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Abstract Different experimentally validated procedures to synthe-

size closed-loop flow controllers are presented which use the solution

of an optimization problem in various ways. The controller synthesis

or the control laws itself are based on the knowledge of low dimen-

sional models. These range from Galerkin systems as introduced in

other chapters of this volume and identified black-box models to the

most simplest process model which only assumes that some kind of

extremum exists. Numerous experimental results show the power

of extremum seeking control, robust control or model predictive

control in closed-loop flow control applications.

1 Introduction

In addition to the methods shown in the chapter by L. Cordier optimal
approaches are presented here which do not need the solution of a system
of adjoint equations. They focus on the synthesis of closed-loop control sys-
tems in contrast to the open-loop nature of the aforementioned Hamiltonian
approach. By this, the robustness concerning unavoidable disturbances act-
ing on the fluid flow and model uncertainties entering the control law and
existing in every low dimensional model is greatly enhanced. A selection
of control concepts is introduced which uses optimization-based steps in
different aspects and different levels. In model predictive control a value
function considering the future behavior of a process will be minimized ei-
ther analytically in an unconstrained or numerically in a constrained case.
In extremum seeking control and its generalization slope seeking a gradient-
based minimization or maximization is exploited which is purely based on
online available experimental data. Robust control minimizes an H∞-norm
to guarantee robust stability, robust performance and to limit the control
energy spend.

Some of the methods introduced rely on low dimensional models which
are set up to describe the input-output behavior of a process in a black-box
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manner. Here, the central task in model identification is the solution of an
optimization problem to determine model parameters. Galerkin systems,
which are considered as well, may need a calibration of model parameters
which again goes back to an optimization problem. Hence, optimization
methods are abounded in closed-loop control engineering science in general
and in particular in closed-loop flow control.

Although fluid flow systems as described by the Navier-Stokes equa-
tion are inherently nonlinear much can be achieved in closed-loop control
exploiting linear concepts. This partly stems from the fact that in some
applications a controller tries to keep the process near an operating point
around which a linearization gives a good approximation. Moreover, the
basic reason for applying closed-loop control is tackling uncertainty. If no
disturbances would act on a process and the process could be completely
described by a model (which can be solved online) open-loop concept would
suffice. As these assumptions will never be valid outside a simulation study
closed-loop control is a must and uncertainties coming from only roughly
approximating linear model can be tolerated. For this, § 2 recapitulates
some basic facts about linear systems and system identification. Differ-
ent controllers are introduced next starting with the most simple extremum
seeking-type of approach in § 3.1. Linear models are then used in the synthe-
sis of robust and state space controllers in § 3.2. For model-based estimation
techniques necessary to implement such controllers the reader is referred to
the chapter of G. Tadmor in this volume. Finally, different nonlinear con-
trollers, especially model predictive controllers (MPC) are considered in §
3.3. Here the Galerkin system of the flow around a circular cylinder which
is used in other chapters as well will be used inside a MPC scheme. Various
real-life applications are given in § 4 before a comparison is presented in §
5.

A special word is necessary concerning nomenclature in flow control as
two formerly distinct disciplines, namely fluid mechanics and control engi-
neering, meet. As a consequence different important variables in the respec-
tive disciplines are given the same symbols. Most notably u, i.e. u = u(t),
relates to the (scalar) control input / plant input / manipulated variable in
control whereas it represents the time- and space-dependent velocity fluctu-
ation u = u(t, x, y, z) in fluid mechanics. As this chapter would be almost
the only one in this book using its own nomenclature and to help the reader
who is new both to low dimensional modeling and control an adaptation of
the control engineering nomenclature to the fluid mechanics notation would
make sense. However, many good arguments exist as well for using the
control engineering notation in this chapter. To name just a few: 1) Some-
body working in an interdisciplinary field must know and understand the
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meaning of double used symbols from the actual context. 2) This chapter
cannot give a comprehensive introduction in control. Therefore, the reader
has to be referred to control engineering textbooks and articles quite often
which use the standard control engineering notation anyway. 3) This chap-
ter summarizes some of the ideas which had been followed by the authors’
group in the last 10 years. Not all details will be repeated here. Instead,
references are made to different articles where details can be found given
again in control notation. 4) Only very few symbols will be redefined here
in comparison to the rest of the book and will be typeset in a teletype style
which should help reading. A comparison of some important variables is
given in Table 1 to help cross-references.

symbol control symbol fluid mechanics
s Laplace variable s sensor signal
u plant input, u ∈ R

1 u streamwise
velocity fluctuation

u plant input, u ∈ R
p u = (u, v, w) velocity field

x state, x ∈ R
n x unit vector

y plant output, y ∈ R
1 y wall-normal coordinate

y plant output, y ∈ R
q

Table 1. Important symbols in control and fluid mechanics. Control related
symbols will be used in this chapter.

2 Linear systems

Irrespective whether the flow around a bluff body, an aircraft wing, see
Fig. 1, in a turbomachine or the flow and combustion in a burner is consid-
ered, an input-output point of view can be adopted for several approaches
in control. In all cases the system involved reacts to some flow control
inputs, such as periodic blowing or suction, acoustic actuation, magneto-
hydrodynamic forces, by an application-defined output signal. For the bluff
body and the wing it could be drag and/or lift. In turbomachines the noise
emitted might be the interesting output signal in one application and the
pressure increase over a compressure stage in another. The focus in a burner
study might be on pressure fluctuations from a thermo-acoustic instability
or on the NOx-production. Hence, the output has to be newly defined for
every new application.

In the single-input-single-output (SISO) case with a scalar input u(t)
and a scalar output y(t), a linear system can be described by an n-th order
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Figure 1. Wing with flap viewed as a system. The size of a harmonic
blowing at the leading edge of the flap is chosen as the input and the lift
force as output signal.

ordinary linear differential equation with constant coefficients

an
(n)
y (t) +an−1

(n−1)
y (t) + · · · + a1ẏ(t) + a0y(t)

= b0u(t) + b1u̇(t) + · · · + bm
(m)
u (t)

(1)

and appropriate initial conditions. For implementation of algorithms in real-
time and for system identification a discrete-time version of this equation
is more appropriate. The most simplest although not best version starting
from Eq. (1) would be an approximation of the differential operators by
difference operators, such as

ẏ(t)|t=kT ≈
y(kT ) − y((k − 1)T )

T
=

yk − yk−1

T
(2)

with sampling period T yielding

yk + α1yk−1 + · · · + αnyk−n = β1uk + β2uk−1 + . . . βmuk−m+1 . (3)

As a result, the output at the (actual) time k can be expressed as a function
of old outputs and old and actuals controls uk−j , j = 0, 1, . . . , m − 1.

yk = −α1yk−1 − · · · − αnyk−n + β1uk + β2uk−1 + . . . βmuk−m+1 . (4)

For systems from fluid mechanics an additionally pure time-delay d, i.e.
T0 = dT , is very often observed between input and output leading to

yk = −α1yk−1 − · · · − αnyk−n

+β1uk−d + β2uk−d−1 + . . . βmuk−d−m+1 .
(5)
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Hence, the actual input does not directly influence the actual output. This
time-delay is affected by the convection time between the location of the
actuator and the position of the sensor.

Introducing the shift operator q with yk−1 = q−1yk and yk−ν = q−νyk

gives

(1 + α1q
−1 + · · · + αnq−n)yk = (1 + β1q

−1 + · · · + βmq−m+1)q−duk

which can be formally solved for the actual output

yk =
1 + α1q

−1 + · · · + αnq−n

1 + β1q
−1 + · · · + βmq−m+1 q−duk = G(q−1)uk . (6)

Hence, the output can be written as the input signal uk times a discrete
time transfer function G(q−1).

The same input-output behavior is described by a state-space model
which is given first in the continuous time domain

ẋ(t) = A′x(t) + b′u(t) , x(t0) = x0 (7)

y(t) = cT x(t) + du(t) (8)

with1 x ∈ R
n. For the simple example

(3)
y (t) + 3

(2)
y (t) + 2ẏ(t) + 5y(t) = 2u(t)

chose for example x1 ≡ y, x2 ≡ ẏ and x3 ≡ ÿ to obtain

ẋ(t) =

⎛⎝ 0 1 0
0 0 1
−5 −2 −3

⎞⎠x(t) +

⎛⎝ 0
0
1

⎞⎠ u(t)

y(t) = (1 0 0)x(t) (9)

with appropriate initial conditions. If derivatives of the input appear on
the right hand side of Eq. (1), more involved transformations are necessary,
see standard control engineering textbooks or refer to standard control en-
gineering software such as MATLAB

�.
In the multiple-input-multiple-output (MIMO) case the state-space model

reads without a time-delay between input and output

ẋ(t) = A′x(t) + B′u (10)

y = Cx(t) + Du . (11)

1
A′, B′, b′ refer to a continuous-time model while A, B, b are used in a discrete-time

version below. The transpose of a matrix is dended by T .
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In this case an exact discrete-time description is obtained for systems
with piecewise constant inputs, i.e. u = u(k) = const. for kT ≤ t <
(k + 1)T , using the general solution of Eq. (10)

x(t) = eA′(t−t0)x0 +

t∫
t0

eA′(t−τ)B′u(τ)dτ . (12)

Then, the discrete version reads

x(k + 1) = Ax(k) + Bu(k) (13)

y(k) = Cx(k) + Du(k) (14)

with

A = eA′T , B =

∫ T

0

eA′(T−τ)B′dτ = (A′)−1(A − I)B′

and an identity matrix I of appropriate dimension.
Stability of the open-loop system is given when all eigenvalues of A′ or

A stay in the open left half complex plane in the time continuous case or
in the unit circle in the discrete-time case, respectively.

Classical control is often done in the Laplace or frequency domain. Ap-
plying the Laplace transformation with complex variable s = σ + jω

L{f(t)} = f((s)) =

∫ ∞

0

f(t)e−(s)tdt (15)

to Eq. (1) for vanishing initial conditions yields

y(s) = G(s)u(s) (16)

with the transfer function G(s) which is now given in the Laplace domain

G(s) =
b0 + b1s + · · · + bmsm

a0 + a1s + · · · + ans
n .

Hence, the input-output behavior of a dynamic system can be described
by a simple multiplication of the transformed input u(s) by the transfer
function G(s). This will ease the treatment of the closed loop, see below.

Applying the Laplace transformation to Eq. (7) and Eq. (8) shows the
relation between the two sorts of system descriptions

G(s) = cT (sI − A′)−1b′ + d . (17)
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Figure 2. Bode plot of a band-pass filter of second order G(jω) =
Kjωω2/[(jω + ω1)(jω + ω2)] with ω1 = ω2 = 10rad/sec and K = 2. Ob-
serve that for ω = ω1 = ω2 no damping and no phase shift occurs. However,
slower and faster components are dampened.

If s = jω, the frequency response G(jω) is obtained which gives a
frequency-dependent gain, |G(jω)|, and phase-shift, arg{G(jω)}, between
input and output for sinusoidal inputs. A graphical representation is given
in the Bode plot in which 20 log10 |G(jω)|, the so-called magnitude, and the
phase arg{G(jω)} are plotted as a function of ω = 2πf , cf. Fig. 2.

If the linear model is not obtained through linearization of a given nonlin-
ear model of the flow, for example a Galerkin system, it has to be identified
from experiments in a black-box approach. In this case the real flow around
a setup is replaced, conceptually, by a black-box for which only an input-
output relation has to be determined. Such a black-box will present in the
high-lift device introduced above only the relation between the actuation
amplitude u(t) and the mean lift. As the mean lift cannot be measured
on a real wing a surrogate output variable can be defined in this example.
It is well known, cf. Becker et al. (2007), that a relation exists between
the lift and a pressure difference along the suction side of the wing or flap.
This signal will be defined as the surrogate output. No information about
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flow velocity, vorticity, etc. will be contained in such model. Nor will it be
able to predicted for example the drag imposed on the wing. However, this
model will suffice completely if only the lift has to be controlled.

To identify a black-box model, the system is excited by appropriate
input signals u(t). Most often step-wise changes in the control input are
used, see Fig. 4. These are easy to analyze. However, a theoretical study
shows that the information content in the answer to a step input is limited
in the frequency range. A better input signal is a pseudo random binary
signal (PRBS) which consists of many step-ups and step-downs in an almost
random fashion, see Ljung (1999) for more details and Fig. 3.

0 5 10 15 20
��#�

0

�#�

�#�

�#$

�#%

1

�#�

t

u(
t)

Figure 3. PRBS-signal with unity amplitude. Fourier analysis shows that
this signal contains many discrete frequencies. It is used instead of a white
noise process as an excitation signal in identification. A white noise would
possess a continuum of all frequencies with the same intensity which would
be good for identification of an unknown system. However, as its energy
content would be infinity, a white noise process does not exist and is replaced
by this deterministic sequence.

The coefficients αi, βj and the dimensions and time-delay n, m and d,
respectively, of the time-discrete model Eq. (5) are then estimated in general
by the solution of the following optimization problem

min
αi,βj ,n,m,d

∑
le

∑
k

wlek(y
(le)
k − ỹ

(le)
k )2

where le runs over all experiments used, k indicates individual instants and
wlek are weights to improve identification. The real measurements are de-
noted by y. Measurements calculated by the model, ỹ, depend on the design
variables of the optimization problem, i.e. ỹk = ỹk(αi, βj , n,m, d). Care has
to be taken concerning unavoidable noise present in every experiment. Only
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if the influence of this noise is included in a correct fashion in identification
as it is done for example in so-called prediction-error-methods, good param-
eter estimates are obtained. More information about system identification
can be found in Ljung (1999).

After a time-discrete model is identified it can be transformed to a
continuous-time form, either to a transfer function G(s) or to the state-
space matrices A′, B′, C and D. The latter can be identified directly as
well by subspace methods, see Ljung (1999). Fig. 4 shows a comparison
between measured data and a simulation of an identified model for a step-
wise excitation. In this case a rather simple flow, namely the flow over a
backward-facing step, is considered. Despite its simplicity, a rich dynamic
can be observed in the right panel of Fig. 4 on the one hand. On the other
hand an input-output view with a restriction to the reattachment length as
the output signal shows a very simple input-output behavior which suffice
for controller synthesis.

0

4

I

u

0 5 10 15
3

4

5

6

7

t [s]

y

process output
PT

4
T

0
O�����

Figure 4. Left: Comparison of the measured reattachment length behind
a backward-facing step (solid line) and a fit with a second order model with
time delay, G(s) = b0/(1 + a1s+ a2s

2)e−dTs, see King et al. (2004). Right:
Illuminated stremalines of a LES of the flow around a backward-facing step
from Weinkauf et al. (2003)

3 Methods in closed-loop control

Various methods of control are introduced starting with model-free ap-
proaches in § 3.1. A recapitulation of classical linear control and robust
control is summarized in § 3.2. Finally, § 3.3 gives details about nonlinear
approaches including model predictive control.
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3.1 Extremum and slope seeking control

The following section is adopted from Henning et al. (2008) where more
information can be found. Extremum- and slope-seeking feedback con-
trollers are adaptive gradient-based, model-independent feedback schemes
that search for optimal actuation parameters (Garwon et al., 2003; Beaudoin
et al., 2006; Henning et al., 2007). The only (extremely low dimensional)
modeling concept used, though not explicitly stated in the sense of an equa-
tion, is the knowledge that some kind of extremum in an input-output map
exists. An extremum-seeking control can be used to find areas around dis-
tinct minima or maxima in the steady-state map of a plant. As many flow
applications are rather characterized by a plateau-type map, slope-seeking
is better suited. Here, the system is driven to a preset reference slope which
is representative for a value just below the plateau. Two different configura-
tions are used in this study, a single SISO and a multiple SISO slope-seeking
controller. Extensions to the truly multiple input case can be found in King
et al. (2006). As the extremum-seeking controller forms the basis for the
slope-seeking variant, the former is reviewed first.

Classical extremum seeking control Extremum-seeking control is an
effectively model-free method for the control of nonlinear plants charac-
terised by an output extremum in the steady-state (Morosanov, 1957; Krstic
and Wang, 2000; Ariyur and Krstic, 2003) and for linear or nonlinear plants
for which the output is defined as the norm of the difference between a
reference value r(t) and the plant output y, e.g. (r(t) − y(t))2 in a SISO-
setting. Typical examples in flow control are the maximizations of the lift
of a wing or the mixing in a burner, the minimizations of the drag of a
car or the noise emitted in a turbomachine. As every minimisation problem
can easily be transformed into a maximisation problem, all explanations are
given for the latter case. The Fig. 5 shows the structure of the basic SISO
extremum-seeking control loop. Here, the process is described by both, it’s
steady-state map ys = f(us) and it’s dynamical model for ease of further
discussion.

The idea of this gradient based method is an on-line optimisation of the
average value, us, of the control input u(t) such that the average of the
output equals the maximum steady-state value, ys = y∗s. With extremum-
seeking control this can be accomplished without knowing the steady-state
input-output map ys = f(us). The controller works as follows: Assume
that the initial control input u′0, see Fig. 5, which is calculated by some
higher level control hierarchy, see below, and a slowly changing part Δu(t),
i.e. u′0 = u0 + Δu(t), are superimposed with a sinusoidal signal a sin(ωsint)
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sin(ωsint)

�

�
��
��a

�
�u0

�

�u

Plant

u
∗

s

y
∗

s

�us

�
y

s

steady-state map

ẋ = f(x, u, t)
y = h(x, t)

dynamics

y

�BP��×�LP�∫�
��
��k�Δu

Figure 5. Block diagram of closed-loop extremum-seeking. The BP and
LP represent band- and low-pass filters, respectively. Both the steady state
map and the nonlinear dynamic system representation are given for the
same plant.

which has a small amplitude a.

u(t) = u0 + Δu(t) + a sin(ωsint) (18)

If the period of this harmonic perturbation is larger than the largest time
constant of the process, the output of the process will also be approximately
sinusoidal, centred initially around ys,0 = f(u′0). Likewise, the amplitude
will be approximately af ′. Hence,

y(t) ≈ ys + af ′ sin(ωsint) . (19)

This output perturbation is analysed in order to detect the slope (gradient)
of the input-output map which is used for gradient based optimisation. To
do this, the mean value ys is removed by a band-pass filter (BP), for example
of second order2

GBP (jω) =
jωω2

(jω + ω1)(jω + ω2)
, (20)

2A high-pass filter was proposed originally. However, for flow control with rather noisy

measurements a BP is recommended.
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with the lower cut-off frequency ω1 and the upper cut-off frequency ω2, see
as well Fig. 2. By application of a BP the output of the filter reads

yBP (t) ≈ |GBP (jωsin)| af ′ sin(ωsint + ϕBP ) . (21)

The product yP (t) of this filtered output and the zero-mean sine signal
sin(ωsint) indicates the slope of the unknown map ys = f(us):

yP (t) = sin(ωsint)
(
|GBP (jωsin)| af ′ sin(ωsint + ϕBP )

)
= |GBP (jωsin)| af ′ × (22)

×
(

sin2(ωsint) cos(ϕBP ) + sin(ωsint) cos(ωsint) sin(ϕBP )
)

.

This product leads to a non-zero mean signal obtained with a low-pass filter
(LP), see Fig. 5, as long as the maximum is not obtained. If the plant is
initially to the left of the maximum, the input and output perturbations
are in phase, that is the product will be positive, see as well Fig. 6. An

u

t

 +

y

t +

u

t

 +

y
t

��

u
�

y
�

Figure 6. Sketch of a nonlinear static map and quasi-steady state responses
when the sinusoidal input u is either on the left or right hand side of the
maximum. Only the offset-free part of the output y obtained after the BP
is depicted.
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anti-phase relation which gives a negative product is an indication that the
plant is on the right of the maximum. To see this, approximate the output
yLP (t) of the LP by an average calculated for one period T = 2π/ωsin, that
is

yLP (t) ≈
1

T

∫ T

0

yP (t)dt

=
1

T
|GBP (jωsin)| af ′ T

2
cos(ϕBP )

=
af ′

2
�{GBP (jωsin)} . (23)

With this information an additional term Δu(t), added to u0 + a sin ωsint,
see Eq. (18) and Fig. 5, is calculated by time integration and multiplication
by k. As long as the output of the LP is positive, that is the system is on the
left side of the maximum, a steadily increasing control input u is obtained.
For a negative output of the LP, the opposite is true. The adaptation of u
converges to u = u∗.

The constant u0 is set by the user to a value for which a non-zero gradient
is expected. If this value is chosen too low, for example, the flow system will
not react to the variation of the input signal. Hence, no reliable operation
is guaranteed.

The extremum-seeking scheme is an adaptive closed-loop type of control.
It guarantees closed-loop stability if designed properly, see Krstic and Wang
(2000) and Ariyur and Krstic (2003) for details. The choice of certain design
parameters determines the speed of convergence. For the results given below
we chose ωBP = ω1 = ω2 = ωsin. The LP is not necessary, but it is helpful
in filtering out the perturbation after the multiplier. Therefore, the cut-
off frequency of the LP should be chosen to ωLP ≤ ωsin. In addition,
the adaption gain k needs to be small. If the plant behaviour varies due to
uncertainties, the time scale of the perturbation signal has to be slower than
the slowest possible plant dynamic. The main advantage of this extremum-
seeking control is that no plant model is needed for controller synthesis.
However, the control suffers from both, the permanent harmonic input and
output perturbations, and the relative slow dynamic behaviour. Therefore,
some extensions will be proposed later.

Slope seeking control In flow control, situations are encountered in
which the static input-output map does not show a distinct maximum. In-
stead it is characterised by a plateau-type behaviour as illustrated in Fig. 7.
A detached flow over an aircraft wing, to give an example, can be influ-
enced by active flow control such that it reattaches again. At some point,
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however, the flow is completely attached. A further increase of the control
input will not result in a further increase nor in a decrease of the lift. The
extremum-seeking control described above will work correctly in this situ-
ation if it starts left of the plateau. However, when the control input is
larger than the smallest value necessary to be on top of the plateau, it will
not be minimised. Such a waste of control energy can be observed likewise
when the system’s behaviour - due to a change in operating conditions - will
change. In such a case, the plateau-type map might be shifted to the left.
The smallest value necessary to be on top of the plateau found for the last
operating condition now lays somewhere on the plateau without any gradi-
ent information for the controller. To tackle such systems, slope-seeking is
considered next.

The slope-seeking is an extension of the extremum-seeking scheme, for
details see Ariyur and Krstic (2003). It drives the plant output to a value
that corresponds to a reference slope of the steady-state input-output-map:

f ′
ref =

∂ys

∂us

∣∣∣∣
ref

. (24)

Therefore, according to Eq. (23), a negative reference value

r(f ′
ref ) = −

a f ′
ref

2
�{GBP (jωsin)} , (25)

as a function of f ′
ref is added to the actually detected slope, see Fig. 7. Thus,

the apparent extremum is shifted. Since extremum-seeking is a special case
of slope-seeking, when the reference slope is zero, designing the filters, the
integrator gain, and the sinusoidal perturbation are the same.

Increase of bandwidth Different methods to improve extremum- and
slope-seeking control are given in Henning et al. (2008). A very powerful
modification to speed-up the closed-loop behavior will be shown in the se-
quel. In the meantime this approach has been used in turbomachines, in
an industrial high-lift design, bluff bodies and burner studies to accelerate
settling time by a factor of 3-9.

As in the classical extremum-seeking control we still assume that the
harmonic perturbation of the process is slower than the slowest time con-
stant of the process. Hence, the static input-output map is reflected by the
behaviour of the output y(t). If the input perturbation a is small enough,
the output perturbation should be af ′, as already mentioned in Sec. 3.1.
The output itself consists of an approximately constant value plus this per-
turbation, that is

y(t) ≈ ys + af ′ sin(ωsint) .
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Figure 7. Block diagram of closed-loop slope-seeking.

With Eq. (18)

y(t) ≈ ys − f ′u0 − f ′Δu(t)︸ ︷︷ ︸
x1

+ f ′︸︷︷︸
x2

u(t)

= x1 + u(t)x2 . (26)

The idea is to observe these two parameters x1 and x2. A dynamical model
for the two parameters reads in discrete time

x(tk+1) =

[
1 0
0 1

]
x(tk) + wk . (27)

If Eq. (26) is used as a measurement equation, an observability analysis
shows that x1 and x2 are not observable. However, when time-shifted input-
output pairs (u(t), y(t)) and (u(t−nΔt), y(t−nΔt)) are considered, observ-
ability is given. With y1(tk) = y(tk) and y2(tk) = y(tk−n) the measurement
equation now reads

y(tk) =

[
1 u1

1 u2

]
x(tk) + vk (28)

with u1 = u(tk) and u2 = u(tk−n). The vectors wk and vk denote Gaus-
sian white noises. An extended Kalman filter (Gelb, 1986) can be used for
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real-time estimation of the states. The modification of the slope-seeking
control by inclusion of this model-based sensor is shown in Fig. 8. Since the
extended Kalman filter estimates the slope f̂ ′ = x̂2, the reference slope f ′

ref

is subtracted directly from f̂ ′.
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�u0

�

�u(t)

�
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��

�

u(t − nΔt)

Process
y(t)

�
�

���y(t − nΔt)EKF
f̂ ′

���

f ′
ref

�∫�
��
��k�Δu(t)

Figure 8. Block diagram of the closed-loop slope-seeking with an extended
Kalman filter (EKF) algorithm for fast real-time estimation of the local
gradient of the steady-state map.

3.2 Linear and robust control

For linear systems using the Laplace domain it is very easy to describe
the output of a closed loop as a function of its inputs, see Fig. 9. For the
scalar case the system output y(s) is given by

y(s) =
C(s)P (s)

1 + C(s)P (s)
r(s) −

C(s)P (s)

1 + C(s)P (s)
m(s) +

Gd(s)

1 + C(s)P (s)
d(s)

= T (s)r(r) − T (s)m(s) + S(s)d(s) (29)

depending on the transfer functions C(s), P (s) and Gd(s) of the controller,
the plant and the disturbance coupling, respectively. Measurement noise is
given by m and the other disturbances by d.

In flow control applications the identification of local linear models around
an operating point applying different step heights give rise to a family of dif-
ferent models reflecting the nonlinearity of the process. Quite often, a main
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C(s) P(s)

G

r(s)

d(s)

m(s)

d

u(s) y(a)

Figure 9. General closed loop with controller C(s), plant P (s), distur-
bance transfer function Gd(s), reference r(s), disturbances d(s) and m(s)
and system output y(s).

difference in these linear models can be seen in the gain of the identified
models P (s)

K = P (s = 0) =
b0

a0
.

which can be approximated as a function of the step height û used, i.e.
K = f(û). Physically, this reflects the situation that for example in the
case of the high-lift device the lift force will not continuously increase when
the actuation amplitude is increased. At some point the separated flow
which is responsible for a reduced lift will completely reattach and any
further increase in actuation will not result in any improvement. Hence,
the ratio between increase in lift to actuation amplitude will decrease with
increasing û.

Exploiting this knowledge, the degree of nonlinearity can be reduced by
post-multiplying the calculated control signal u∗(t) by the inverse of f . By
this, the plant ’seen’ by the controller, i.e. the sequence f−1 and the real
physical plant P , does not behave as nonlinear as the real plant alone, see
as well Fig. 10.

The design of the controller C(s) is further simplified when a dynamic
feed-forward Cff (s) is added, see Fig. 11. If in the completely linear case
with f(u∗) = u∗ the product Cff (s)r(s) with reference r and Cff (s) =
P−1(s) is realizable, the system output y exactly equals the reference for
vanishing disturbances d and m and exactly known plant model. Hence, the
closed-loop controller C(s) is only responsible for disturbance rejection in
this ideal situation.

From different classical control synthesis methods loop-shaping approaches
will be applied here. In a loop-shaping approach a controller C(s) is deter-
mined such that in the case without feed-forward filter, see Eq. (29), the
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C(s) Pf  (u*)

G

d(s)

d

r(s)

n(s)

y(s)u∗ −1 u

Figure 10. Closed loop with the physical control input signal u. The con-
trol input u∗ calculated by the linear controller is nonlinearly transformed
through f−1 inside the control system to determine u which is sent to the
process. With this compensation of a Hammerstein-like nonlinear model
the plant output y seen form the controller output u∗ looks more linear.

PC(s) f  (u*)

C  (s)r(s)ff
G

d(s)

d

r(s)

n(s)

y(s)−1 u

Figure 11. Closed loop with dynamic feed-forward filter.

frequency-dependent gain is |T (jω)| ≈ 1 in the frequency range related to
the reference signal r and low in the frequency range of the measurement
noise m. Additionally, the gain of the sensitivity |S(jω)| should be low to
have a sufficient disturbance rejection. Most importantly, the controller
must be such that the closed-loop system is asymptotically stable. In such
a case the roots of all denominators of the closed-loop transfer functions, cf.
Eq. (29), lie in the open left half complex plane. When transforming the
transfer functions to the state space, these roots equal the eigenvalues of an
appropriate A′ matrix. For more information consult standard textbooks.
With a feed-forward filter a faster response to set-pointed changes can be
achieved and loop-shaping can concentrate on disturbance rejection.

Although the compensation of a nonlinear gain reduces the degree of
nonlinearity, fluid flow systems remain inherently nonlinear. This will be
reflected as well in other model parameters ai, bj and a variable system order
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when different experiments are analyzed. A linear controller synthesized as
indicated above will only work well if the system is not driven too far away
from a constant setpoint around which the linearization is valid and if the
control inputs are not high. Especially stability will only be guaranteed if
this assumption holds. To account for nonlinear effects nonlinear methods,
cf. Khalil (2002), can be used. They will be addressed later in this chapter
in conjunction with Galerkin systems. Another approach is linear robust
control. In robust control the uncertainty of a linear model is explicitly
accounted for. Very good introductions to robust control are given in Sko-
gestad and Postlethwaite (1996); Maciejowski (1994); Morari and Zafiriou
(1989). A simple way to build a robust controller is to identify a family of
linear models from different experiments related to different input signals
or setpoints first as mentioned above, see Fig. 12.
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Figure 12. Left: Identified family of black-box models for the flow past a
2D bluff body for Re=46000 from Henning (2008). Right: The same model
family with a compensated static gain and a nominal model depicted by a
broken line. All plots are given as a function of a normalized frequency, i.e.
as a function of the Strouhal number.

Now a controller is synthesized, loosely speaking, which is able to sta-
bilize all models of the model family in the closed loop. Moreover, the
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controller is chosen such that some requirements concerning performance
are fulfilled. An automated way to do this is given by the theory of H∞-
control. In H∞-control an optimization problem is solved to determine the
controller thereby improving the overall goal for the ’poorest’ situation.

All methods mentioned so far readily extend to the MIMO case. A
MIMO flow control application based on robust control in the frequency
domain can be found in Henning et al. (2008).

When working in the time instead of the frequency domain, controller
synthesis is simplified for MIMO systems. For a plant

ẋ(t) = A′x(t) + B′u(t) (30)

minimization of

I =
1

2

∫ ∞

0

(xT Qx + uT Ru)dt (31)

leads to a well known state space controller

u(t) = −Kx(t) (32)

where K is determined by the solution of a steady state quadratic Riccati
equation. Beside providing an optimal solution by a closed-loop control law
this Riccati controller guarantees robustness with respect to model uncer-
tainties.

Another popular way to determine K is through pole placement. Sub-
stituting u by −Kx gives the equation of the closed loop

ẋ(t) = (A′ − B′K)x(t) = A′
cx(t) . (33)

Stability of the steady state solution xs = 0 is given when all eigenvalues
of A′

c stay in the open left half plane. For a scalar input u and an n-
dimensional state vector n eigenvalues can be chosen, This fully determines
K if the system is controllable. In the multi-input case free parameters
in K can be chosen to fulfil further requirements concerning decoupling,
eigenstructure assignment, minimization of control energy, etc.

State space controller assume the knowledge of the complete state x.
However, with

y(t) = Cx(t) + Du(t)

only a linear combination of the components of x (and of the control inputs)
is available. To get a full state estimate a Luenberger observer or Kalman
filter has to be applied, see the contribution by G. Tadmor in this book
and Gelb (1986). For an extension to nonlinear systems, extended Kalman
filters are recommended. Kalman filters perform better as well in the linear
case as they explicitly take into account the noise which is prevalent in every
real-live experiment.
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3.3 Model predictive control

In the last two decades model predictive control (MPC) has been shown
to be one of the most powerful and versatile control methods in process
engineering. With the availability of constantly increasing computing power
and the advent of highly efficient optimization methods MPC is within reach
for the use in very fast flow control applications as well. This contribution
gives an introduction into MPC and shows an example.

MPC is best explained by means of Fig. 13. The basic idea of MPC is
to calculate future control inputs such that some performance criterion is
optimized. In doing so, system constraints referring to states x, outputs
y and manipulated variables u are respected. For this purpose, the future
control input uf (t) is parameterized by, for example, piece-wise constant
trajectories over a discrete-time horizon Hc. Usually, the sampling period

r

y
f

y
h

uh

uf

k
k + 1k + 2 k + Hc k + Hp t

Figure 13. Basic scheme of MPC for a SISO system. Indices f and h refer
to the future and the past, i.e. history, respectively. The reference signal
r is specified starting from k + 1, because the actual system output y(k)
cannot be changed by the actual or future inputs.

h for the piece-wise constant control input is fixed. It coincides with the
sampling period T of the model if a discrete-time model of the process is
used. In the study of the von Kármán vortex street below it coincides with
half the period of the flow. A variable sampling period, however, is possible
as well, see e.g. Waldraff et al. (1997).
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Let us assume that the actual discretized time instant is given by t = k.
Hence, t < k represents the past and t > k the future. The actual control
input for t = k, i.e. u(k) = uf (k), and future control inputs uf (k + 1),
uf (k +2), . . . are now determined such that the system output yf (k + i) is
driven back to a reference trajectory r(k+ i) for H1 ≤ i ≤ Hp in an optimal
fashion. If a system with a pure time-delay d is considered, the output y

will not be influenced by the actual input u(k) before t = k + d. In such
cases, H1 should be equal or larger than d. Even without time-delays, a
H1 > 1 might be beneficial for the overall performance.

Due to the piece-wise constant control input a finite parametric optimiza-
tion problem results with optimization or design variables uf (k),uf (k +
1), . . . . The prediction horizon Hp is usually chosen (much) larger than the
control horizon Hc in which control moves are allowed. A larger prediction
horizon in comparison to the control horizon is beneficial for closed-loop
stability. A thorough study shows that stability can be guaranteed if a ter-
minal penalty or a terminal penalty and a terminal constraint are included,
see Mayne et al. (2000) for a survey. A possible criterion or quality function
may read without a terminal cost

J =

Hp∑
i=H1

||r(k + i) − yf (k + i)||Q +

Hc∑
i=0

||uf (k + i)||R
!
= min , (34)

in which Q and R are symmetric weighting matrices used in the norms
|| · ||, i.e. ||z||S = zT Sz. Both weights may depend on the time index k + i
as well. With the weights a different importance of manipulated values
uf (k + i) and future errors between reference r(k + i) and system output
yf (k + i) is accounted for. If changes in the control input Δuf (k + i) =
uf (k + i) − uf (k + i − 1) are critical to avoid too large changes of the
actuator amplitudes from one sampling instant to the next, these changes
can be included in eq. (34) readily. Likewise, if the future control input for
t > k + Hc is not zero, its cost can be included as well. When constraints
have to be considered, these can be dealt with via Lagrange operators or
via penalty functions to name just two possibilities.

So far it was assumed that the optimal control input calculated after
processing the measurement obtained at t = k could be immediately applied
at the same time instant. If the numerical burden is high, however, the
measurements taken at t = k are used to calculate the next control moves
starting from t = k + 1. In such a case, the second summation in eq. (34)
would start at i = 1.

In MPC, just the first control move uf (k) of the calculated optimal input
trajectory is applied to the plant. To react almost immediately when the
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next measurement y for t = k+1 ist obtained, preparatory calculations can
be done in the period from k to k+1. Then, the optimization starts from the
beginning at the next sampling instant. By this, the influence of unknown
disturbances and model errors is accounted for as these uncertainties show
up in the next value of the measured output variable y(k+1). This repeated
solution of an optimization problem has led to an alternative name of MPC,
namely receding horizon optimal control.

In the general case, when the process model is nonlinear, a numerical so-
lution of the optimization problem has to be done. This leads to a nonlinear
model predictive controller (NMPC). A similar approach has to be taken
for linear models in case of equality or inequality constraints which have
to be met. This numerical solution, however, is responsible for the large
numerical burden involved in solving (N)MPC problems. The beauty of the
(N)MPC-method rests in its unifying framework. Irrespective of the kind
of model, linear or nonlinear, continuous or discrete-time, SISO or MIMO,
and irrespective of the optimization problem to be solved, unconstrained or
constrained, the same principle can be used to derive a control signal.

To show the most simplest version of a MPC-scheme which leads to an
explicit control law, a couple of assumptions will be made in the following. It
is assumed that 1) the process model is given as a linear, discrete-time state-
space model, 2) the plant output y(k) at time k will not directly depend
on the control input u(k), i. e. there is no direct feed through, 3) the time
for evaluating the control law obtained can be neglected, 4) no terminal
terminal cost or terminal constraint is included, and 5) no constraints are
considered.

MPC formulation for linear unconstrained problems As stated
above every linear system can be described by a state-space model of the
form

x(k + 1) = Ax(k) + Bu(k) (35)

y(k) = Cx(k) (36)

in which x,u and y represent the internal state of the process, the control
input and the process output, respectively. For ease of illustration, D is set
to zero which is usually true in most applications.

Starting from time k, the future development of the process can be pre-
dicted exploiting Eq. (35). If a state prediction made at t = k for t = k + j
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is denoted by x(k + j|k), it follows

x(k + 1|k) = Ax(k) + Bu(k)

x(k + 2|k) = Ax(k + 1|k) + Bu(k + 1)

= A2x(k) + ABu(k) + Bu(k + 1) (37)

...

x(k + Hp|k) = AHpx(k) +

Hp−1∑
i=0

AiBu(k + Hp − 1 − i) .

Hence, the future or predicted output for k + j reads

yf (k + j) = y(k + j|k) = CAjx(k) +

j−1∑
i=0

CAiBuf (k + j − 1 − i) (38)

in which u was replaced by uf as future values of the control input are
addressed. All future outputs will now be concatenated in yp = (yT (k +
1|k) yT (k + 2|k) . . . yT (k + Hp|k))T . Accordingly, up = (uT

f (k) uT
f (k +

1) . . . uT
f (k + Hc) . . . uT

f (k + Hp))
T with uf (k + j) = uf (k + Hc) for j =

Hc + 1,Hc + 2, . . . , Hp to account for a constant manipulated variable for
the last section of the prediction horizon Hp.

All future outputs inside the prediction horizon can now be written as

yp = Apx(k) + Bpũp (39)

with

Ap =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

CA

CA2

...
CAHc

...
CAHp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CB O . . . O
CAB CB . . . O

...
...

. . .
...

CAHcB CAHc−1B . . . CB

CAHc+1B CAHcB . . . CB + CAB
...

...
. . .

...

CAHp−1B CAHp−2B . . .
∑Hp−Hc−1

i=0 CAiB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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ũp =

⎛⎜⎜⎜⎝
uf (k)

uf (k + 1)
...

uf (k + Hc)

⎞⎟⎟⎟⎠
In the new variables yp, ũp, the cost functional, Eq. (34), reads with rp =
(rT (k + 1) rT (k + 2) . . . rT (k + Hp))

T

J = (rp − yp)
T Qp(rp − yp) + ũT

p Rpũp

= (rp − Apx(k) − Bpũp)
T Qp(rp − Apx(k) − Bpũp) + ũT

p Rpũp .(40)

The block diagonal matrices Qp and Rp consist of Q and R matrices from
Eq. (34) on the main diagonal if H1 = 1. For H1 > 1, the first entries
in the main diagonal are zero. Equating dJ/dũp = 0T as a necessary and
sufficient condition for an extremum yields for the future control input

ũp = (BT
p QpBp + Rp)

−1BT
p Qp(rp − Apx(k)) . (41)

As no constraints are considered, a closed form of the control law is
obtained. From ũp = (uf (k) uf (k+1) . . . ) only the first entry, i.e. u(k) =
uf (k), is applied to the process. Then, the optimization starts from the
beginning using the measurement y(k+1) to determine a new state x(k+1),
and so forth. To obtain a state estimate, a model-based measuring technique
such as a Kalman filter (Gelb, 1986) has to be applied if the full state vector
x(k + 1) cannot be measured.

As the following application of model predictive control will be limited
to a nonlinear example exploiting a Galerkin system, the reader is referred
to King et al. (2008); Muminovic et al. (2008); Gelbert et al. (2008) where
a linear MPC is applied in experiments to a burner and a bluff body.

MPC formulation for constrained and /or nonlinear problems If
constraints relating to the state x, output y, control input u or changes in
the control input Δu have to respected, a closed solution of the optimiza-
tion problem will be impossible. Numerical optimization methods have to
be used then. With simple models, for example for the 3D bluff body con-
sidered in Muminovic et al. (2008), and appropriate numerical methods,
for example active set methods, see Ferreau et al. (2007), we have already
realized linear, constrained MPC with 8000Hz sampling frequency.

For nonlinear process models the prediction of the future behavior has
to be done by a numerical integration. Moreover, the estimation of the gra-
dient of the cost function with respect to future control moves is performed
numerically too by repeating the prediction many times, each time slightly
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changing one entry in the vector of future control inputs. Hence, even with-
out constraints a huge numerical burden will be involved in nonlinear MPC.
Today, this is still a limiting factor for flow control applications. Neverthe-
less, a nonlinear constrained simulation problem will be considered in the
following to show the prospects of NMPC.

3.4 General nonlinear control

Much progress has been made in nonlinear control in the last decades.
Any attempt to summarize this effort in this chapter is bound to fail. There-
fore, the reader is referred to textbooks on nonlinear systems and control,
see Khalil (2002); Isidori (2002), and to a contribution in which different
nonlinear controllers were applied in a direct numerical simulation of a flow
around a cylindrical cylinder based on a Galerkin system (King et al., 2005).
Only one very simple nonlinear control method will be given here as it read-
ily extends from the linear concepts introduced above.

If the state vector of a system x1 can be split up into a slowly changing
part xs and fast components x, i.e. x1 = [xT

s xT ]T and if the evolution
equations can be given in the form

ẋ = A(xs)x + Bu (42)

a linear parametrically varying (LPV-) system is given. Now, for fixed xs

pole placement can be used to find a state space controller, see Eq. (33).

4 Applications

In the collaborative research center ’Control of complex turbulent shear
flows’ at TU Berlin which was funded by the German Research Foundation
the author and his group had the chance to test the above mentioned meth-
ods in numerous experimental tests. These involved the flow (and acoustics)
for/with

• a backward-facing step in a SISO and MIMO setting
• a single 2-dimensional bluff body and a tandem configuration of two

2-dimensional bluff bodies
• a 3-dimensional Ahmed body
• various 2- and 3-dimensional wings with a flap as a high-lift device
• Tollmien-Schlichting instabilities over a profile
• noise-producing and/or stalling turbomachines
• mixers, a burner chamber, diffusors, and in a pipe.

From these examples only a small selection is considered here. A 2-dimensional
bluff body is chosen to compare slope-seeking control, its extension with a
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Kalman filter, robust control and phase control (see contribution of G. Tad-
mor in this book). Although not tested experimentally, the flow past a
cylindrical cylinder, which is covered in several other chapters in this book,
is included as well using nonlinear MPC and LPV-control.

Information about the other experimental closed-loop flow control stud-
ies can be found in the literature.

4.1 Two-dimensional bluff body - slope seeking

The flow separation behind bluff bodies, such as vehicles, shows com-
plex space- and time-dependent topology which results in an increase in
aerodynamic drag. A principle sketch of the investigated two-dimensional
D-shaped body is shown in Fig. 14. The flow around the D-shaped body
is governed by an absolute wake instability (Huerre and Monkewitz, 1990).
This mechanism generates a von Kármán vortex street with an alternat-
ing sequence of vortices at characteristic frequencies. The natural flow is
characterised by a short dead water region and alternating vortices in the
vicinity of the base. Both are responsible for a low base pressure and thus
for a high pressure-induced drag. The proposed active control strategy en-
forces a decoupling of the vortex formation in the shear layers and the wake
by synchronising the roll-up of upper and lower shear layers. This delays
the appearance of asymmetries in the wake flow and thus mitigates the
wake instability. The dead water region is enlarged and the base pressure
increases (Henning et al., 2007). Details, dimensions, etc. of the test section
can be found in Pastoor et al. (2008).
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Figure 14. Sketch of the D-shaped body and the test section. All dimen-
sions are in mm. Trip tapes are placed 30mm downstream of the nose in
order to trigger boundary layer transition.

A sinusoidal zero-mass actuation is applied by loudspeakers through
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spanwise slots located at the upper and lower trailing edges. With this
harmonic actuation the unstable processes of shear layer roll-up are trig-
gered. By this means a maximum response of the flow can be generated
with a minimum amount of input of energy. The actuation frequency fa

is related to natural instability frequencies of the flow. It should not be
mistaken with the perturbation frequency fsin = 2πωsin of the extremum
controller used first.

The intensity of the actuation which will be modified in the following
is characterised by the non-dimensional excitation momentum coefficient
(Greenblatt and Wygnanski, 2000)

cμ =
2 s q2

a

hu2
∞

, (43)

in which qa is the effective velocity of the actuation.
The base pressure is monitored by 3 × 3 difference pressure gauges

mounted in three parallel rows on the rear end. The reference pressure is
taken in front of the body. Four strain gauges are applied to the aluminium
rods supporting the model for measurement of drag. The base pressure and
drag are described by the non-dimensional coefficients

cp(y, z, t) =
Δp

ρ u2
∞/2

(44)

cd(t) =
fx

ρ u2
∞ hw/2

, (45)

respectively. In the present work, Δp is the instantaneous pressure difference
between a rear end-mounted pressure gauge and the reference pressure, ρ
denotes the density, and fx is the drag force. Spatially and spatially and
temporally averaged base pressure across the stern are marked by cpb(t) and
c̄pb, respectively.

The data acquisition and the implementation of the controllers are real-
ized on a rapid prototyping hardware (dSPACE-PPC1005 controller board).
The sampling frequency is 1 000 Hz.

Fig. 15 (a) shows the steady-state map with the time-averaged base
pressure coefficient as a function of the momentum coefficient at a con-
stant Reynolds number Reh = 40 000 obtained from open-loop experiments
in Henning et al. (2007). The Reynolds number is calculated with the body’s
hight h and free stream velocity u∞. Both actuators operate in-phase with
an optimal frequency Sta = fa h/u∞ = 0.17, which was indicated as the
most effective actuation parameter for synchronisation of the shear layer de-
velopment and for drag reduction in Henning et al. (2007). This steady-state
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map is characterised by a plateau for cμ ≥ 7 × 10−3. In order to achieve
maximum base pressure with the minimum control input a slope-seeking
controller with reference slope f ′

ref = 5 is applied.
In the present study, the momentum coefficient is chosen as the input

variable u(t) = cμ(t), and the output is given by the spatially averaged
base pressure coefficient y(t) = cpb(t). Information about the controller
parameters are found in Henning et al. (2008).

The experimental data for a single operating point is shown in Fig. 15 (b–
d). The controller starts at cμ = 2 × 10−3. The sinusoidal modifications
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Figure 15. Steady-state map cpb = f(cμ) obtained from open-loop ex-
periments (a) and experimental implementation of slope-seeking feedback
for optimal drag reduction of the D-shaped body (b–d). The controller
adapts the actuation amplitude (b) until the maximum base pressure (c)
has been reached and a maximum drag reduction of approximately 15% can
be achieved. All experiments are performed at Reynolds number 40 000, in-
phase forcing with a Strouhal number ta = 0.17.

of cμ are applied to obtain information about the local slope. According to
the gradient, the actuation amplitude is raised until a state in front of the
plateau is reached. This leads to a significant increase in the base pressure
coefficient as shown in Fig. 15 (c), corresponding to the steady-state map.
A reduction of the drag coefficient by 15% can be observed.

To show disturbance rejection of this controller, the Reynolds number is
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increased continuously from 35 000 up to 60 000 in Fig. 16 d. Corresponding
to the steady-state maps for various Reynolds numbers shown in Fig. 16 (a)
the optimal actuation amplitude is automatically decreased with increasing
Reynolds number. The experimental results in Fig. 16 (b, c) indicate that
the desired averaged base pressure cpb = −0.3 is maintained with the mini-
mum control input.
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Figure 16. Slope-seeking feedback in an experiment with an increasing
Reynolds numbers (b–d). Steady-state maps cpb = f(cμ) are displayed (a)
for various Reynolds numbers Reh = 20 000 (•), 30 000 (◦), 40 000 (×),
50 000 (+), 60 000 (∗). These maps are used only to indicate the success of
control. They are not required for the controller. Strouhal number of the
in-phase forcing is Sta = 0.17.

The experimental results with the slope-seeking controller extended by
the Kalman filter are shown in Fig. 17. The time delay is set to nΔt =
2π/(3ωsin)s = 660Δt with sampling time Δt = 0.001s. An almost three
times faster response is observed compared to the classical approach due to
the fast estimation of the local gradient f̂ ′, see Fig. 17 (d).

4.2 Two-dimensional bluff body - robust control

To identify a low dimensional dynamical model different experiments
with different actuation signals are run. In this case, the actuation am-
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Figure 17. A fast extended Kalman filter algorithm is used to estimate the
current slope (d) of the steady-state map. Thus the slope-seeking controller
can achieve the optimal momentum coefficient faster (a) which leads to
an increase in base pressure (b) and a reduction of the drag coefficient (c)
of the D-shaped body. Harmonic in-phase actuation with Sta = 0.17 at
Reh = 40 000 is applied.

plitude u(t) = û is switched on/off to/from different levels of û. Each
experiment is identified with a linear black-box model. A Bode plot of all
models found for a certain Reynolds number is given in Fig. 12. For a truly
linear system all identified models should be equal. The spread in the Bode
plots seen, however, is an indication of the nonlinearity of the plant.

For the gain of all identified models in the left panel of Fig. 12 a nonlinear
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static relationship f(·) with respect to the input amplitude û is found. This
knowledge can be used to reduce the uncertainty in the model description
as outlined above. The result is given in right panel of Fig. 12. From the
latter a so-called nominal model of second order with time-delay T0

T 2
2 ÿ(t) + T1ẏ(t) + y(t) = K

(
u(t − T0) + Tdu̇(t − T0)

)
(46)

is obtained, see as well Fig. 12. Instead of using parameters ai and bj , time
constants and a power of a time constant are introduced here. With respect
to the model parameters K, T0, T1, T2 and Td this nominal model shows the
smallest distance to all other models identified. The non-dimensionalized
parameterized uncertainties are given by

K = 1

T0u∞/h = 68.65(1 + 0.98δ)

T1u∞/h = 9.19(1 + 0.73δ)

T2u∞/h = 13.76(1 + 0.32δ)

Tdu∞/h = 5.49(1 + 1.0δ)

(47)

with −1 ≤ δ ≤ 1.
Although the flow in the recirculation region behind the body is highly

complex, a very simple nominal model is obtained relating actuation ampli-
tude u(t) with mean base pressure y(t) = cPb(t).

To increase the bandwidth of the closed loop with respect to reference
signals a dynamic pre-filter Gff (s) is included as well, see King et al. (2005);
Henning (2008) for more details.

Based on the nominal model and the uncertainty description a robust
controller is synthesized using the MATLAB

� robust control toolbox. With
this robust controller the behavior of the controlled system is tested in wind
tunnel experiments with respect to tracking response and disturbance rejec-
tion. Fig. 18 shows the tracking response of the closed-loop after stepwise
changes of the reference command. A good tracking performance can be
observed. High-frequency disturbances are not rejected because of both the
system’s inherent limited tracking dynamics and the requirement of robust-
ness giving a limitation of the closed-loop performance. A main advantage
of closed-loop control in comparison to open-loop control is disturbance
rejection. To demonstrate the robustness of the closed-loop control the
Reynolds number is varied in the same experiment from 7× 104 to 4× 104.
The setpoint-tracking capability is not effected by this disturbance which is
unknown to the controller. More information can be found in Henning and
King (2005); Henning (2008).
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Figure 18. Robust control of the base pressure y = cPb while changing the
setpoint r and the Reynolds number Re from Henning (2008). The obtained
drag cD is given for reference. The control input u(t) is given by the sum
of the fast feed-forward term uf and the controller output uc.

This robust controller is significantly faster than an extremum- or slope-
seeking controller. This has to be payed for, however, by an increased effort
in identifying the model family and running the approriate identification
experiments.

The application of the robust controller suffers from rather large values
of the manipulated variable. Hence, another idea to save energy is to reject
the detrimental alternate vortex shedding and to generate a synchronized
vortex shedding in the near wake, instead. This can be accomplished by one
actuation slot only which is synchronized with naturally occurring vortices
of the opposite side. By this, see contribution of G. Tadmor in this volume or
Pastoor et al. (2008), the same control success as with the robust controller
can be achieved with a reduction of the spend control energy of 40%.

4.3 MPC, energy-based and LPV-control of the cylinder wake

We consider the 3-dimensional Galerkin system including a shift mode
introduced by B.R. Noack, see chapter by Noack et al. and Noack et al.
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(2003), with a1 = A cos Φ, a2 = A sin Φ⎡⎣ Ȧ

Φ̇
ȧ3

⎤⎦ =

⎡⎣ (σr − βa3)A
ω + γa3

αA2 − σ3a3

⎤⎦+

⎡⎣ gc cos (Φ − θ)
−(gc/A) sin (Φ − θ)

0

⎤⎦ u . (48)

Several nonlinear control synthesis methods have been applied in King et al.
(2005) to dampen the von Kármán vortex street. Although these formally
derived methods successfully controlled the wake, none was better than a
formerly proposed controller which is build upon physical insight of the
system, cf. Gerhard et al. (2003). One of the controller tested in King et al.
(2005) is based on an LPV-point of view. It will be given below. However,
the physically motivated controller will be reviewed first.

The original work (Gerhard et al., 2003) was a proof-of-concept study
showing that an empirical Galerkin model derived from natural flow data
can also be employed for an actuated flow. One conclusion was that the
system should stay in the region of validity of the low dimensional model.
Following this argument, more classical nonlinear methods of controller syn-
thesis were ruled out in Gerhard et al. (2003), as it was expected that these
methods do not preserve the range of model validity. A simple energy-based
controller was proposed, instead, with u = −u0 if gc cos (Φ − θ) > 0, and
u = +u0 otherwise. With a rather complicated formula, see as well (Tad-
mor et al., 2003), the amplitude u0 was determined once every period in
agreement with a desired decay rate of the amplitude A. The mean impact
of the force on the phase Φ was small because of the sign-change of the an-
gle force-term gc sin (Φ − θ), see Eq. (48), during the time of constant force
direction.

With this control law, the turbulent kinetic energy, expressed as∑N
i=1〈a

2
i 〉/2, could not only be reduced for the model used in the controller

synthesis itself, with 3 POD-modes. The very same control law synthesized
with a third order system reduces also the energy in higher-order Galerkin
modes in the real system, since the higher harmonics get their energy from
the suppressed first harmonics. This was shown by applying the controller
to Galerkin approximations with N = 7 and N = 9 states. Finally, the com-
plete system was controlled in a DNS study. A nonlinear observer (Zeitz,
1987) was build up using the measurement device shown in Fig. 19 to im-
plement the control in the DNS. The gain of the nonlinear observer was
determined so that the linearized dynamics of the state-space estimation
error was stable.

In the following, a new and simpler version of this energy-based control
is proposed. If gc cos (Φ − θ) ≥ 0, the mean influence of the control on Ȧ
during half a period T/2 can be approximated, using φ ≈ ωt and ωT ≈ 2π,
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Figure 19. Principal sketch of the actuated cylinder wake. The figure
displays the streamlines of the natural flow around a circular cylinder with
diameter D = 1 (solid circle). Actuation is provided by transverse cylinder
oscillation or by a transverse volume force in the grey circle. The flow state
is sensed with a hot-wire anemometer, located at a typical position. Success
of control is monitored in the observation region −5 < x < 15, −5 < y < 5,
with x = y = 0 in the center of the cylinder, see Fig. 21 as well.

by

2gc

2π

∫ π/2

−π/2

cos (Φ − θ)d(Φ − θ) =
2gc

π
. (49)

Replacing gc cos (Φ − θ) in the first equation of (48) by the mean influence
2gc/π, and demanding that

(σr − βa3)A + u0
2gc

π
= −kA ,

with a decay rate −k, yields the control

u0 =
π

2gc

(
− k − σr + βa3

)
A . (50)

For cos (Φ − θ) < 0 an opposite sign is needed. This finally leads to the new
energy-based (eb) control

ueb = −
πA(k + σr − βa3)

2gc
sign{cos (Φ − θ)} . (51)

The LPV-character of the system is better seen when it is further trans-
formed using b1 = r sin(Φ − θ) and b2 = r cos(Φ − θ)⎡⎣ ḃ1

ḃ2

ȧ3

⎤⎦ =

⎡⎣ (σr − βa3)b1 + (ω + γa3)b2

−(ω + γa3)b1 + (σr − βa3)b2

−σ3a3 + α(b2
1 + b2

2)

⎤⎦+

⎡⎣ 0
gc

0

⎤⎦ u . (52)
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As the shift mode a3(t) is only slowly varying the first two equations make up
an LPV-system. In a pole placement approach the poles of the closed-loop
are placed at each sampling instant such that in an energy optimal sense
the unstable poles of the open-loop system are mirrored at the imaginary
axis and shifted 0.001 to the left. The control law can be written as

uLPV = −
A(t)

gc

(
KLPV 1(a3(t)) cos(Φ− θ)−KLPV 2(a3(t)) sin(Φ− θ)

)
(53)

where KLPV 1 and KLPV 2 are more intricate functions of a3(t).
Applying this controller in a direct numerical simulation (DNS) with a

code provided by M. Morzyński resulted in an 24% post-transient reduc-
tion of the turbulent kinetic energy compared to the physically proposed
controller which achieved 32%. However, better results are obtained with a
nonlinear model predictive controller.

To test the NMPC the direct numerical simulations are performed on
a grid with 8712 nodes. For state estimation based on the velocity mea-
surement depicted in Fig. 19, an extended Kalman filter is applied. As the
Galerkin system is nonlinear, integration of the system equations for predic-
tion and the solution of the extended Kalman filter equations has to be done
numerically. Likewise, a numerical optimization routine is used to minimize
the cost functional. In this example not a constant reference trajectory for
the velocity measured is used. Instead a reference trajectory for the first
mode amplitude is given. A very simple cost functional is used here instead
of Eq. (34)

J =

∫ t+Hp

t

e2(l)dl with e(t) = r(t) − â1 , (54)

i.e. the control effort is neglected. The scalar reference r(t) is chosen as
a sinusoidal signal with exponentially decreasing amplitude. This choice is
motivated by the limited validity of the low dimensional Galerkin system.
The variable â1(t) denotes the estimated value of the state variable a1(t). To
make the optimization problem easier, we use even more physical knowledge
about the process. From the physically motivated controller it is known that
good results are obtained when a piece-wise constant u is synchronized with
cos(Φ−θ). This knowledge is exploited here as well. No arbitrary sampling
period h, see Fig. 13, is chosen, but one that exactly matches the physics of
the process. Inside a sampling period, uf is chosen to be constant.

To respect the validity of the model, the calculated future control inputs
are constraint to |uf (t+ l)| < 0.1. For more details see Aleksic et al. (2008).
A comparison in Fig. 20 shows the superiority of NMPC which is signifi-
cantly faster than energy-based control and leads to a recirculation zone of
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Figure 20. Fourier coefficients ai obtained in a closed-loop controlled DNS
by applying the controller based on physical intuition from Gerhard et al.
(2003) (left) and NMPC (right). State estimation is done with an extended
Kalman filter. The success of the control is observed by a2

1 + a2
2 which

describes the major part of the turbulent kinetic energy.

length 5.2 in contrast to 4.1 for the energy-based control, see Fig 15. With
no other controller using the very same measurement information and the
same actuation concept such good results were found in King et al. (2005).
Even with the improved versions of the backstepping and Lyapunov-based
controllers in Aleksic et al. (2007), a poorer performance was obtained.
Fig. 21 shows a plot of the streamlines of the unactuated and the actuated
case with the NMPC controller at t=120. The damping effect of the actua-
tion and the significant mitigation of the instability is clearly visible in the
observation region.

5 Conclusions

Comparing the different controllers proposed a hierarchy concerning robust-
ness, velocity and modeling effort can be given, see Fig. 22.

Physically motivated controllers can be very fast and, certainly depend-
ing on the application, rather robust when strong and reproducible coherent
events take place. A rational exploitation of these phenomena necessitates a
good physical understanding of the process as in the case of the phase control
shown in the part of G. Tadmor or needs a good model as the Navier-Stokes
equation derived Galerkin model of the 2D flow around a circular cylinder
treated above.
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Figure 21. Left: Unactuated flow. Right: Actuated flow with an NMPC
controller shown for t = 120. The figures display isocontours of the stream-
wise velocity component U . Negative values are indicated by thinner curves
and show the extent of the recirculation region. The shaded area depicts
the length of the recirculation zone.

Figure 22. Time scales, robustness and required modeling effort of different
controllers.

In many classical controllers, models of a process are only used during
synthesis of the controller. In contrast, the phase control and MPC exploit
a process model inside the algorithm. As an optimization problem over a
future horizon is considered in MPC, there are no restrictions concerning
the variables which are used to describe the success of control as long as
they can be calculated by that model. Very different criteria can be for-
mulated, combining different aspects at the same time. Moreover, when
enough computing power is available, equality and inequality constraints
can be included in the optimization in a straightforward manner. With no
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other control technique this practically very important issue can be dealt
with so easily. However, as the name tells, MPC is based on a model. If this
model is not derived theoretically, it has to be identified based on experi-
mental data in a black-box manner. The time needed for this step should
not be underestimated. In the MPC approaches shown here, robustness is
not dealt with explicitly. If this has to be done, the computational burden
increases significantly.

Robustness issues can be addressed with more classical techniques, such
as a H∞-control. Numerous experimental tests with different flow configu-
rations have shown their good performance.

For all approaches mentioned so far as well as for the slow but easy to
apply extremum-seeking control methods the limitations or difficulties often
do not arise from control engineering (when you know this subject) but from
the search of appropriate actuators and sensors to influence the flow and
get informative information, respectively.
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