flow
magnitude and is independent of the circulation. A similar
behavior of the fixed point and its small perturbations are
observed by the authors for a single vortex in a more realistic
backward-facing step configuration.29

B. Natural periodic motion

As shown in Sec. III A, the only critical point
(xv0 ,yv0)5(1,1) of the vortex dynamics is nonsingular. Tra-
jectories close to the fixed point must be periodic orbits. In
fact, all trajectories in the first quadrant of the plane~exclud-
ing the axis! have to be periodic orbits, since the topological
type of the intersections of constant planes with the Hamil-
tonian~8! changes only at critical points. The velocityẋv can
be zero only ifyv<1 andẏv can be zero only ifxv<1. These
properties are reflected in numerical solutions of Eq.~7!
shown in Fig. 2. The computed orbits are periodic trajecto-
ries around the fixed point with clockwise orientation.

The periodic behavior can also be made physically plau-
sible. If the vortex is displaced from the equilibrium position
away from the origin, the mirror vortices are too far away to
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balance the potential flow and the vortex moves downstream
with respect to the corner flow. The corner flow and the
mirror vortex 2 supports a motion towards the wally50
where the vortex experiences the induced upstream velocity
of mirror vortex 4. As the vortex returns below the stream-
line C05C0(1,1) through the fixed point, an upstream mo-
tion is induced by the mirror vortices 2 and 4. As the vortex
moves in positivey direction, mirror vortex 4 induces a ve-
locity component away from the wall and the vortex moves
downstream above theCp5C(1,1) streamline, since the in-
duced upstream field cannot be overcome by the increasing
potential flow componentv52ky. Mirror vortex 3 weakens
the induced velocity of the vortices 2 and 4 but is too far
away to annihilate their effect.

The periodT of the vortex motion is numerically ob-
served to increase with the amplitude of oscillation~see Fig.
3!. This amplitude is defined as the maximum distance of the
orbit from the fixed point,

Rªmax
;t

ixv~ t !2xv0i . ~10!

C. Periodically forced vortex motion

In this section, the effect of time-periodic actuation is
considered. From Sec. III B, the period of natural vortex mo-
tion T is found to increase with oscillation amplitude. In
particular, atR,0.5, this relationship is approximately de-
scribed byT52p (110.24R2). This increase is a useful

fact in considerations of forced vortex motion. In particular,
consider time-periodic forcing with periodt52p/V and
bounded byd, i.e.,a(t)5a(t1t),uau,d. Then, most of the
periodic orbits persist in the forced case for small enoughd.
This persistence can be shown using Moser’s version of the
KAM theorem30 and using the fact that]T/]R.0. In other
words, the vortex motion will be periodic starting from most
initial conditions if time-periodic forcing is small enough.
Hence, vortex that starts at the equilibrium point will not
drift far from it at any time, assuming again small time-
periodic forcing, However, the motion of the vortex can be-
come chaotic starting from some initial conditions. These
initial conditions are close to resonant periodic orbits for
which the period of unforced motion and the period of the
forcing are rationally related.

Most numerically computed vortex motions with forcing
frequency V51 seem to be nearly quasiperiodic with a
dominant frequency nearV51 and a beat frequency which
scales with the inverse actuation amplitude 1/d ~see Figs. 4
and 5!.

D. Controlled motion

In this section, controllability of vortex motion is shown
and control laws for the actuation amplitudea are derived.

FIG. 2. Natural vortex motion of the point vortex in a strain field. The fixed
point at ~1,1! is indicated by a solid circle.

FIG. 3. PeriodT vs amplitudeR of natural vortex motion~see Fig. 2!.

FIG. 4. Trajectory of periodically forced vortex motion witha50.2 sin(t).
An infinitely long trajectory fills a nearly triangular region. The fixed point
of natural vortex motion is indicated by a solid circle.

FIG. 5. Amplitude of periodically forced vortex motion witha50.2 sin(t).
The x coordinate is shown as a function of timet.
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In the pioneering mixing study of Rom-Kedar, Leonard,
and Wiggins,12 actuation of the vortex pair is assumed to be
periodic. In the present study, we want to prescribe a much
larger class of vortex motion by control laws for actuation as
a function of time and vortex position,a5a(xv ,yv ,t). This
class includes periodic motion at arbitrary frequencies and at
arbitrary not necessarily small amplitudes. The goal can be
achieved in the framework of control theory.31,32 The key
element of the strategy is finding a transformation into the
so-called flat coordinates

z15a1~xv ,yv!, ~11a!

z25a2~xv ,yv!, ~11b!

such that Eq.~7! can be expressed in the form

ż15z2 , ~12a!

ż25p~z1 ,z2!1a q~z1 ,z2!. ~12b!

Thus, the first flat coordinate can be prescribed by an
arbitrary function of timez15z1

d(t). The first derivative cor-
responds to the second flat coordinatez2

d5 ż1
d . Equation~12!

represents the controlled vortex dynamics and any such vor-
tex motion (z1

d ,z2
d) is easily seen to arise by imposing the

control law

a5
ż2

d2p~z1
d ,z2

d!

q~z1
d ,z2

d!
, ~13!

provided thatqÞ0.
Differentiation of the first coordinate~11a! and employ-

ing Eq. ~6! yields

ż15L fa11aLga1 ~14!

with Lie derivativesL fa1ª f 1 ]xv
a11 f 2 ]yv

a1 and Lga1

ªg1 ]xv
a11g2 ]yv

a1 . Comparing Eq.~14! with Eq. ~12a!
implies Lga1[0 andz25L f a1 , since the first transformed
equation~12a! does not containa. Geometrically, the first
condition requires that the gradient of the flat coordinatez1 is
everywhere perpendicular to the forcing fieldg, or, equiva-
lently, that z1 is a function of the stream functionCa

5xv yv .
Equation~7! can be brought into flat form by straight-

forward computations. The transformation is given by

z15xvyv , ~15a!

z25
yv

22xv
2

r v
2 , ~15b!

the inverse map being

xv5Az1 S 12z2

11z2
D 1/4

, ~16a!

yv5Az1 S 11z2

12z2
D 1/4

. ~16b!

Figure 6 illustrates the flat coordinates.
The dynamics in flat coordinates are described by

ż15z2 , ~17a!

ż25p1aq, ~17b!

where p524 xv yv (xv yv21)/r v
4 and q524 xv

2 yv
2/r v

4 .
Hence, vortex motion is controllable. In other words, the
vortex can be moved from an arbitrary point (z10,z20) at
time t50 to another arbitrary point (z1t ,z2t) during the ar-
bitrary time t5t by prescribing a functionz1

d(t) such that
z1

d(0)5z10, ż1
d(0)5z20, andz1

d(t)5z1t , ż1
d(T)5z2T . Then,

controllability follows by applying the control law~13!,
sinceq does not vanish in the domainxv ,yv.0.

The control law~13! has to be enhanced by stabilizing
feedback terms to account for transient behavior,

a5
ż2

d2p~z1 ,z2!2k1~z12z1
d!2k2~z22z2

d!

q~z1 ,z2!
. ~18!

The coefficientsk1 , k2 must be chosen such that the devia-
tions e15z12z1

d , e25z22z2
d tend to zero with increasing

time. The dynamics of the tracking error with the modified
control law ~18! can be derived from Eq.~17!,

ė15e2 , ~19a!

ė252k1e12k2e2 . ~19b!

A particular choice of feedback gainsk1 andk2 that make the
tracking errorse1 ande2 decay can be obtained as follows.
Let e15e2lt, then Eq.~19a! impliese252l e2lt and from
Eq. ~19b! the coefficients are given byk15l2 and k2

52 l. In principle, the controlled vortex motion~17! and
~18! can be analytically described by the inverse map~16!
for the vortex position and the solution in terms of flat coor-
dinateszn5zn

d1en , n51,2. The inverse map can generally
not be analytically expressed and the evolution equation~7!
is solved numerically employing the control law~18! as a
function of the flat coordinateszn5an(xv ,yv), n51,2.

A generalization forN-vortex motion and more general
actuation is proposed in Appendix A.

FIG. 6. Isolines of flat coordinates. The hyperbolae represent
z150.5,1,1.5,...,8.5. The distance from the origin increases with thez1

value. The rays representz2520.9,20.8,...,0.9. The angle from thex axis
increases with thez2 value. The intersection point of the linesz151 and
z250 is the fixed point~1,1! ~solid circle!.
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IV. NATURAL MIXING

In this section, mixing is analyzed for natural vortex
motion with amplitudeR50.5. Without loss of generality,
we assume in all results that the vortex crosses thex5y axis
in clockwise direction at timet50. First ~Sec. IV A!, the
topology of the flow field is briefly described. In Sec. IV B,
the resulting fluid particle motion is classified. This motion is
characterized in terms of the invariant manifolds of a Poin-
caré map ~Sec. IV C!. Finally ~Sec. IV D!, a measure for
mixing is proposed based on the analysis of the preceding
sections.

A. Flow field

Mixing is considered for natural vortex motion
(xv(t),yv(t)) at amplitudeR50.5 @see Eq.~10!#. At all in-
stants, the velocity field has three instantaneous stagnation
~zero-velocity! points, one at the origin, one on thex axis,
and another one on they axis. The two time-dependent stag-
nation points on thex and they axis are connected by a
streamline, the so-calledinstantaneous separatrix. The sepa-
ratrix is employed to define theinstantaneous recirculation
zonebounded by thex axis, they axis, and the separatrix. In
this recirculation zone, the streamlines are closed orbits con-
taining the vortex in its interior. Outside the recirculation
zone, the streamlines converge to thex and they axis. The
direction of the flow is everywhere in the clockwise direction
with respect to the vortex. The topology of the flow field is
the same as for the equilibrium position~see Fig. 1! at all
instants. The circulation zone is numerically found to be
stretched in the same direction as the vortex displacement. A
detailed analysis of the flow field in dependence of the vor-
tex position is given in Ref. 28.

B. Fluid particle motion

Under steady conditions, i.e., if the vortex is located at
its equilibrium position~1,1!, the pathlines of the fluid par-
ticles coincide with the streamlines. Under the considered
periodic vortex motions, the fluid particle follows the stream-
line only locally at a given instant. Generally streamlines and
pathlines are different.

A numerical study indicates that all fluid particles move
around the vortex in clock-wise direction in alignment with
the instantaneous velocity fields described in Sec. IV A. The
fluid particles can be classified in dependency of the amount
of revolutionsL around the vortex following a similar sug-
gestion of Ref. 12. This number of loopsL is defined to be
the number of intersections of the fluid particle path with the
time-dependent ray~half-line! starting from the vortex with
an inclination of 225°. In other words, the amount of revo-
lutions is the amount of the eventsxp2xv5yp2yv,0. It
should be borne in mind that the fluid particle passes through
this ray always in clockwise direction around the vortex. The
amount of revolutions is denoted byL1, if the fluid particle
is considered at all times (t.0) and byL2 if the fluid par-
ticle is considered at (t,0). L0 shall be unity if xp2xv
5yp2yv,0 at t50 and vanishes otherwise. Evidently,L0

51 on the xp5yp<xv(0)5yv(0)'1.301 due to the as-

sumed initial vortex position. The amount of revolutions dur-
ing the complete history2`,t,` is given by L5L1

1L21L0.
If L50 or L5` the fluid particle is considered free or

trapped, respectively. Otherwise, i.e., 0,L,`, the mixing
fluid particle revolves a finite amount of time around the
vortex before it escapes. Figure 7 shows examples of free,
mixing, and trapped particles. A similar classification has
been proposed for the perturbed vortex pair in uniform
flow.12,33

Figure 8 displays a map ofL1 as a function of the fluid

FIG. 7. Pathlines of free~top!, mixing ~middle!, and trapped~bottom! fluid
particle. The fixed point is indicated by a solid circle. The orbit of the vortex
motion is illustrated by the thin closed curve.
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particle position (xp ,yp) at t50. The map ofL2 is symmet-
ric to L1 with respect to the bi-sectorx5y. The map ofL
can now easily be pictured as the sumL11L21L0. The
free particles are located sufficiently far from thex and they
axis and outside a nearly circular region centered at the ori-
gin with a radius of about 2.65. The trapped particles are in
a nearly circular region centered around the initial condition
of the vortex,xv5yv'1.301. The remaining particles are of
the mixing type, i.e., spend a finite number of rotations
around the vortex and then escape.

The map in Fig. 8 depends on the initial vortex position
at t50. Yet, the main characteristics of the map are pre-
served at other initial vortex positions on the periodic orbit.

C. Poincaré map

The dynamics of the fluid particles are described by a
nonautonomous dynamics~9!. For natural or controlled vor-
tex motion with periodT, the resulting velocity field has the
same periodicity, i.e.,

ẋp5F~ t,xp!,

where F(t,xp)5F(t1T,xp) for all xpPD. This dynamics
may be characterized by a Poincare´ map fromD into D,34

x!5F~x!, ~20!

wherex represents the initial conditionxp5x at time t50,
andx! is the fluid particle positionxp at time t5T.

At small amplitudes, the Poincare´ map has~at least!
three fixed points, one at the origin, onexs on thex axes, and
onexu on they axis ~see Fig. 9!. These hyperbolic points of
the Poincare´ map persist under perturbation. For notational
brevity, we occasionally refer toxs (xu) as the stable~un-
stable! fixed point according to the corresponding stability
property of the wall-normal direction. However, both fixed
points have stable and unstable directions aligned with thex
axis andy axis, respectively.

The fixed pointxs (xu) has a stable~unstable! manifold
Ws(xs) (Wu(xu)) extending into the domain. Fluid particles
which are on the stable~unstable! manifold at timet50 will
stay on this manifold at all positive~negative! integral mul-
tiples of the periodt5nT, n51,2,... (n521,22,23,...).
The manifolds intersect each other infinitely many times near
the fixed points.34 The fixed points and invariant manifolds
can be shown to be symmetric with respect to the bi-sector
x5y, since the vortex motion has the same symmetry and
since the initial position of the vortex is on thex5y line.

In particular, the invariant manifolds share a primary in-
tersection pointq on the bi-sectorx5y ~see Fig. 9!. Follow-
ing @Ref. 12, Fig. 10~a!#, this point is used to define the
recirculation regionA. Let xuq (xsq) denote the arc on
Wu (Ws) from xu (xs) to q. The recirculation regionA is
defined as the interior of the closed curve consisting of the
arcsxuq, xsq and the sections on the axis from0 to xu and
from 0 to xs . The free-stream region is denoted asB.

The lobes of both manifolds must divide the first quad-
rant QI in infinitely many areas. A topological analysis can
reveal how fluid particles move from lobe to lobe12 using
that a particle on an intersection point ofWs(xs)ùWu(xu)
must remain on this set and can only be mapped on another
intersection point. Two of these lobes can easily be identified
in Fig. 9: an entrainment lobeE near thex axis and the
detrainment lobeD at they axis~compare with Fig. 5 of Ref.
12!. Fluid particles starting att50 in D are in the free-
stream regionB one period later, while fluid particles located
in E came fromB one period earlier. Figure 10 displays
pathlines of selected fluid particles: two mixing particles
starting att50 in the lobesD, E and one trapped particle
starting in regionF.

A rigorous analysis of the lobe dynamics, like in Ref. 12,
exceeds the scope of the present study. The following com-
ments may illustrate the implications of Ref. 12 to Shu’s
recirculation zone model. Note that the other primary inter-
section pointsWsùWu are very close to the fixed points.

FIG. 8. Free, mixing, and trapped flow region for natural vortex motion with
amplitudeR50.5. The curves display the boundary between the~integral!
number of revolutionsL1 of a fluid particle around the vortex starting with
initial position (x,y) and integrated att.0. Trapped particles revolve infi-
nitely long around the vortex (L15`). The solid circle represents the fixed
point.

FIG. 9. Principal sketch of the Poincare´ map including the fixed points on
the axis,xs , xu , the invariant manifolds,Ws , Wu , and a primary intersec-
tion point qPWsùWu . The Poincare´ map is constructed for natural vortex
dynamics with amplitudeR50.1. The fixed point of the vortex dynamics is
indicated by a solid circle at~1,1!.
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Thus far less lobes can be resolved in Shu’s vortex model as
opposed to the vortex pair representation of~Ref. 12, see
Figs. 3 and 5!. Neglecting other lobes, the area of the en-
trainment and detrainment lobes represent the flux throughA
integrated over one period—at least in the small amplitude
limit. In this limit, the flux can quite generally be shown to
be the sum of the lobe areas divided by one period using
Melnikov’s method.12 For later reference, we call attention to
the intersection region between the primary lobes
GªEùD.

The lobe structure of the Poincare´ map becomes more
involved with increasing amplitude of vortex motion. Figure
11 displays the invariant manifolds at three different ampli-
tudes. The Poincare´ map considered in Fig. 9 is included for
reasons of comparison.

The Poincare´ map ~Fig. 11, bottom! and the amount of
particle revolutions around the vortex~Fig. 8! are associated
with the same natural vortex motion. Apparently, the number
of revolutionsL1 qualitatively resembles the lobe structure
of the stable manifoldWs(xs). A corresponding similarity
can be observed for the residence times of the particles. As a
good approximation, the stable and unstable manifold em-

FIG. 10. Pathlines of fluid particles during one vortex period illustrating the
implications of the Poincare´ map in Fig. 9. The starting point of the fluid
particles is marked by a solid circle and is situated in the detrainment lobeD
~top!, the entrainment lobeE ~middle!, and in the interior regionF ~bottom!.
The equilibrium point~1,1! of the vortex motion and its periodic orbit with
radiusR50.1 is included.

FIG. 11. Invariant manifolds of the Poincare´ map for natural vortex motion
at amplitudesR50.1 ~top!, R50.2 ~middle!, andR50.5 ~bottom!. The solid
circle represents the fixed point.
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brace the trapped region and the lobes belong to the mixing
region.

D. Mixing measure

The invariant manifolds of the Poincare´ map can be used
to define a mixing measure. The curveC shall consist of the
sections of the invariant manifolds from the fixed points to
the first intersection point, i.e.,xsq andxuq ~see Fig. 9!. At
the considered parameters, the curve is nearly circular and
represents the border between the recirculation regionA and
the free-stream regionB. In the limit of small amplitudesR,
the curveC converges to the steady-state separatrix. With
increasingR, the recirculation region grows as can be in-
ferred from Fig. 11.

Mixing is associated with the behavior of an ensemble of
fluid particles over a finite period of time. In a Hamiltonian
system such as~9! it is known that good mixing occurs for
unsteady perturbations of steady flows in the region near the
separatrix.8 In particular, it can be rigorously proven that
some particles exhibit chaotic behavior. Kolmogorov–Sinai
entropy was recently introduced as a measure of mixing in
zones where flow is chaotic.19 This entropy is for two-
dimensional incompressible systems the integral of positive
Lyapunov exponent over area. This quantity is, in the case of
small unsteady perturbations to a steady flow, monotonically
related to the flux over one period~which is the size of the
lobe!20 and in turn to Melnikov integral.8 Thus, mixing may
be expected to be increased if the fluid exchange acrossC is
increased. In Sec. VI, the characterization of mixing is revis-
ited from a more global perspective.

The instantaneous rate of fluid exchange is quantified by

Q5E
C
ds uunu, ~21!

whereds represents an arc element ofC andun the normal
component of the velocity. A suitable mixing measure^Q&
may be defined by the flux averaged over one period,

^Q&5
1

T E
0

T

dtE
C
dsuunu. ~22!

The flux Q vanishes under steady-state conditions.

V. OPTIMAL MIXING

In Sec. IV, mixing of natural vortex motion is studied
and a flux measure is suggested. In this section, an optimal
mixing problem for controlled vortex motion is posed. First
~Sec. V A!, the mixing problem is defined. In Sec. V B, the
employed numerical methods are described. In Sec. V C, the
mixing enhancements due to control are outlined.

A. Optimal mixing problem

In this section, an optimal mixing problem is posed. This
problem may be motivated by starting with a reconsideration

of the natural vortex motion. The flux~22! in the recircula-
tion zone can be increased without actuation by increasing
the amplitude of vortex motion. Roughly, the flux is propor-
tional to the amplitude. Engineering interest, e.g., in the case
of recirculation zones in a combustor, is to maximize flux
with a upper bound on the level of unsteadiness in flows to
reduce material fatigue and undesirable instabilities. Increas-
ing the flux further at given vortex amplitude requires actua-
tion. Typically, limits on actuation shall assure efficiency.

The bound on the vortex motion shall be expressed in
terms of the amplitude~10!. The amplitude of actuation may
be characterized by a corresponding quantity fora,

Aªmax
;t

uau. ~23!

In addition to the bounds on amplitude and on actuation, the
controlled vortex motion is assumed to be periodic. This re-
striction significantly simplifies the solvability of the prob-
lem.

The setV(V,Rmax,Amax) of permissible controlled vortex
motionsxv(t) is defined by the following four conditions.

~C1! The vortex motion is periodic with prescribed pe-
riod T or, equivalently, with angular frequencyV52p/T.

~C2! The vortex motion is bounded to a circular region
with radius Rmax centered at the equilibrium point, i.e.,R
<Rmax.

~C3! The actuation is bounded byA<Amax.
~C4! The vortex motion and actuation satisfy the evolu-

tion equation~7! with control law ~13!.
The mixing optimization problem consists of finding a

controlled vortex motionxv
opt in V(V,Rmax,Amax) which

maximizes the flux̂ Q& ~22!. It should be noted that the
recirculation region depends on the vortex motion.

The optimization problem may be reformulated in terms
of the flat coordinate, i.e., by exploiting the controllability.
Let z1(t) be the prescribed flat output function, then the sec-
ond coordinate is given byz25 ż1 . The associated vortex
motion is defined by the inverse transformation~16!. The
associated actuationa is given by ~13! realizing that z1

5z1
d .
Let Z(V,Rmax,Amax) be the set of all differentiable func-

tions z1(t) satisfying the following four conditions.
~D1! The flat coordinate has the periodT52p/V.
~D2! The associated vortex motionxv satisfies~C2!.
~D3! The associated actuationa satisfies~C3!.
~D4! The vortex motion and actuation satisfy~C4!.
The optimization problem consists of finding the optimal

flat output trajectoryz1
optPZ(V,Rmax,Amax) which maxi-

mizes the flux̂ Q&.
The equivalence of both optimization problems is easily

seen. Condition~D4! is already fulfilled by construction.
Hence,V(V,Rmax,Amax) andZ(V,Rmax,Amax) are equivalent.
In addition, side constraints~C1!–~C3! and ~D1!–~D3! are
equivalent by construction.

Let us consider few limiting cases of the optimal mixing
problem. Natural vortex motion is enforced byAmax50. The
subset of natural motionV(V,Rmax,0) is always nonempty
since the fixed point is contained in it. The optimal vortex
motion is nontrivial if the frequency is realizable,V<1 ~see
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Fig. 3! and if the only vortex motion at prescribed period
satisfiesR<Rmax. On the other extreme, the optimal mixing
problem with unbounded actuationAmax5` is likely to have
no global solution as outlined in Appendix C.

B. Simplex algorithm

The search for a local maxima is carried out by a direct
variational method and exploiting the reformulation in terms
of the flat coordinate. This coordinatez1 is approximated by
a truncated Fourier expansion

z15a01 (
n51

N

@an cos~nVt !1bn sin~nVt !#. ~24!

The associated flux is denoted by^Q& [N] . In the following,
N53 is assumed. Thus, the flux is a function of seven Fou-
rier coefficients,̂ Q&5^Q& [3] (a0 ,a1 ,a2 ,a3 ,b1 ,b2 ,b3) sub-
ject to the side constraints~D2! and ~D3!. For reasons of
simplicity, only symmetric controlled vortex motion with
b15b25b350 is considered.

Optimal local solutions are numerically found using a
variant of the simplex method.35 The side constraints are
incorporated with by a penalty function, i.e., the following
functional is maximized:

Gª^Q&210 H~A2Amax!210 H~R2Rmax!, ~25!

whereH(x) is the Heaviside function withH51 atx>0 and
H50 otherwise.

The amoeba in Ref. 35 hasN12 legs forN11 coeffi-
cientsa0 ,a1 ,...,aN . Initially, all legs are in the permissible
set of Fourier coefficients corresponding toA,Amax and R
,Rmax. This domain is numerically found to be locally con-
vex. The amoeba crawls in the direction of maximum flux.
When the amoeba wants to put one leg over a Heaviside cliff
in Eq. ~25!, it immediately puts the leg back on safe permis-
sible ground following the numerical recipes in Ref. 35.

The algorithm is stable and slow. It should be noted that
each function evaluation requires the computationally in-
volved determination of the unstable Poincare´ manifold to
determine the separatrixC for the flux. Different initial con-
ditions for the amoeba have been tested. All simplex itera-
tions converged to the same Fourier coefficients in the per-
missible range. This behavior indicates that the numerically
found local maxima ofG is either global or has a large range
of attraction.

C. Mixing enhancements

In this section, the numerical solutions for the optimal
mixing problem atRmax5Amax50.5 and for selected frequen-
ciesV are discussed.

Table I enumerates the achieved fluxes^Q& with an op-
timal flat coordinatez1

opt based on expansion~24! with N
53. The vortex motion is illustrated in Fig. 12 for the opti-
mal numerical solutions of Table I. Apparently, the optimal
orbits touch the circular permissible region. From Table I,
also the maximum bound on control can be seen to be as-
sumed by the optimal orbits. The high-frequency buckles in
the orbits increase the actuation and thus contribute to the
flux. At V51.2, i.e., above the range of natural frequencies,
the permitted actuation amplitudesAmax50.5 is not large
enough to yield a more full vortex orbit and the achievable
flux falls sharply. In Appendix C, the effect of the side-
constraints in limitV→` is discussed.

The frequency dependency of optimal flux under the
given side-constraints is shown in Fig. 13. For the natural
frequency range,V,1, actuation increases the flux notice-
ably as compared to natural vortex motion with the same
amplitudeR50.5.

Evidently, a larger flux can be achieved by lowering the
frequency. However, the frequency may also be employed to
control another aspect of mixing, for instance, the residence
time distributions of the fluid particles in the recirculation

FIG. 12. Optimal controlled vortex motions atV50.8, 1, and 1.2 subject to
R<0.5 andA<0.5.

FIG. 13. Averaged flux̂Q& associated with optimal controlled vortex mo-
tions atV50.5 to 1.5 subject toR<0.5 andA<0.5. The horizontal line
refers to the flux associated with natural vortex motion atR50.5.

TABLE I. Optimal vortex motion defined by the flat coordinatez1
opt(t)

5(n50
3 an cosnVt. The solution of the optimal mixing problem assumes the

bounds on the vortex and control amplitude, i.e.,R5Rmax and A5Amax,
respectively.

V 0.8 1.0 1.2

a0 1.1294 1.1049 1.1353
a1 0.5894 0.5827 0.4152
a2 20.0566 20.0608 0.0176
a3 0.0655 0.0435 0.0129
R 0.5 0.5 0.5
A 0.5 0.5 0.5
^Q& 2.3417 2.0736 1.1469
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zone A. The residence timet is defined as the total time
which a mixing particle spends during its history2`,t
,` in the recirculation region. Only mixing particles are
considered which are inA at t50. Thus, the escape of par-
ticles can be monitored. Figure 14 shows the probability den-
sity functions~PDF! based on an ensemble of 5003500 par-
ticles in the region 0,x,y,3. The PDFs are normalized so
that the integral over the complete distribution is the ratio of
the mixing region to the complete recirculation zone. The
average residence time is indicated by the thin vertical line in
Fig. 14. This time increases with increasing frequency.

Flux and residence time behavior can be explained with
the Poincare´ maps associated with the optimal vortex motion
~Fig. 15!. The area of the lobes indicate the mass ejected per
period. This area atV50.8 is significantly larger than the
one atV51.2. Hence, the flux atV50.8 can be expected to
be larger, even correcting for the smaller period atV51.2.
At V50.8 and 1.0, the overlap regionGªDøE represents a
significant portion ofD andE. Particles inG have been ab-
sorbed from the free-flow regionB less than a period ago and
are ejected toB during the next period. Hence, the residence
time t of these particles inA is between 0,t,2 T, say,
around one period. The large overlap regionG thus explains
the pronounced single maximum in the residence time PDF.
At V51.2, the overlap region is small and a significant por-
tion of the fluid in the entrainment lobeE ~see Fig. 9! has to
wait at minimum another period before it moves to the de-
trainment lobeD where it gets ejected in the following cycle.
Hence, the PDF has two pronounced maxima associated with
areasDùE ~first maxima! and withE–D ~second maxima!.
The PDF is also flatter partially due to the larger residual
regionA–D–E–F.

Rom-Kedar, Leonard, and Wiggins12 observe signifi-
cantly longer residence times over dozens of periods for their
periodically perturbed vortex pair. The difference can be ex-
plained by the large amount of dynamically relevant lobes in
their Poincare´ map. In contrast, the displayed Poincare´ maps
for Shu’s model appear to be dominated by two lobes and
their overlap region. In a later study, Rom-Kedar and Poje33

prove that the flux vanishes in the limitsV→0 andV→`
for a large class of Hamiltonian dynamics, including the vor-
tex pair model. These aspects are considered in Appendixes
B and C.

FIG. 14. Residence time distributiont of mixing particles under natural
~top! and optimal vortex motion~below! at V50.8, V51, andV51.2. The
thin vertical line indicates the average residence time. The recirculation
region is defined by the Poincare´ map for the associated vortex motion. The
considered fluid particles start in the recirculation region att50. The PDFs
are normalized to yield the area of the mixing particles upon time integra-
tion.

FIG. 15. Same as Fig. 11, but for optimal vortex motion atV50.8 ~top!,
V51 ~middle!, andV51.2 ~bottom!.
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VI. MIXING CHARACTERIZATION

In this section, the flux-based mixing optimization in
Sec. V is related to other mixing characterizations and goals.
While the employed mixing measure is elegantly related to
the Poincare´ map analysis, it may not be aligned—even
contradict—other mixing goals. In Sec. VI A, the qualitative
implications of mixing, i.e., stretching and folding, are illus-
trated for the recirculation zone. In Secs. VI B and VI C,
Eulerian and Lagrangian measures of stretching are dis-
cussed. In Secs. VI D and VI E, good mixing between two
fluids and two regions is quantified for the recirculation
zone. Finally~Sec. VI F!, a refined mixing measure is pro-
posed for combustor-related problems. All results presented
in this section refer to the optimal vortex motion of Sec. V C
at frequencyV51 and oscillation amplitudeR50.5 if not
stated otherwise.

A. Qualitative consideration of stretching and folding

The qualitative implication of mixing is a process with
stretching and folding of fluid particles.6,7 Figure 16 illus-
trates this process for a material line of fluid particles. The
material line is released on a section 0<x<0.2 of the hori-
zontal liney53 at t50. Evidently, this curve experiences a
significant amount of stretching before fluid particles get
folded in the mixing region. In contrast, material lines out-
side the mixing region are only stretched by the dominant
stagnation point flow and are not folded.

Typically, the stretching and folding process of laminar
flow in a closed domain is associated with a nonvanishing
shear rate of the velocity field, with an exponential diver-
gence of infinitesimally close fluid particles, and with a more
uniform distribution of initially distinct groups of fluid par-
ticles. While all these properties are typically desirable, the
attempt to quantify good mixing is a difficult and subjective
undertaking.6,7

B. Eulerian stretching measures

A necessary but not sufficient condition for a good fluid
mixer is a nonvanishing strain rate of the velocity field. An
example of a good mixer is Aref’s blinking vortex model.5

An example of a bad mixer is a single Oseen vortex in am-
bient flow, since the fluid particles cannot escape the circular
streamlines.

The Okubo–Weiss parameter is often used to discrimi-
nate between good and bad strain rates. For planar flow, this
parameter is defined as the determinant of the velocity Jaco-
bian,lªdet(¹u). The parameter is positive for regions with
solid-body-like rotation and small fluid exchange and is
negative for saddle-point-like regions which enhance stretch-
ing. Figure 17 illustrates the time-averaged Okubo–Weiss
parameter for the recirculation-zone model. Evidently, the
valley of this parameter follows closely the orbit in Fig. 12.
This behavior is not surprising, since the instantaneous pa-
rameter has a sharp singularity at a potential vortex which
scales withr 24, wherer represents the distance to the vor-
tex. For the numerical computation, the vortex has been
regularized by a Rankine core of radius 0.05.

Hence, the Okubo–Weiss parameter does not appear
very useful for characterizing mixing in the recirculation
zone. This parameter may be more appropriate for less sin-
gular vorticity distributions, for instance a von Ka´rmán vor-
tex street.

C. Lagrangian stretching measures

Eulerian stretching measures like the Okubo–Weiss pa-
rameter can be conveniently computed. However, the long-
term effect of stretching on individual fluid particles is more
adequately quantified by a Lagrangian quantity. This quantity
follows the fluid particles and monitors their neighborhoods
over a period of time. The most prominent example is the
largest Lyapunov exponent.

The infinite-time Lyapunov exponent characterizes well

FIG. 16. Stretching and folding of a material fluid particle line att/T50,
0.2, 0.4, 0.6, 0.8, and 1. The vortex motion is the solution of the optimiza-
tion problem atRmax50.5 andV51. The thickness of the material curves
decreases with increasing time. The equilibrium point of the vortex at~1,1!
is indicated as a solid circle.

FIG. 17. Averaged Okubo–Weiss parameter for the vortex motion of Fig.
16. The value of this parameter is indicated as an interpolated gray tone
from white at 0 to black at22000 or less. The equilibrium point of the
vortex at~1,1! is indicated as a solid circle.
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the stretching in a finite domain of which the fluid particles
cannot escape. For the mixing particles of the recirculation
zone, these exponents adopt the valuek of ~1!, i.e., charac-
terizes the stretching of the far-field stagnation point flow
dx/dt5kx, dy/dt52kx. For a finite mixing region in uni-
form flow, the exponent even vanishes for almost all fluid
particles.12 The applicability of finite-time Lyapunov expo-
nents has been studied extensively by Rom-Kedar, Leonard,
and Wiggins.12 Those authors suggest the stretching ratio of
fluid particles before and after the mixing zone as an alter-
native mixing measure to the Lyapunov exponent. This ratio
is, of course, preserved in uniform free stream motion. In
Shu’s model, however, such a definition is complicated by
the saddle point flow in the far field, i.e., a continued stretch-
ing outside the mixing region. Thus, any finite-time stretch-
ing analysis for Shu’s model has a large subjective bias. We
shall not pause to carry out such a study.

D. Two fluid mixing

The discussions of the preceding sections directly relate
to the stretching and folding of fluid particles. A variety of
flow control applications target more specifically at a good
mixing between two kinds of fluids. For instance, boundary-
layer separation in an adverse pressure field may be delayed
by a good mixing between high-momentum fluid of the free
stream with the low-momentum fluid in the near-wall
region.1 In a combustor, as another example, good mixing
shall be achieved between the incoming cold and fuel rich
fluid and the hot combustion products in the recirculation
region.

A necessary but not sufficient condition of efficient two-
fluid mixing is a nearly constant concentrationc of each
specimen. A uniform distribution maximizes the information
entropy

Iª2E dV c ln c, ~26!

which can thus be taken as a quality measure.19,36

Targeting combustion-related problems, the entropy~26!
with the mixing particle concentration may be taken as an
alternative measure. Lett(x0 ,y0 ,t0) be the residence time of
a fluid particle passing throughx5x0 at time t5t0 . This
residence time accumulates all periods of times inA during
the whole life of the particle2`,t,1`. The characteris-
tic function for the mixing particles is given by
x(x0 ,y0 ,t0)51 if t(x0 ,y0 ,t0).0 and zero otherwise. The
concentrationc is defined by the time average of the charac-
teristic function,

c~x,y!ª^xc~x,y,t !&. ~27!

Figure 18 visualizes the concentration distribution. The
concentration vanishes around the equilibrium point of the
vortex and in the free stream. The distribution has a hill
around the core and near the axes. The figure indicates a
smooth decline of the concentration near the inflowy53.
Particles released in the interval 0.5,x,1 may or may not
be entrained inA depending on the instant of the release.

The entropy I based on this concentration decreases
from 1.37 for natural vortex motion atR50.5 to 1.13 for
optimal vortex motion atR50.5 andV51. In other words,
the optimization of the flux by actuation leads to a decrease
of the uniformity measure, indicating an inverse correlation
between both quantities. Indeed, the integral~26! is corre-
lated with the area where the concentration is near the maxi-
mum of c ln c on 0<c<1, i.e., nearc'1/e. For open flow
problems, the flux due to mixing particles need not be related
to the entropy. An enhanced entropy may, for instance, be
caused by more unsteady lumps of mixing particles which do
not entrain other fluid. For confined flow, however, an instan-
taneous entropy measure has successfully been employed to
monitor mixing enhancement.36 Like the Lyapunov expo-
nent, the entropy may be more adequate for the characteriza-
tion of confined flow.

E. Two region mixing

The underlying assumption of the two-fluid consider-
ation is that their properties become homogenized by stretch-
ing and folding, while the fluid particle advects its un-
changed property. A related view is a flux between two
regionsA and B. Here, the underlying assumption is a de-
sirable transformation of a fluid-particle property as it passes
from one region to another one. An example is, again, the
combustor, where the fuel-rich cold fluid from the oncoming
flow B shall ignite as it passes in the hot recirculation region
A. In this framework, the flux appears a good candidate for a
mixing measure.

From a chemical perspective, the residence time of a
fluid particle in the dead-water regionA is an important
parameter. If the residence time is larger than the ignition
time, the particle has undergone the desired transformation
from a cold to a hot particle. Figure 19 displays the
residence-time distributiont(x,y,t) of all fluid particles
which are inA at timet50. The nearly circular core around

FIG. 18. ConcentrationcC(x,y) of mixing particles for the vortex motion of
Fig. 16. The value of the concentration is indicated by an interpolated gray
tone from white at 0 and black at 1. The equilibrium point of the vortex at
~1,1! is indicated as a solid circle.
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the vortex equilibrium point has an infinite residence time. In
contrast, the large white banana-shaped region represents a
region with small residence timet,T/2. The resulting PDF
of the residence time of all mixing particles has been dis-
played in Fig. 14 and been discussed in Sec. V C. It should
be noted thatt(x,y,0) is symmetric with respect to the bi-
sectorx5y, since the residence time comprises the past and
the future of the particle inA. In contrast, the loop number
distributionL1 in Fig. 8 is asymmetric since only the future
t.0 has been considered.

Figure 20~top! illustrates the depletion of fluid particles
which were initially in the recirculation zoneA. The deple-
tion functionF(t) is defined as the ratio between the area of
fluid particles which are inA at timet and the corresponding
area at the initial instant.F converges to a finite value which
is the ratio between the core defined byt(x,y,0)5` and the

recirculation region. Evidently, the enhanced flux by control
action has decreased the amount of trapped particles as com-
pared to natural vortex motion which is indicated by the thin
line.

Figure 20 ~bottom! illustrates the depletion function
Fc(t)ª(F(0)2F(t))/(F(0)2F(`)) containing only the
mixing particles. In a good approximation, the decay is ex-
ponential with a half-time of 0.93T. For natural vortex mo-
tion, the decay is smaller and does not follow an exponential
law. An analogous mixing analysis of the perturbed vortex
pair also yields parameters with and without exponential de-
cay ~see their Figs. 16 and 17 in Ref. 12!.

F. A refined mixing measure

The mean flux̂ Q& through the recirculation zone is in-
duced by mixing or by trapped particles. Free particles have,
by definition, a vanishing residence time inA and can thus
not contribute to the flux. Mixing particles enteringA will
eventually leaveA and thus contribute two times to the flux.
Hence,̂ Q&/2 is the upper bound for the flux of new particles
enteringA.

This conditioned flux̂ Q&c can be expressed in terms of
the characteristic function,

^Q&cª2K E
0

`

dx v~x,yinflow ,t !xc~x,yinflow ,t !L . ~28!

The inflow boundary has been set toyinflow53 which guar-
anteesv,0 at all times and is well above the recirculation
region. However, the definition is independent ofyinflow as
long as no backflowv,0 can occur. In addition, thex inte-
gration in~28! can be restricted to 0<x,3, sinceu.3 at all
x>3, y>0. In other words, no fluid particles released atx
.3 and y53 will enter the recirculation region, i.e., the
characteristic functionxc(x,3,t) vanishes identically.

The conditioned flux is numerically computed by con-
tinually releasing fluid particles at the inflow boundaryy
53, 0,x,3. The particle passing thex interval @x,x1dx)
in the time interval@ t,t1dt) has the area2v(x,3,t) dt dx.
The resulting conditioned flux is 90% of the upper bound
^Q&/2. This implies that only 10% of the flux are induced by
mixing particles passing through the recirculation region
more than once or by trapped particles.

The conditioned flux elucidates that the chosen ensemble
of considered fluid particles can effect the mixing measure.
Figure 21 displays the ensembles considered so far.

~i! An ensemble of mixing particles which are released at
the inflow boundaryy53 at 0<t,T, calledflux en-
semblein the following.

~ii ! A Poincaréensemble of mixing particles released in
the x,y plane att50.

~iii ! A statistical ensemble of mixing particles released at
0<t,T in the x,y plane.

The Poincare´ ensemble dominates the current study
since mixing can be described and understood in terms of the
lobe dynamics. The statistical ensemble has been employed
for the concentration study of Sec. VI D.

FIG. 19. Spatial residence time distributiont(x,y) for the vortex motion of
Fig. 16. The contour curves representt/T50.5,1,1.5,2,...,10. Theequilib-
rium point of the vortex at~1,1! is indicated as a solid circle.

FIG. 20. Depletion of particles from the recirculation zone for the vortex
motion of Fig. 16~thick line! and the natural vortex motion with the same
amplitude ~thin line!. The top figure displaysF, and the bottom one
log10 FC .
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The effect of the choice of the ensemble can be signifi-
cant. This is shown in Fig. 22 for the distribution function
P(t) of the Poincare´ and flux ensemble. This functionP(t)
is the normalized integral over the PDF and specifies the
percentage of particles with residence timest,t. The aver-
age residence time of the mixing particles of the Poincare´
ensemble is 2.25T whereupon the corresponding value of
the flux ensemble is 0.66T. The flux ensemble comprises
also many mixing particles released at the inflow sectiony
53, 0.5,x,1 around t'0.5 which briefly scratch the
boundary of the recirculation zone and thus reduce the resi-
dence time. These particles are not contained in the present
Poincare´ ensemble focusing on the timest5nT, n5¯ ,
21,0,11,... . It may be noted that this discrepancy is largely
an artifact caused by the definition of the mixing particles via
t.0 in a more or less arbitrarily defined recirculation re-
gion. The discrepancy is much smaller if only fluid particles
with a nonvanishing and finite number of loopsL around the
vortex are counted. The characteristic function in the condi-
tioned flux may be easily be tuned to include only those
particles of interest, e.g., particles with 0,L,` instead of
0,t,`. In the small-amplitude limit, both considerations
may coincide under suitable conditions.

In addition to the choice of the ensemble, the definition
of the recirculation zone has to be revisited if no Poincare´
map is available, e.g., for nonperiodic flow. In this case, we
suggest following definition of a recirculation region: the
interior part of the boundary curve of this region shall~i!
connect thex and y axis, ~ii ! enclose the vortex, and~iii !
minimize the time-averaged flux with respect to infinitesimal
curve deformations. The influence of the chosen ensemble
and chosen definition of the recirculation region on the given
mixing measure requires an extensive parametric investiga-
tion and might serve as an inspiration of some future studies.
This definition of the recirculation zone, the flux ensemble,
and the conditioned flux~28! can be applied to a large class
of periodic and nonperiodic flows.

VII. TRACKING WITH OBSERVATION-BASED
FEEDBACK

The feedback flow control of the preceding sections re-
quires the knowledge of the vortex position at all times
~complete information control!. In this section, an observer is
designed which determines the vortex position (xv ,yv) from
a single-component fluid velocity sensor near the wall. Thus,
a single-input control based on wall measurements may be
designed. A global observer for all velocity position is diffi-
cult to construct because of the level of nonlinearity in the
vortex model. Hence, we trade globality for simplicity and
for robustness and develop in Sec. VII A a constant structure/
gain observer that will be valid in a neighborhood of the
equilibrium point (xv ,yv)5(1,1). That neighborhood will
be large enough to include optimized reference vortex trajec-
tories. In Sec. VII B, a simple dissipative controller will be
used to drive the vortex from the far field to the observer
domain. This controller does not need an observer. In Sec.
VII C, the switching algorithm between the near-field ob-
server and far-field controller is outlined. More details are
provided in Refs. 37 and 38.

A. Observer design

In this section, an observer is designed based on a lin-
earization around the equilibrium point of the vortex motion
~1,1!. Let (u,v) denote the~normalized! Cartesian compo-
nents of fluid velocity. In our viscosity-free idealization, a
fluid velocity sensor will be located at a wall point~a,0!, a
.0. The transversal componentv vanishes because of the
no-penetration condition. The tangential velocity component
u is given by

u5]y~11a!Cc1Cv)ux5a, y50

5
1

2
~11a!a2

8axvyv

~xv
21yv

21a2!224a2xv
2 . ~29!

Since the component (11a) a/2 of u adds no information,
we shall use a modified definition of the observation signal
U5u2(11a) a/2, where this component is removed.
Moreover, we focus on the selection ofa51, by which the
sensor is closest to the unactuated equilibrium point.

The observer is based on the same flat coordinates used
for tracking control. The dynamic observer is based on the

FIG. 21. Principal sketch of the considered fluid particle ensembles. A mix-
ing particle of a given ensemble has a trajectory with an initial condition
~IC! on the specified plane or in the specified rectangle and which passes the
recirculation regionA at least once.

FIG. 22. Distribution functionP of the residence times of the mixing par-
ticles. The distribution function of the Poincare´ ensemble is compared with
the pendant of the flux ensemble.
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integration of a duplicate of Eq.~17! adding a linear feed-
back term. This feedback term vanishes if the correct loca-
tion in state space has been found and the term corrects the
observer system in proportion of the difference between ob-
served and predicted signal. The dynamic observer reads

ż̂15 ẑ21z1~Û2U !,
~30!

ż̂25 p̂1aq̂1z2~Û2U !,

where the hat ‘‘̂’’ indicates an estimated variable. In particu-
lar, p̂, q̂, andÛ are obtained by evaluatingp, q, andU, at
ẑ1,2 and where the correction termsz i are to be determined
by the measured tracking errordU5Û2U']z1

U•dz1

1]z2
U•dz2 . The simplest option is that of using a constant

linear gain zk(Û2U)52LkdU'2Lk(]z1
U•dz11]z2

U

•dz2). This linearization leads to a small-deviation model
for estimation-error dynamics

d

dt Fdz1

dz2
G5FAe,11 Ae,12

Ae,21 Ae,22
G Fdz1

dz2
G , ~31!

where

Ae,1152L1]z1
U,

Ae,12512L1]z2
U,

Ae,2152S 1

z1
2 ~12z2

2!1L2]z1
U D ,

Ae,2252z2S 11a2
1

z1
D2L2]z2

U.

The selection of gainsLi should stabilize this system. A
heuristic guidance comes from Tadmor and Banaszuk38

where Lyapunov stability analysis is carried out of the frozen
time system, i.e., matrixAe is evaluated at a constant pointz.
It is a basic fact that ifAe,11, Ae,22<0 and not both zero, and
if Ae,12•Ae,21,0 then the frozen time system is stable. The
signs of]z1

U and]z2
U determine what values ofLi bring Ae

to that form. A numerical computation~omitted here! reveals
that both]zk

U, k51,2, are positive over the neighborhood
of interest of the equilibrium point~1,1!. This suggests a
selection ofL150 and of a sufficiently positiveL2 .

Our use of a tentative language is due to the fact that
stability of each frozen time system might not imply~or be
implied by! stability of a time varying/nonlinear system. Lo-
cal stability has thus to be verified by additional analysis or
numerical simulations. Since we are interested in a near-
periodic behavior, our analysis was based on a very low or-
der ~third harmonic! approximate dynamic phasor model39

which was linearized about the reference trajectory. The dy-
namic phasor model describes the dynamics of harmonic co-
efficients in a Fourier expansion over a sliding interval
@ t2T,t#, of a near-T-periodic signal. It is derived from the
original differential equation, governing the time trajectory.
The approximate model is obtained by compression to a few
low harmonics, with inevitable distortions in a highly non-
linear system, such as ours. The advantage of the phasor
model is that each periodic trajectory is represented by a

single point, and linearization about that point is time invari-
ant. This enables stability analysis in terms of eigenvalue
locations, as a function of design gains. Figure 23 depicts the
maximal real parts of these eigenvalues, as a function ofL2 ,
for a number of reference trajectories. As it turns out, its
predictions are conservative. However, it does provide an
indication of stability and guidance for the selection ofL2

P@1,2#.

B. A simple dissipative measurement feedback

In this section, we describe a feedback policy that uses
sensor readings to drive the vortex from the far field into the
observer domain. In the absence of an observer, it is based on
the dynamics of stored energy,

d

dt
~~11a! Cc1Cmv!5ȧCc . ~32!

FIG. 23. The maximal real parts of eigenvalues of the localized phasor
dynamics model as a function of the gainL2 ~with L150) for two nominal
trajectories.

FIG. 24. Plots ofz1 ~solid! and a~low pass filtered! u2ū ~dashed! under
low gain actuation that stabilizes the equilibrium point.
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By Eq. ~32!, any control satisfyingȧCc,0 is dissipative,
and drives the vortex towards the equilibrium point. More-
over, under low-gain actuation and a nearly periodic dynam-

ics, the same holds ifȧ(Cc2C̄c),0, whereC̄c is the aver-
age over a period andȧ is zero mean. Figure 24 showsCc

2C̄c andU2Ū as a function of time. Here,U is a low-pass
filtered version of the observation signal. This filter is based
on a normalized cut frequency of 0.5 rad, or half the nominal
natural frequency of vortex motion, near the equilibrium
point. These trajectories are associated with a trajectory of
the original system that spirals towards the equilibrium point.
The phase match is obvious. During large deviations we thus
implement a low gain negative integral feedbackȧ52d(U

2Ū). In fact, the trajectory used in Fig. 24 was obtained
under this policy.

The following comments concern some practical issues
of that policy. First, it is noted that in order to implement it,
one needs to be able to estimate both the instantaneous pe-
riod of the unactuated~or low-gain actuated! system and of
the instantaneous level of its stored energy. The period is

needed to computeŪ. The level of stored energy is used as
an indication of vortex residence in the domain of observer
stability, and thus, as a trigger for the switch to an observer
based tracking control. A surrogate for the fluctuation level
in ~nearly! periodic motion is the value ofz15Cc , at the
trajectory’s intersection with the ray$z:z250%5$(x,y):x
5yP(0,1#%. Simulations~left out here! reveal monotonous
dependencies of both, the period and the fluctuation level on
the minimum absolute value ofU, over a period. These de-
pendencies can thus be tabulated and used in the suggested
control scheme. Since period length ranges between@2p,
10.5# time units, the minimum ofuUu over an 11 time units
interval is identical to the needed minimum over a period,
and is used for that purpose.

A second issue concerns the fact that the calculatedU

2Ū is not perfectly zero mean. Under pure integration, ac-
cumulated errors will create an undesirable drift ina. As a
matter of standard practice, the pure integrator is replaced by
a low-pass filter@say 1/(s10.1)].

In closing, it is worth noting that the energy shaping
scheme can be utilized also in simple tracking tasks, where
the target orbit is an equipotential orbit of the uncontrolled
system. Examples are provided in Ref. 38.

C. The combined compensator

The combined compensator is based on patching of the
two control modes suggested above. Switching between dif-
ferent controllers is a delicate job, even under more favorable
circumstances, where a detailed observation is available. Is-
sues include stability under the switching procedure and
avoiding chatter. We used a relatively simple hysteretic heu-
ristic for the switching logic, as follows. An indicator for
leaving the observer region is triggered either by the ob-
server state leaving a set neighborhood of~1,1!, or when the
minimum uUu over a fixed period descends below a set
threshold. Two thresholds are used. When the first~higher!
level is crossed, the observer state is considered unsafe for

control decision. The feedback controller then switches to
the dissipative mode, but the dynamic observer continues.
When the lower level is crossed it is concluded that the ob-
server might run into instability, and its dynamics are re-
placed by a stable, oscillatory second-order dynamics with
an equilibrium point atẑ5(1,0), a long time constant and a
period compatible with higher fluctuation levels of the unac-
tuated system. The purpose of the first modes is to safely
return the vortex to the stability zone. The purpose of the
second mode is to safely drive the observer state into the
stability zone. Additionally, a key aspect of the switch
mechanism is a hysteretic delay: a waiting time of about half
a period from the last switch must elapse before the system
returns to the tracking control mode. A shorter waiting time
is imposed for the observer to re-engage, once it was disen-
gaged.

Plots of two closed loop trajectories are depicted in Fig.
25. The optimized tracking references have frequencyV
50.5 andV51. The initial vortex position, in both, is in the
far field; it is first driven to closer proximity of the equilib-
rium point, where the local observer-based tracking control-
ler takes over to produce asymptotic tracking of the reference
trajectory.

VIII. CONCLUSIONS AND OUTLOOK

An idealized problem of controlled fluid mixing has
been examined which shares important flow features and
methodological aspects of realistic applications. One aspect
is that the control affects the velocity field but the objectives
are specified in terms of particle motion. Enhanced mixing
has been achieved in a recirculation zone using a vortex
model for the natural and forced dynamics and employing
control theory to prescribe the vortex motion. Controllability
has been exploited to formulate an optimal mixing problem
under suitable side constraints. Thus, the shape of the orbits
have been modified by control laws to enhance mixing. The
effect of actuation on hydrodynamic mixing has been derived
from the invariant manifolds of Poincare´ maps at periodic

FIG. 25. Closed-loop tracking of a reference vortex orbit. Asterisks, track-
ing reference orbit; bold, actual vortex trajectory.
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vortex motion. For instance, the regions of in- and out-going
fluid, the fluid exchange across the recirculation region, the
region of the trapped fluid, and the residence time distribu-
tion have thus been elucidated.

The present study was inspired by the Rom-Kedar,
Leonard, and Wiggins12 investigation of laminar mixing for a
vortex pair in free stream with periodic actuation and by
studies of Cortelezzi23,24 on studying control of fluid flows
using point vortex methods. It should be noted that the
present corner flow configuration is more complicated, since
we have to consider four real and mirror vortices in a saddle
point potential flow as opposed to only two vortices in
simple uniform flow. Hence, part of the investigations cannot
be carried out with the same analytical rigor. A main distin-
guishing feature of the present approach is the application of
control theory for actuation. Control theory gives access to a
larger class of vortex motion as opposed to periodic forcing
employed in the above-mentioned publication.

The present study allows to enhance time-averaged flux
by more than 25% as compared to natural vortex motion
with same fluctuation amplitude. The higher harmonics in
the flat coordinate contribute to the increase of the mixing
measure. The size of the mixing region and the flux is ap-
proximately proportional to the amplitude of oscillation at
constant frequency. The area embraced by the lobes of both
invariant manifolds increases strongly with increasing ampli-
tude. Thus, the average residence time decreases with in-
creasing flux. At large amplitudes, a larger portion of fluid
particles stays less than one period in the recirculation re-
gion. However, the overlap area between both manifolds can
be decreased at a nearly constant mixing region with small
changes of the frequency. Thus, the flux and the average
residence time can to some extent be independently con-
trolled by suitably choosing the desired vortex motion and
the corresponding control laws. This possibility represents a
clear advantage over the concept of periodic open-loop forc-
ing, in which the frequency difference between the natural
and the forcing frequency may lead to quasiperiodic beat
phenomena. Periodic vortex motion at non-natural frequen-
cies cannot be excited. The class of controlled vortex mo-
tions is significantly larger than the class associated with
periodic forcing and thus allows for the specification of dif-
ferent mixing measures.

A potentially interesting consequence of our work is the
shape of the optimal flux curve that arises from our optimal
mixing setup. Namely, we were able to show that adding a
low frequency modulation to periodic vortex motion can in-
crease flux substantially over longer time scales. Thus, the
perturbation of the system by control does not have to be on
the same~possibly fast! time scale as the natural dynamics of
the system in order for control objective to be reached. This
coincides with results in several experimental setups that we
know of ~A. Glezer, private communication!. However, the
flux is also increased by multiple border-crossings of mixing
particles. A conditioned flux measure is suggested which
takes into account the identity of the fluid particles.

The fluid dynamics of a recirculation region is highly
idealized by the present vortex model. For instance, the
shear-layer dynamics at the upper stagnation point has been

shown to be of large importance at backward-facing
steps40,41 and in dump combustors,42 but this effect is ne-
glected in the present study. Similarly, the non-negligible ef-
fect of turbulent fluctuations is not considered. Qualitatively,
the oscillatory motion of the separating streamline is plau-
sible but the quantitative relationship to a hydrodynamic in-
stability mechanism is not clear. However, experiments of
periodically forced flow behind a backward facing step give
rise to similar periodic velocity fields. This similarity in-
cludes, for instance, the behavior of the instantaneous sepa-
rating streamline and the motion of the lower separation
point.43 Some observed features of the Lagrangian mixing
dynamics can hence be expected to be generic for a large
class of recirculation regions. These features include the fluid
intake near the separation point at the lower wall, the fluid
discharge near the separation point at the vertical wall and
the long~ideally infinite! residence time of the fluid trapped
around the vortex, neglecting viscous and turbulent diffusion
effects. A study of the authors based on a three-dimensional
direct numerical simulation and refined vortex models of the
backward-facing step confirm similar flow and particle
behavior.29 Hence, several conclusions from the present con-
trol study can be expected to qualitatively hold in real flows,
e.g., that an increase of the frequency gives rise to a increase
of the average residence time.

Numerous generalizations of the present framework may
be envisioned and may help to guide industrial applications.
Control of coherent shear-layer structures under longitudinal
and transverse actuation may be investigated in a similar
manner with point vortices or vortex blobs. Present investi-
gations at UTRC44 indicate that the excitation of certain vor-
tex configurations are beneficial for transversal mixing and
pressure recovery in high-Reynolds number diffuser flows.
The control of this process requires understanding of vortex
merger control, a topic pursued in Ref. 45. Actuation em-
ploying control theory for a larger number of vortices might
require a re-formulation in the problem: In the Appendix of
this paper we show that in order to control trajectories ofN
vortices, generallyN actuating potential fields are necessary.
However, control laws need not necessarily depend on a
single vortex position, but may be based on properties of an
ensemble of vortices, of an ensemble of fluid particles, or of
the instantaneous velocity field sensed at one or more
locations.23,24,46 For higher-dimensional vortex methods the
receding horizon technique in which a quantity is optimized
over a finite period of time, might be employed. In addition,
optimization strategies for actuator positions may be carried
out in the present framework. Model-based flow control
based on Galerkin models, and using control theory with
flatness concept is successfully applied to reduce vortex
shedding.47 Current research in this direction is in progress
by many authors.
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APPENDIX A: GENERALIZATION FOR N-VORTEX
MOTION AND MORE GENERAL ACTUATION

The considerations given in Sec. III D can be generalized
to the case of single vortex motion in an arbitrary domain
driven by a potential velocity field with stream functionCa .
The equations of motion for the vortex are given by

ẋv5
]C

] yv
1a

]Ca

] yv
,

ẏv52
]C

] xv
2a

]Ca

] xv
.

The stream function of the control field can again be
chosen as a flat coordinate,z15Ca . The other coordinate,z2

is chosen such thatż15z2 . Thus,

z25$Ca ,C%5
]Ca

] xv

]C

] yv
2

]Ca

] yv

]C

] xv
,

where$Ca ,C% is the notation for a Poisson bracket of func-
tions Ca ,C. The derivative of the second coordinate reads

ż25$$Ca ,C%,C%1a$$Ca ,C%,Ca%.

Thus, the motion of a single vortex in a container of arbitrary
shape under the influence of a potential field with a stream
function Ca is controllable if

$$Ca ,C%,Ca%Þ0 ~A1!

on the domain. Corresponding dynamics and control laws
have also been derived and studied for other local actuations.
The actuators are sources~sinks! on the axes. The no-
penetration condition is violated only at the actuator position
and is enforced elsewhere by mirror sources. The studied
actuator configurations include~a! a source at the origin,

Ca~x!5arctanFy

xG , ~A2!

~b! a source at positivex axis (c,0) with the corresponding
image at (2c,0),

Ca~x!5arctanF y

x2cG1arctanF y

x1cG , ~A3!

and ~c! zero-net flux source-sink combination at (0,c) and
(c,0) with corresponding images,

Ca~x!5arctanFy2c

x G1arctanFy1c

x G1arctanF x

y2cG
1arctanF x

y1cG . ~A4!

The corresponding analytical expressions for the vortex dy-
namics and the control laws can become rather long and we
shall not pause to discuss them.

Another generalization holds for the case ofN vortices
under the influence ofN potential fields, the stream functions
of which are denoted byCa

j , j 51, . . . ,N. The equations of
motion for vortex positionsxv

i , i 51,...,N are expressed by

ẋv
i 5

]C

]yv
i 1(

j 51

N

aj

]Ca
j

]yv
i ,

ẏv
i 52

]C

]xv
i 2(

j 51

N

aj

]Ca
j

]xv
i .

The Hamiltonian vector field corresponding toCa
j is called

control vector field.
In analogy to Eqs.~11! and ~12!, N coordinatesz2i 21 ,i

51, . . . ,N have to be found such that

ż2i 215z2i , ~A5a!

ż2i5pi1(
j 51

N

ajqi
j . ~A5b!

The time evolution ofz2i 21 is described by

ż2i 215(
j 51

N
]z2i 21

]xv
j

]C

]yv
j 2

]z2i 21

]yv
j

]C

]xv
j

1 (
k51

N

ak(
j 51

N
]z2i 21

]xv
j

]Ca
k

]yv
j 2

]z2i 21

]yv
j

]Ca
k

]xv
j .

Examining the above expression, we conclude that the
term multiplyingak vanishes if we find a functionHi that is
an integral of motion forCa

k . Thus, we can setz2i 215Hi .
To have the terms multiplying allak vanish, and to bring the
system in the required form~A5!, N independent functions
Hi , i 51, . . . ,N, we must find which are integrals of motion
simultaneously for the Hamiltonian vector fields generated
by HamiltoniansCa

k , k51, . . . ,N. Then, the equations of
motion acquire the required form~A5! with z2i 215Hi ,i
51, . . . ,n and

z2i5(
j 51

N
]Hi

] xv
j

]C

] yv
j 2

]Hi

] yv
j

]C

] xv
j 5$Hi ,C%.

From

ż2i5$$Hi ,C%,C%1 (
k51

N

ak$$Hi ,C%,Ca
k%,

a sufficient condition for controllability can easily be de-
rived. This condition is a nonvanishing determinant detH
Þ0 where the components of the matrixH are given by
Hik5$$Hi ,C%,Ca

k%. In the caseN51, this clearly reduces to
condition ~A1!.
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The condition on simultaneous integrability ofN control
vector fields ~i.e., the existence ofN functions Hi , i
51, . . . ,N, which are integrals of motion for each control
vector field! seems severe. But, the control vector fields aris-
ing in the context of vortex motion are special as it is imme-
diate that they are integrable: the control HamiltonianCa

k

can be expressed as

Ca
k~xv

1 ,yv
1 , . . . ,xv

N ,yv
N!5(

i 51

N

ck~xv
i ,yv

i !.

Thus, eachck(xv
i ,yv

i ), i 51, . . . ,N is an integral of motion
for the control vector field with HamiltonianCa

k . It is easy
to check that these are also integrals in involution so the
control vector fields are integrable Hamiltonian systems.
This does not mean that the integralsck(xv

i ,yv
i ) can be com-

bined in a simple manner to find joint integrals of motion,
but makes it easier to search for them in examples.

The conditions obtained here are sufficient for controlla-
bility but are not necessary. In general they are too strong, as
control terms are used to overwhelm the natural dynamics of
vortex motion. Less stringent conditions can be obtained by
utilizing natural vortex motion in the control procedure.45,48

A general form for arbitrary potential flow control fields
Ca is given by z15Ca , ż15z25] i( f iCa), ż25p1aq,
where p5] i@ f i ] j ( f jCa)# and q5ai j @] jCa# ] i@]k( f kCa)#
using Einstein summation convention,] i for the partial de-
rivative with respect to thei th component ofxv and the
antisymmetric tensora1252a2151 anda115a2250. For all
considered local actuations, the vortex motion is control-
lable, i.e.,q does not vanish in the domainxv ,yv.0.

APPENDIX B: LOW-FREQUENCY LIMIT OF OPTIMAL
VORTEX MOTION

In this appendix, the low-frequency limit of the optimal
vortex motion is discussed. To simplify the discussion, we
consider a periodic controlled motion which respects all side
constraints of the optimization problem, in particular the per-
missible regionR<0.5 and the actuation boundA<0.5. The
resulting flux thus serves as the lower bound for the optimal
vortex motion in Appendix C. Such a controlled motion is,
for instance, prescribed by the following flat coordinate:

z15F43

48
1
&

4 G1F11

48
1
&

4 G cosVt. ~B1!

A straightforward calculation showsR5A51/2 in the limit
V→0. In that limit, the corresponding controlled vortex po-
sition moves on the bisectorx5y and touches the boundary
of the permissible region att50 and hits the actuation bound
uau<1/2 at t5T/2 whereT52p/V. The vortex motion is
quasisteady, i.e., the position at timet represents the equilib-
rium point of the steady problem~7! under the frozen actua-
tion a(t) at that instant.

At t50, the vortex is located atxv5yv5111/A8 and
the separatrixC, defined by the Poincare´ map~20!, coincides
with the streamlineC50, shown in Fig. 26. Obviously,v
50 on the positivey axis defines the unstable fixed pointxu

of ~20!. By symmetry,u50 speficies the stable fixed pointxs

of that map. Both fixed points are connected by the stream-

line C50. The initial partxuq, xsq of the invariant mani-
folds are well aligned withC50, since the fluid particles
slide from the unstable to the stable fixed point on theC
50 curve in the very end of the diverging period in the limit
V→0. Hence, the instantaneous flux throughC vanishes at
that instant.

At the opposite phase,t5T/2, the vortex is on the op-
posite side of the orbit,xv5yv5A2/3. Figure 27 displays the
vortex position and the streamlines at timet5T/2. The cor-
responding flow field induces a flux of 6.94 throughC. Fig-
ure 27 displays the flux as a function of time. In the quasi-
steady limitV→0, Q depends ont/T independently ofV.
The averaged flux̂Q& is 2.86. This value is above the opti-
mal fluxes displayed in Fig. 13 at 0.5,V,1.5. This value is
the lower bound for the optimized flux in the limitV→0.
Hence, the flux in Fig. 13 must increase towardsV50.

The numerical computation of the recirculation region
with the Poincare´ is very difficult at lowV without simpli-
fying assumptions. The reason lies in the long integration

FIG. 26. Low-frequency limit of controlled vortex motion. The flat coordi-
nate is given by~B1!. The permissible vortex region is illustrated as a gray
circle. The vortex moves on the shown straight bi-sector in the permissible
region. The vortex positions at timet50 andt5T/2 are indicated by open
and solid circles, respectively. The thick circular arcC represents the recir-
culuation region as defined by the Poincare´ map. The thin curves are stream-
lines associated with the vortex position att5T/2.

FIG. 27. Instantaneous flux in dependency of the time for the vortex motion
of Fig. 26. The thin horizonal line represents the average flux.
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times and in the large sensitivity of the fluid particle posi-
tions on the initial condition near they axis.

It should be noted that Rom-Kedar and Poje33 rigorously
prove for the large class of perturbed vortex motions that
^Q&→0 as V→0. This class contains their vortex pair in
uniform flow perturbed by four far-field vortices. All those
vortices are at fixed locations and the circulation of the far-
field vortices serves as the control parameter. Thus, the phe-
nomenon of a free-stream-like flux due to a displaced vortex
at t5T/2 cannot occur in their model. These considerations,
including the hypothesized finite flux in the low-frequency
limit, suggest that the considered variant of Shu’s vortex
model does not fulfill all assumptions posed by Rom-Kedar
and Poje.33

APPENDIX C: HIGH-FREQUENCY LIMIT OF OPTIMAL
VORTEX MOTION

In this section, the high-frequency limit of the optimal
vortex motion is considered. Focus is placed on the effect of
the constraints imposed on the oscillation amplitudeR and
on the actuation amplitudeA. For reasons of simplicity, a
controlled motion with the flat coordinate

z1511a1 cos~Vt ! ~C1!

is studied. The resulting motion has associated oscillation
and actuation amplitudes,R and A, respectively. Figure 28
displays the actuation level as a function ofR andV. Near
the natural oscillation frequencyV'1, the actuation level is
lowest at a given oscillation amplitude. The actuation level
does not vanish, since the natural vortex motion does follow
the prescribed sinusoidal evolution of the flat coordinatez1 .
In the quasisteady limitV→0, the boundA50.5 gives rise
to a finite oscillation amplitudeR'0.25. The boundR
50.5 can be reached by increasing the average value^z1&
like in ~B1! of Appendix B. In the high-frequency limitV
→`, the boundA50.5 appears to lead to a vanishing oscil-
lation amplitudeR. An approximate analytical study~not
shown here! corroboratesR→0 as V→`. At constantR,
the proportionalityA}V as V→` can be numerically and
analytically corroborated.

Two conclusions can be drawn from this section. First, a
flux optimization problem with bounded vortex motion but

unbounded actuation does not seem to be well posed. In this
case, infinite actuation is achieved with infinite control fre-
quency, e.g., by moving to higher and higher harmonics of
the prescribed frequencyV. As the actuation increases with-
out bound, also the flux through any given curve will in-
crease without bound while the vortex orbit shrinks towards
its equilibrium. This ill-posedness of the optimization prob-
lem is plausible, but a rigorous analysis would have to in-
clude the effect of optimization and the change of the recir-
culation region with frequency.

A second conclusion is that the bound on the actuation
reduces the oscillation amplitude and thus the flux at largeV
~see Fig. 13!. In the limit V→`, the vortex orbit shrinks
around its equilibrium point and the flux is only caused by
the finite oscillatory actuation fieldaCa . In this limit, the
time-averaged flux is independent of the oscillation fre-
quency and does not vanish. Again, the nonvanishing flux
limit is a plausible hypothesis which is suggested by the
present study but which still must be rigorously examined.

Rom-Kedar and Poje33 rigorously prove that the flux
vanishes asV→` for a large class of periodically perturbed
vortex motions. Like the low-frequency behavior, also this
high-frequency study corroborates that the present motion
does not seem to fulfill all of their premises~A1!–~A3!.
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