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Abstract Constrained optimization is presented as a key enabler

for answering numerous important questions in the heart of flow

control. These problems range from the extraction of Proper Or-

thogonal Decomposition modes and tools from linear control theory

to optimal control which can be applied to any type of non-linear

systems. The determination of optimal growth disturbances is pre-

sented as a particular case of constrained optimization. The chap-

ter shall provide a complete description for deriving analytically

and solving numerically any specific formulation of constrained op-

timization.

1 Introduction

The objective of this chapter is to present within the unified framework of
constrained optimization problems, different numerical tools which change
completely our ideas on flow control in the last decade. We will see in par-
ticular that reduced-order modeling based on Proper Orthogonal Decompo-
sition modes (see the contribution by B. Noack et al. in this book), as well
as classical techniques of linear control (Linear Quadratic Regulator and
Linear Quadratic Gaussian methods) and optimal control, have in common
the resolution of a constrained optimization problem. Beyond that, we will
also show that the concept of optimal disturbances, introduced in stability
theory to explain the transition to turbulence of linearly stable flows, can
be also formulated as a constrained optimization problem and, if needed, be
solved simultaneously to a control problem. Lastly, we will highlight that
inverse methods (model identification or parameter estimation) can be in-
terpreted as a particular constrained optimization problem. The objective
is to give the possibility to the interested reader of rapidly developing by
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him/her-self the analytical and numerical solutions to the constrained op-
timization problem of his/her interest. The choice was thus made to detail
as much as possible the different stages.

The current chapter is organized as follows: In section 2.1, we introduce
the issues of flow control and present, for facilitating future discussions,
the different actors on the control scene. Then we introduce the linearized
framework, often used in flow control, and finish by formulating a series of
questions related directly to different aspects of flow control. In section 2.2,
we give some essential elements of linear control theory and continue in sec-
tion 2.3 by an introduction of model reduction seen under the specific angle
of projection methods. In section 3, we focus on the fundamental aspects
of optimal control theory. At this stage, the presentation will remain very
similar to what can be found in Gunzburger (1997a) and more recently in
Gunzburger (2003). Section 4 considers the case of LQR control for a generic
system and shows that the solution of a high-dimensional Riccati differential
equation is necessary to determine the feedback control law that minimizes
the value of the cost function. Section 5 highlights that the determination of
optimal disturbances corresponds to a constrained optimization problem for
which the control is the initial condition of the dynamical system. Lastly,
sections 6 and 7 consider the case where the constraint corresponds to a
time-dependent partial differential equation, linear and nonlinear respec-
tively. Section 7 finishes with some numerical results of optimal control for
the Burgers equation.

2 Elements of control theory and model reduction

2.1 Flow control

First, in section 2.1.1, we give the scope of flow control and introduce the
terminology necessary to present constrained optimization problems as a
main topic in modern fluid mechanics. Then, in section 2.1.2, we introduce
the linearized framework used in linear control theory. Finally, in section
2.1.3, we list different types of problems which can appear within the frame-
work of flow control while insisting on their similarity.

2.1.1 Scope and objectives of flow control

2.1.1.1 General points The goal of a flow control system is to achieve
some desired objective by manipulating properly the flow configuration
(physical properties, volume forcing or boundary conditions). Based on
the type of actuation, either passive (no energy expenditure) or active, and
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on the means by which the control evolves in response to changes in the
flow, open-loop or closed-loop, different strategies can be considered (see
Gad-el-Hak, 2000, for a discussion on this classification). By nature, pas-
sive control strategies are similar to shape optimization. Determining the
shape that a surface of revolution must have to offer the least resistance
to the motion goes back to Newton (end of 17th century) and involved the
invention of the calculus of variations. We will see in section 3.1.1 that
this question can be formalized as a constrained optimization problem by
simply modifying the space on which the solutions are required. In open-
loop, the parameters of the actuators are set once for all at the design stage
and remain constant throughout the optimization procedure whatever the
changes undergone by the flow. With this type of strategy, the sensitivity
of the system to external disturbances or to error modeling (change in the
parameters of the system) is then important. In addition, stabilizing an
unstable solution - what may sometimes be interesting from a point of view
of the performances - becomes difficult. For these reasons, we will consider
throughout this chapter the case of closed-loop control or feedback control
where there exist sensors for measuring at least partially the effects of the
control on the system.

2.1.1.2 Terminology In the control literature1, the mathematical mo-
del of the system to be controlled is called plant. In general, this model
only approximates the behavior of the physical system. We will go back to
this point and to the consequences in terms of optimization in section 2.3.
The corresponding state variables of the plant is noted x. The objective
of a control system is to make the reference output z behave in a desired
way by manipulating the plant input u (see Fig. 1). The reference input
r specifies the desired behavior of the reference output. In feedback flow
control the measured plant output y is fed back into the controller for de-
termining the control. Compared to u, the disturbance input w consists
of those inputs to the plant that are generated by the environment. It in-
cludes one contribution coming from the state disturbances w1 and another
contribution coming from the measurement noise w2. In the idealized case
called full-state configuration (see Fig. 1(a)), the entire state x is assumed
to be available for the controller. In the general case called observer-based

1Here, and in the rest of the chapter, we decide to use the standard notations in text-

books of control theory to familiarize the reader coming from fluid mechanics to these

notations. Then, otherwise stated, u denotes the control and not a velocity field.

Moreover, quantities expressed in boldface correspond to vector quantities.
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(b) Observer-based configuration.

Figure 1. Typical block diagrams for feedback control.
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configuration (see Fig. 1(b)), the plant states that are not measured di-
rectly is estimated by an observer. Thereafter, all the quantities with a hat
correspond to estimated variables: for instance, x̂ are estimated states.

2.1.1.3 Plant modelling The next stage is the determination of the
system of equations for the plant (Fig. 2). Starting from a physical system
and some measured data, the modelling phase consists of deriving a set of
Partial Differential Equations (PDEs) or Ordinary Differential Equations
(ODEs). In the first case, after discretization in space of the PDEs with
any numerical method (finite element, finite volume, . . . ), a set of ODEs
is obtained. Sometimes the ODEs are discretized in time as well, yielding
discrete-time dynamical systems. Here, to simplify the presentation, we
will concentrate on continuous-time systems. Finally, since any dynamical
system can be reduced to a first-order system of differential equations by
changing the set of variables, we obtain a non-linear state space model given
by

S :

⎧⎨⎩ ẋ(t) = f(t, x(t), u(t), w(t)),
z(t) = h(t, x(t), u(t), w(t)),
y(t) = g(t, x(t), u(t), w(t)),

where x(t) ∈ Rnx , u ∈ Rnu , w ∈ Rnw , y(t) ∈ Rny and z ∈ Rnz . The
non-linear functions f , g and h are defined accordingly.

Physical system + Data

S : ODEs
Discretization

PDEs

Modelling

Figure 2. Broad framework of the determination of the plant equations
(after Antoulas, 2005).

2.1.2 Linearized framework

Often, in practice, the non-linear system f is linearized around an operating
condition of interest. To simplify the future notations, we will assume that
the system does not depend explicitly on time and suppress for the moment
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the dependance on the external disturbance w writing for the plant equa-
tions ẋ(t) = f(x(t), u(t)). Depending on the applications, this operating
condition can be a particular solution of the unsteady dynamical system f ,
that is to say f(xe(t), ue(t)) = 0 or an equilibrium point of f characterized
by ẋe = f(xe, ue) = 0. In the domain of flow instabilities, this equilibrium
point corresponds to a steady solution of the Navier-Stokes equations.

We then introduce the first-order perturbations x̃(t) and ũ(t) such that

x(t) = xe(t) + x̃(t) and u(t) = ue(t) + ũ(t).

Expanding f in a Taylor series about (xe, ue), we obtain

ẋe(t) + ˙̃x(t) =f(xe(t), ue(t)) + Jx(xe(t), ue(t))x̃(t) + Ju(xe(t), ue(t))ũ(t)

+higher order terms

where Jx (respectively Ju) is the Jacobian matrix of f with respect to x

(respectively u):

(Jx)ij =
∂fi

∂xj
with 1 ≤ i ≤ nx ; 1 ≤ j ≤ nx

and

(Ju)ij =
∂fi

∂uj
with 1 ≤ i ≤ nx ; 1 ≤ j ≤ nu.

Neglecting the higher order terms and letting

A(t) = Jx(xe(t), ue(t)) and B(t) = Ju(xe(t), ue(t))

we obtain the linearized state space model

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)

where A(t) ∈ R
nx×nx is the state matrix and B(t) ∈ Rnx×nu is the input

matrix.

Similarly, the nonlinear functions z = h(x, u) and y = g(x, u) may
be linearized around the equilibrium point, resulting in a linear, parameter
time-varying (LPTV) system given by

SLPTV :

⎧⎨⎩ ẋ(t) = A(t)x(t) + B(t)u(t),
z(t) = C1(t)x(t) + D1(t)u(t),
y(t) = C2(t)x(t) + D2(t)u(t),

where for convenience the notation of the fluctuations was removed.
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The state model SLPTV can be further simplified when the system is
time-invariant. Adding the linearized contribution from the external dis-
turbances, the system becomes

ẋ(t) = Ax(t) + B1w(t) + B2(t)u(t),
z(t) = C1x(t) + D11w(t) + D12u(t),
y(t) = C2x(t) + D21w(t) + D22u(t).

This is the more general class of model that we can consider for linear-
time invariant (LTI) systems. Throughout this chapter, we will restrict our
attention to the simplified2 linear system

SLTI :

⎧⎨⎩ ẋ(t) = Ax(t) + Bu(t),
z(t) = C1x(t) + D1u(t),
y(t) = C2x(t) + D2u(t),

(1)

where C1 ∈ Rnz×nx and C2 ∈ Rny×nx are the output matrices and where
D1 ∈ Rnz×nu and D2 ∈ Rny×nu are the input to output coupling matrices.
A dynamical system with single input (nu = 1) and single output (ny = 1)
is called a SISO (single input and single output) system, otherwise it is
called MIMO (multiple input and multiple output) system. When this is
not necessary, we will not mention the variable z thereafter.

The advantage of linear systems is that the state, solution of (1), can be
found explicitly from the input and the initial conditions (see Zhou et al.,
1996):

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ) dτ

where the matrix exponential is defined by the power series:

eAt = I + At +
1

2!
A2t2 +

1

3!
A3t3 + · · ·

The reference and measured plant outputs are then generated as a func-
tion of the initial conditions and the input:

z(t) = C1e
Atx(0) +

∫ t

0

C1e
A(t−τ)Bu(τ) dτ + D1u(t)

and

y(t) = C2e
Atx(0) +

∫ t

0

C1e
A(t−τ)Bu(τ) dτ + D2u(t).

We will see in section 2.2.2 the consequences in terms of observability
and controllability of the system S.

2B1 = D11 = D21 = 0, B � B2, D1 � D12 and D2 � D22.
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2.1.3 Different types of problems

Within the general framework of flow control, various types of problems can
be considered:

Problem 1: How to determine the control law u to apply to the dynamical
system S to minimize a given norm3 of z?

In lack of particular assumption on the model, this problem is
designated as optimal control. The model f can then be a Direct
Numerical Simulation (Bewley et al., 2001), a Large Eddy Simulation
(El Shrif, 2008) or a reduced-order model (see section 2.3) obtained by
Proper Orthogonal Decomposition (Bergmann et al., 2005; Bergmann
and Cordier, 2008).

Problem 2: Now let us assume that the control system design corresponds
to state feedback i.e. u = Kx for the full state configuration or
u = Kx̂ for the observer-based configuration. Then how to determine
the control law u, or equivalently the gain matrix K, to apply to S
to minimize a given norm of z?

If the system S is Linear Time Invariant (LTI) then the problem
is called Linear Quadratic Regulator or LQR, see section 4 or in Burl
(1999).

Problem 3: Let ŷ be the estimated value of the output based on the esti-
mated state x̂. For an LTI system S, the state space system for the
observer is

˙̂x(t) = Ax̂(t) + B2u(t) + L (y(t) − ŷ(t)) ,
ŷ(t) = C2x̂(t)

(2)

where L is the observer gain matrix.

Then how to determine the gain matrix L so that x̂ is roughly
equal to x? This question corresponds to the observer design. It can
be shown (see section 2.2.2) that this problem is dual to the control
problem described at the previous item.

Problem 4: How to determine one or more parameters of the system S
knowing the input x and the corresponding output y?

Depending on the authors, this question corresponds to the esti-
mation of physical parameters or data inversion (Tarantola, 2005), to
systems’ identification (Juang and Phan, 2001) or to model calibration
(see Cordier et al., 2010, for an application to reduced-order models
derived by POD).

3An exact definition will be given in section 3.1.2.



Flow Control and Constrained Optimization Problems 9

Problem 5: The model S being known, how to determine the input u to
apply to S to obtain given output y?

This question, which is very similar to that of the first item, cor-
responds to a problem of data inversion.

Problem 6: How to determine the initial condition x0 which maximizes
the energetic amplification of the dynamical system S?

With this question, we can introduce the concept of optimal dis-
turbances and optimal growth (Schmid and Henningson, 2001). We
will see an application in section 5 for the linearized channel flow.

All these problems are sufficiently generals to appear in many scientific
disciplines sometimes very distant from each other (engineering, medical or
social sciences, . . . ). In addition, these problems clearly all involve at a
different level the resolution of a constrained optimization problem (mini-
mization for the great majority, maximization for the problem of optimal
disturbances). The solution of constrained optimization problems will thus
be the object of a detailed description in section 3.

2.2 Input-output framework

In section 2.1.2 we learned how, starting from a nonlinear model of dynamics
S resulting from any physical modeling, to determine a linear-time invariant
system. Is this step sufficient for control? On one hand, the answer is
affirmative because there exist many methods of control dedicated to the
linearized systems. On the other hand, we will now see that in general it
is necessary to be much more careful since the mapping of measurements y

(output) to the control u (input) is crucial to have a chance of success for
the control.

2.2.1 Similarity transformations

The objective of this section is to demonstrate that the equations of the
state-space system are not unique. Starting from the state-space system
(1), reproduced here for convenience:

ẋ(t) = Ax(t) + B2u(t),
y(t) = C2x(t) + D2u(t)

we consider a new state vector

x̃(t) = T
−1x(t)

where T is a constant, invertible transformation matrix. Since T is invert-
ible, we have x(t) = Tx̃(t) and ẋ(t) = T ˙̃x(t) (T independent of time). We
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then obtain immediately a new state-space system defined in terms of the
state x̃:

˙̃x(t) =
(
T−1AT

)
x̃(t) +

(
T−1B2

)
u(t),

y(t) = (C2T) x̃(t) + D2u(t)

In summary, the new state-space model is generated by using the follow-
ing similarity transformations:

A −→ T
−1AT ; B2 −→ T

−1B2 ; C2 −→ C2T ; D2 −→ D2.

Since there exists an infinite number of state representations for a given
system, a natural question is then how we can determine the transformation
T best adapted to control?

2.2.2 Controllability and observability

This section addresses the following fundamental questions:
1. Can we always control a flow?

2. Can the state of a system be estimated from the measurements?
In practice, the answers to these questions provide a guide to the selection
of actuators and sensors, and are also useful for developing controllers and
observers.

Controllability describes the ability of the control u to influence the state
x. Conversely, observability describes the ability to reconstruct the state x

based on available measurements y. To simplify the description, consider
SLTI given by (1) with D2 = 0. In this case, the output y is given (see
section 2.1.2) by:

y(t) =

∫ t

0

C2e
A(t−τ)B2u(τ) dτ︸ ︷︷ ︸

T1

+ C2e
Atx(0)︸ ︷︷ ︸
T2

.

The term T1 defines a mapping from the space of the control u to the
space of the state x. Since this map is linear, the image is a subspace of the
state-space Rnx called the controllability subspace. This subspace depends
only on the matrices A and B2, and is denoted SC . Similarly, the term T2

defines a mapping from the space of the state x to the space of measurement
y. Since this map is also linear, the image is a subspace of the state-space
R

ny called the observability subspace. This subspace depends only on the
matrices C2 and A, and is denoted by SO. The kernel of this linear map
forms a subspace, called the unobservable subspace. Since for these states,
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unit sphere ellipsoid of radii λc
k

λc
1

λc
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C

Figure 3. Geometric interpretation of the controllability operator: map-
ping of unit sphere onto ellipsoid. The direction corresponding to λc

1 is more
controllable than the direction corresponding to λc

2.

y = 0, it means that the elements of the kernel4 may be added to any
another initial state without changing the output.

2.2.2.1 Controllability Suppose the system defined in (1) is stable.
Then, for x(−∞) = 0, the state at time zero x(0) = x0 is given by

x0 =

∫ 0

−∞

e−AτB2u(τ) dτ.

This defines the controllability operator C by x0 = Cu. In geometric
terms analogous to the moment of inertia tensor, C defines a controllability
ellipsoid in the state space, with the longest principal axes along the most
controllable directions (see Fig. 3).

The controllability gramian is an nx×nx matrix whose eigenvectors span
the controllability subspace. It is defined5 for the system (1) as

Wc(t) = CCH =

∫ t

0

eAτ B2 BH
2 eAHτ dτ (3)

where the exponent H denotes the transconjugate operator (transpose con-
jugate).

4The kernel or null space of a linear transformation is the set of vectors that map to

zero. If we associate a matrix A to the linear transformation, the null space of A is

the set of all vectors x for which Ax = 0.
5The controllability gramian and later the observability gramian (section 2.2.2.2) can be

defined in a more general way by considering a weighted inner product (see appendix

A or Ilak 2009).
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If the system (1) is stable, we can consider the infinite horizon Gramian
(t −→ +∞) and forget the dependance on time. Since Wc is clearly self-
adjoint, it admits a set of real, non-negative eigenvalues λc

k and orthonormal
eigenvectors xc

k. The eigenvalues are a measure of the amount of control
energy required to obtain the corresponding eigenvectors. For two states,
xc

1 and xc
2 with ‖xc

1‖2 = ‖xc
2‖2 where ‖ · ‖2 denote the classical L2 norm

(‖x‖2
2 = xHx) then if

λc
1 = (xc

1)
H

Wcx
c
1 = ‖xc

1‖
2
Wc

> ‖xc
2‖

2
Wc

= (xc
2)

H
Wcx

c
2 = λc

2

it means that xc
1 is more controllable than xc

2.
When the size of the system S is not too high, the controllability gramian

can be determined6 directly as the solution of a Lyapunov7 equation given
by:

AWc + WcA
H + B2B

H
2 = 0.

By definition, the dynamical system (1), or equivalently the pair (A, B2)
is said to be state controllable if and only if, for any initial state x(0) = x0

and any final state xf , there exists an input u(t) such that x(tf ) = xf for
tf − t0 < +∞. Unfortunately, this criterion is not very usable. In practice,
the controllability of a system will be verified using one or the other of the
following equivalent criteria8 (Lewis and Syrmos, 1995; Zhou et al., 1996;
Skogestad and Postlethwaite, 2005):

1. Kalman criterion

rank
([

B2 AB2 A2B2 · · ·Anx−1B2

])
= nx.

2. Wc > 0.
3. Wc is full-rank.
4. Im(C) = Rnx .
Finally, let

Eu �

∫ 0

−∞

‖u‖2
2 dt =

∫ 0

−∞

uH(t)u(t) dt,

6The proof is based on the time differentiation of (3). It can be found in section A7 of

Burl (1999).
7A common way to solve continuous-time Lyapunov equation is with the function lyap

of Matlab or with the Slicot library that can be found in http://www.slicot.net.
8We remind that the rank of a matrix A corresponds to the maximal number of linearly

independent rows or columns of A. Moreover, a symmetric matrix A is said positive

definite (simply denoted A > 0) if xHAx > 0 for all non-zero vectors x. Finally,

Im(f) denotes the image of the operator f . If f is a mapping from E to F , then

Im(f) = {y ∈ F such that f(x) = y, for some x ∈ E}.
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unit sphere ellipsoid of radii λo
k

λo
1

λo
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Figure 4. Geometric interpretation of the observability operator: mapping
of unit sphere onto ellipsoid. The direction corresponding to λo

1 is more
observable than the direction corresponding to λo

2.

with u(t) defined for t ∈]−∞; 0], be the past input energy, it can be shown
(Mehrmann and Stykel, 2005) that:

Eumin
= min

u
Eu = xH

0 W−1
c x0.

2.2.2.2 Observability We now consider the similar notions as in the
previous section but for the output. We will thus follow a similar structure
of presentation.

Suppose the system (1) is in some initial state x(0) = x0 and u(t) = 0

for t ∈ [0; +∞[. Integrating the dynamics (1), it yields:

y(t) = C2e
Atx(0) (4)

which defines the observability operator O by y(t) = Ox0. Similarly to what
we have made in section 2.2.2.1 for the controllability, we can analyze this
operator in geometric terms (see Fig. 4). Here, O defines an observability
ellipsoid in the state space, with the longest principal axes along the most
observable directions.

The observability gramian is an nx ×nx matrix whose eigenvectors span
the observability subspace. It is defined for the system (1) as

Wo(t) = OHO =

∫ t

0

eAHτ CH
2 C2 eAτ dτ. (5)

For a stable system, observability can be characterized only by the infi-
nite horizon Gramian (t −→ +∞) and we can forget the explicit dependance
on time in Wo. The eigenvalues λo

k of Wo are a measure of the amount of
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state energy required to obtain the corresponding eigenvectors xo
k. Obvi-

ously, we have the result that for two states, xo
1 and xo

2 with ‖xo
1‖2 = ‖xo

2‖2

then if

λo
1 = (xo

1)
H

Wox
o
1 = ‖xo

1‖
2
Wo

> ‖xo
2‖

2
Wo

= (xo
2)

H
Wox

o
2 = λo

2

it means that xo
1 is more observable than xo

2.
When the dimension of S is not too high, a common way of determining

the observability gramian Wo is to solve the following Lyapunov equation:

AHWo + WoA + CH
2 C2 = 0.

By definition, the dynamical system (1), or equivalently the pair (A, C2)
is said to be state observable if and only if, for any time tf > 0, the initial
state x(0) = x0 can be determined from knowledge of the input u(t) and
output y(t) in the interval [0; tf ]. In practice, the observability of a system is
verified through one of the following equivalent criteria (Lewis and Syrmos,
1995; Zhou et al., 1996; Skogestad and Postlethwaite, 2005):

1. Kalman criterion

rank

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

C2

C2A
...

C2A
nx−1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = nx.

2. Wo > 0.
3. Wo is full-rank.
4. ker(O) = 0.
To conclude this section, let

Ey =

∫ +∞

0

‖y‖2
2 dt =

∫ +∞

0

yH(t)y(t) dt,

with y(t) defined for t ∈ [0; +∞[, be the future output energy, it can be
shown easily by substituting (4) in Ey that

Ey = xH
0 Wox0.

2.2.2.3 Duality Duality is an important concept in linear control the-
ory because, used advisedly, it can saved a considerable time in the deriva-
tion of properties for the systems under investigation. To go further, we
will initially admit that for any primal system defined by (1), that is to say

S :

{
ẋ(t) = Ax(t) + B2u(t),
y(t) = C2x(t)
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we can associate another state-space system, known as dual system, and
given by

Sdual :

{
ξ̇(t) = AHξ(t) + CH

2 ζ(t),
η(t) = BH

2 ξ(t).

Here, ξ is the dual state vector, and ζ and η contain the dual inputs and
outputs. Comparing S and Sdual it can be seen that we can deduce the dual
system from the knowledge of the primal system with the transformations:

A −→ AH and B2 −→ CH
2 . (6)

Duality of controllability and observability From the transforma-
tions (6) and the definitions (3) and (5), it is evident that the controllability
gramian of the primal system is equal to the observability gramian of the
dual system, and vice versa. As a consequence, the following results hold:

1. S (A, B2) is controllable if and only if Sdual

(
AH , BH

2

)
is observable,

2. Sdual

(
AH , CH

2

)
is controllable if and only if S (A, C2) is observable.

Duality of the control problem and the observer design If we
now consider the cost function

Jy =

∫ T

0

‖y‖2
2 dt

and the corresponding cost function

Jη =

∫ T

0

‖η‖2
2 dt

based on the dual system, it can easily be proved9 that Jy = Jη. This
property is fundamental in control theory since it can be employed to de-
termine the observer gain matrix L for the observer design (see problem
2.1.3 in section 2.1.3) based on the solution of the dual control problem.
Indeed, let xe(t) = x(t) − x̂(t) be the state error, the main purpose of

state observer design is to minimize J =

∫ T

0

‖xe‖
2
2 dt where x̂ is given by

9Essentially, the proof is based on two results:

1. the transformations (6), and

2. the following equalities

Jy = trace
(
C2WcCH

2

)
= trace

(
BH

2 WoB2

)
(see Burl, 1999, p. 113).
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(2). An elegant method of determination of the observer gain matrix then
consists in minimizing the same functional J but by introducing the dual
problem of the initial system (Huerre, 2006). We then arrive at a Linear
Quadratic Regulator problem whose solution is already known (see section
4). Consequently, we will not detail thereafter the observer design (see clas-
sical textbooks Zhou et al., 1996; Burl, 1999; Skogestad and Postlethwaite,
2005, for instance) and we will concentrate on the control problem.

2.2.2.4 Balanced truncation The notions of controllability and ob-
servability, as defined respectively in sections 2.2.2.1 and 2.2.2.2, give us a
means of deciding whether a state affects the system’s input-output map:
if a state is unobservable, it does not affect the output, and if a state is
uncontrollable, it is unaffected by the input. In terms of model reduction
dedicated to control (see section 2.3), in opposition to model reduction for
physical understanding, it is then capital to preserve controllable and ob-
servable modes, but in which proportion? A simple answer was given by
Moore (1981) for stable, linear, input-output systems. This method called
balanced truncation consists in transforming the state space system into a
balanced form whose controllability and observability Gramians become di-
agonal and equal (balanced realization), together with a truncation of those
states that are both difficult to reach and to observe.

Starting from the similarity transformations given in section 2.2.1, it can
be easily shown that the controllability and observability gramians become:

Wc −→ T
−1Wc

(
T
−1
)H

and Wo −→ T
HWoT.

In the system of coordinates defined by T, we thus have for a balanced
realization:

T
−1Wc

(
T
−1
)H

= T
HWoT = Σ =

⎡⎢⎣ σ1

. . .

σnx

⎤⎥⎦
where the Hankel singular values σi are real, positive and ordered by con-
vention from largest to smallest. An equivalent way of finding the bal-
ancing transformation T is to compute the eigendecomposition of WcWo

(WcWo = TΣ2T−1). It can be shown (Burl, 1999) that a balanced real-
ization exists whenever the system is stable and minimal10. A geometric
interpretation of the balanced truncation is given in Fig. 5.

10A state space system is minimal if and only if the system is controllable and observable

(Zhou et al., 1996). Moreover, a minimal realization of the system is associated with

a matrix A of smallest possible dimension.



Flow Control and Constrained Optimization Problems 17

SC = SO

SC

SO

Figure 5. Geometric interpretation of the balanced truncation. SC and SO

are respectively the controllability and observability subspaces.

An attractive feature of balanced truncation is that there exists a priori
error bounds that are close to the lower bound achievable by any reduced-
order model (Zhou et al., 1996, for instance). Let G denote the transfer
function11 of the LTI system (1) and Gr the corresponding transfer function
of a reduced-order model of order r. It can be proved that, in any reduced-
order model, the lower bound for the H∞ error12 is

‖G − Gr‖∞ ≥ σr+1

and that the upper bound for the error obtained by balanced truncation is
given by

‖G − Gr‖∞ ≤ 2

nx∑
j=r+1

σj .

If the Hankel singular values are decreasing sufficiently fast, it means that
the error norm of the reduced-order model of order r is very close to the
lowest possible value.

11For a SISO system, the transfer function G from u to y is defined as

G(s) = Y (s)/U(s)

where U(s) and Y (s) are the Laplace transform of u(t) and y(t). Moreover, it can be
demonstrated that for an LTI system, we have

G(s) = C2 (sI − A)−1 B2 + D2

where I is the identity matrix.
12The H∞ norm of the system is defined in terms of the transfer function G as:

‖G‖∞ = sup
ω

σ1 (G(jω))

where σ1 (A) corresponds to the maximum singular value of the matrix A and ω

represents frequency.
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The procedure of balanced truncation is very attractive in terms of con-
trol but the determination of the controllability and observability gramians
via the solution of Lyapunov equations is not computationally tractable for
very large systems. In addition, the original method suggested by Moore
(1981) is limited to the linear systems. These limitations were raised re-
cently by Lall et al. (2002) and then by Rowley (2005) who introduced
approximation methods of gramians based only on snapshots of the primal
and dual systems (see section 2.2.2.3). The initial method suggested by
Lall et al. (2002) was to first estimate the two gramians, and then in a
second time to perform the balanced truncation. The main contribution
presented in Rowley (2005) is a specific algorithm that can be used to de-
termine the balanced truncation directly from snapshots of the system i.e.
without needing to compute the gramians themselves. This method is called
Balanced POD for deep connections that it shares with POD. The reader
will find all the details of the numerical setting in Rowley (2005).

2.3 Model reduction

In section 2.2.2.4, model reduction was already evoked when the least con-
trollable and observable modes of the system were truncated based on the
decrease of the Hankel singular values. In this section, we will first justify
the interest of reduced-order modeling for flow control (section 2.3.1), and
then present in a general way the current methods of model reduction while
giving an emphasis on projection-based methods (section 2.3.2).

2.3.1 Need for reduced-order modeling

For a wing considered at cruising flight conditions i.e. for a Reynolds num-
ber of about 107, Spalart et al. (1997) considered that to obtain numerically
a converged solution, it is necessary to integrate the Navier-Stokes equations
during about 5 106 time steps on about 1011 grid points. Then, in spite of
the recent and considerable progresses of computers, it remains difficult to
solve numerically problems where

- either, a great number of resolution of the state equations is necessary
(continuation methods, parametric studies, optimization problems or
optimal control,. . . ),

- either a solution in real time is searched (active control in closed-loop
control for instance).

Not surprisingly, the reduction of the costs of solving nonlinear state
equations became a major issue in many scientific disciplines ranging from
linear algebra to computer graphics. Sometimes, as it is the case in fluid me-
chanics/turbulence, model reduction has a long tradition but the objective
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is more centered on the improvement of the understanding of the physical
mechanisms. Let us quote for example13:

- Prandtl boundary layer equations (Schlichting and Gersten, 2003),

- Reynolds-Averaged Navier-Stokes models (Chassaing, 2000),

- Large Eddy Simulation (Sagaut, 2005),

- Low-order dynamical system based on Proper Orthogonal Decompo-
sition (Aubry et al., 1988),

- Reduced-order models based on global modes (Åkervik et al., 2007),
to name a few. Since less than ten years, the methods of model reduction are
mainly considered in fluid mechanics for flow control. Lately, these methods
progressed considerably under the efforts of the applied mathematicians
who were interested in flow control. It is this specific point of view that is
retained in the following presentation of the model reduction methods.

2.3.2 Overview of model-reduction methods

Broadly speaking, model order reduction techniques fall into two major
categories:

1. projection-based methods,

2. non-projection based methods.
The first group corresponds to the methods that are currently the most

used in fluid mechanics. Therefore, this approach will be detailed in section
2.3.2.1. The second group consists mainly of such methods as Hankel op-
timal model reduction and state-residualization. More information can be
found for these methods in Antoulas (2005).

2.3.2.1 Projection-based methods The projection-based methods can
be used for dynamical models going from general nonlinear systems given14

by

S :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

to LTI models

SLTI :

{
Eẋ(t) = Ax(t) + B2u(t),
y(t) = C2x(t) + D2u(t),

13The traditional numerical methods used to solve partial derivative equations (finite

difference, finite volume, finite element, spectral method,. . . ) can also be classified

in the framework of reduced-order models since these methods consist in reducing an

infinite-dimensional problem to a finite-dimensional one (discretized problems).
14To simplify the formulations, we did not consider in this section the contribution of

the disturbances w to the models.
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written here in the so-called descriptor form. The matrix E is not necessarily
invertible but, when it is the case, the traditional LTI formulation is found.
For these two systems, the state variables x and output variables y are
respectively of size nx and ny.

The objective of reduced-order modeling is to determine for S and SLTI

the corresponding simplified models

Ŝ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

and

ŜLTI :

{
Ê ˙̂x(t) = Âx̂(t) + B̂2u(t),

ŷ(t) = Ĉ2x̂(t) + D̂2u(t)

where the control u is unchanged. These simplified models are now called
reduced-order models since x̂ ∈ Rr with r � nx and y 	 ŷ ∈ Rny . A
simplified description of model reduction is given in Fig. 6.

S : ODEs Ŝ : Low number of ODEs

Simulation

Control

Reduced-order
modelling

Figure 6. Broad framework of reduced-order modelling (after Antoulas,
2005).

If we want that these reduced-order models can be really usable for the
applications concerned, it is necessary that the methods used to derive these
simplified models satisfy various constraints:

1. Small approximation error for all admissible input signals u i.e.

‖y − ŷ‖ < ε × ‖u‖ with ε a tolerance.

It means that we need to have estimates of computable error bounds.
2. Stability and passivity (no generation of energy) preserved.
3. Procedure of model reduction numerically stable and efficient.
4. If possible, automatic generation of models.
In what follows we will describe an algorithm that can be used to derive

a reduced-order model of any dynamical system. This algorithm, called
Petrov-Galerkin projection, is based on a general bi-orthogonal projection
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basis. Let V and W be two15 bi-orthogonal matrices of size C
nx×r, and

Q ∈ Cnx×nx be the weight matrix such that

WHQV = Ir

where Ir is the identity matrix of size r. In the first step of the algorithm,
x is projected on the space spanned by the columns of V i.e. x = V x̂. In
the second step, this projection is inserted in the dynamical system where
we have introduced the residual R of the state equations. At this stage, we
obtain for S {

R = V ˙̂x(t) − f(t, V x̂(t), u(t)),
ŷ(t) = g(t, V x̂(t), u(t)),

and for SLTI {
R = EV ˙̂x(t) − AV x̂(t) − B2u(t),
ŷ(t) = C2V x̂(t) + D2u(t).

The last step corresponds to a weak projection of the residual on the
space spanned by the columns of W i.e. WHQ R = 0r. Finally, we obtain
the reduced-order model Ŝ where

Ŝ :

{
f̂(t, x̂(t), u(t)) = WHQ f̂(t, V x̂(t), u(t)),
ĝ(t, x̂(t), u(t)) = g(t, V x̂(t), u(t)),

and the reduced-order model ŜLTI where

Â = WHQAV, B̂2 = WHQB2,

Ĉ2 = C2V, D̂2 = D2,

Ê = WHQEV.

For the choice of the matrices V and W , various possibilities exist for
the linear systems:

1. In the case of Krylov methods (Gugercin and Antoulas, 2006), it corre-
sponds to the projection on the Krylov subspace of the controllability
gramian coupled with an identification of the moments of the transfer
function.

2. For balanced realizations, this choice corresponds to the projection on
dominant modes of the controllability and observability gramians as
already discussed in section 2.2.2.4.

15When V �= W , it corresponds to an oblique projection, and when V ≡ W it is called

Galerkin projection or orthogonal projection.
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3. For instabilities, the projection is made on the global and adjoint
global modes (Schmid and Henningson, 2001; Barbagallo et al., 2009).

4. Finally, in the case of the Proper Orthogonal Decomposition (Lumley,
1967; Sirovich, 1987), it corresponds to the projection on the subspace
determined optimally with snapshots of the system (see the contribu-
tion by B. Noack et al. in this book).

For the non-linear systems, the situation is different because, until now,
there exists only the Proper Orthogonal Decomposition what explains its
intensive use in the past years.

3 Optimal control theory

3.1 Constrained optimization problems

3.1.1 Abstract description

All the constrained optimization problems appearing in fluid mechanics and
heat transfers (shape optimization, active flow control, optimal growth, con-
trol of thermal systems, . . . ) can be described mathematically by the fol-
lowing quantities16 (Gunzburger, 1997a, 2003):

state variables φ which describe the flow. Depending on the problem,
these variables might be mechanical or thermodynamic, for instance
velocity vectors, pressure, temperature, . . .

control parameters c. In practice, these variables occur as boundary con-
ditions of the state equations17, when the control is applied at the
boundaries of the domain, or directly as a source term in the state
equations if the control is distributed inside the domain (volume forc-
ing). In data assimilation (meteorology, oceanography) and for opti-
mal growth (see section 5) these control parameters intervene as initial
conditions. According to the application, these parameters might be
velocities prescribed at the boundaries (suction/blowing), heat flux or
temperature at a wall, or for a shape optimization problem (Moham-
madi and Pironneau, 2001), it might be variables allowing to describe

16To simplify the presentation, all the variables are here considered as scalars. However,

the method extends naturally to the case of vectorial variables. For instance, an optimal

control problem is solved for the Linear Quadratic Regulator approach in section 4, and

for the three-dimensional Navier-Stokes equations in Bewley et al. (2001) or El Shrif

(2008).
17Here, we use the traditional terminology in optimal control and call state equations,

the equations which govern the dynamics of the system. Other terminologies are primal

or direct equations.
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geometrically the shape of the boundary. In this last case, the control
parameters are rather called design variables.

a cost or objective functional J which describes a measure of the ob-
jectives we wish to achieve. It might be drag minimization, maximiza-
tion of lift or heat flux, stabilization of a temperature, flow targets,
. . . This functional J depends on the state variables φ and on the
control parameters c, i.e. J (φ, c).

physical constraints F which represent the evolution of the state vari-
ables φ in terms18 of the control parameters c with respect to the
physical laws. Mathematically, these constraints are noted:

F (φ, c) = 0.

In fluid mechanics, these constraints correspond generally to the Navier-
Stokes equations and their associate initial and boundary conditions.
If a problem of optimal disturbance is concerned then the initial condi-
tion is imposed as a constraint (see section 5). If the control is exerted
at the boundaries of the flow domain, the boundary condition can also
be included as constraint (see section 6 for an example). Moreover, we
will see in section 3.1.2 that an additional constraint must in general
be added so that the problem is well posed mathematically.

Finally, the constrained optimization problem can be stated in the fol-
lowing way:

determine the state variables φ and the control parameters c,
such that the objective functional J is optimal (minimum or
maximum according to the case) under the constraints F .

3.1.2 Ill-posed optimization problem and choice of the cost

functional

The choice of the cost functional J is central in an optimization problem.
From a mathematical point of view, the physical quantity to be optimized
is represented by

J = M

where M is an appropriate measure of any physical quantity of interest:
drag, lift, disturbance energy, . . . The choice of this cost functional is essen-
tial in practice so that the optimization problem is well posed. This choice

18Rigorously, it would be necessary to note the variables φ(c) because φ depend on the

control variables c via the constraints. However, to reduce the notations, we will note

the state variables simply as φ.
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is sometimes difficult to achieve. For instance, it is not obvious to know in
advance if it is better to choose as cost functional a measure of the drag to
minimize this quantity. In some cases (Bewley et al., 2001; El Shrif, 2008),
it seems that it is preferable to minimize the averaged kinetic energy of the
flow in order to minimize the drag. In addition, beyond the mathematical
difficulty that is raised, we can imagine that the implementation of the con-
trol will be eased if the cost functional is based on a relevant quantity for
the physics of the problem.

In general, there is no explicit relation between the objective to be
reached and the control variable. This can involve that the optimization
problem is ill-posed and that its solution is then divergent. To solve this
difficulty, the cost of the control should be limited19. Let Mc be a measure
of the cost of the control, this limitation can be done:

1. By adding an additional constraint to the physical constraints (F )

This constraint corresponds to a maximum value which should
not be exceeded by the control cost. Let (Mc)max be an arbitrary
positive constant, the problem is then equivalent to impose that Mc ≤
(Mc)max. In optimization, the inequality constraints make intervene
optimality conditions known as Karush-Kuhn-Tucker (Bonnans et al.,
2003) which are often delicate to take into account. For this reason,
it is generally preferred to retain equality type constraints which can
be imposed more easily using Lagrange multipliers (see section 3.2).
It will thus be sufficient to set an additional constraint of the type
Mc = Mu

c where Mu
c > 0 is a cost imposed by the user, to do not

have to change the nature of the optimization problem to be solved.
2. By modifying the cost functional J

A possible modification of the cost functional is to consider

J = M + �Mc

where � is a positive real constant whose value is fixed by the user
according to the importance given to the cost of the control. If the
value of the parameter � is low then it means that the cost of the
control is not a priority in the practical implementation (low costs of
control). On the contrary, if the value of � is high, then the cost of the
control is a priority (expensive control). A more thorough discussion
is given in section 4 for the LQR control.

19Apart from a mathematical justification, a limitation of the control cost is necessary

since from an economic point of view the ratio saving/cost is a determining factor.
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Since the approach 1 with the inequality constraint is more difficult
to implement, the limitation of the cost control is introduced in most of
the studies through a modification of the cost functional J . In addition,
another interest of the approach is that the penalization parameter � clearly
introduces a compromise between the objective to be reached (saving) and
the importance of the control (cost).

3.1.3 Three different approaches

The current methods of solving a constrained optimization problem are dis-
tinguished in two classes (Gunzburger, 1997a, 2003). The first consists in
transforming the original problem of optimization with constraints in an
unconstrained optimization problem via the method of Lagrange multipli-
ers (section 3.2) giving optimality conditions of first order. The control
is then obtained by resolution of a system of coupled partial derivative
equations known as optimality system. The second class of methods uses
directly an algorithm of optimization (see section 3.3), which then requires
the determination of the gradient of the objective functional, or at least
of an approximation of this one. Two approaches can be used to evaluate
this gradient: approach by the sensitivities described in section 3.3.1 and
approach by the adjoint variables developed in section 3.3.2.

3.2 Adjoint or Lagrange multiplier methods

The principle consists to enforce implicitly the constraints of the problem via
Lagrange multipliers20. A new functional L, known as Lagrange functional,
is then introduced to define an unconstrained optimization problem. The
validity of such approach can be rigorously demonstrated using theories
developed in optimal control by applied mathematicians (see Gunzburger,
1997b, for elements of answers).

3.2.1 Introduction of the Lagrange multiplier

In this section, we follow the procedure outlined in Guegan et al. (2006)
and introduce a single vector space Θ = φ × c × ξ where ξ is the adjoint
variable or Lagrange multiplier associated to the constraint F = 0. Let
Φi =

(
φi, ci, ξi

)
with i = I, II be two arbitrary elements of Θ, we define a

20The Lagrange multipliers are often called adjoint variables. Strictly speaking, this

appellation is abusive. A justification will be given a posteriori when the adjoint

equations of the optimality system will be derived.
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generalized inner product as

{ΦI ,ΦII} =
〈
φI , φII

〉
s
+
〈
cI , cII

〉
c
+
〈
ξI , ξII

〉
a
, (7)

where 〈·, ·〉s, 〈·, ·〉c and 〈·, ·〉a are three inner products. These scalar products
can be defined in space, in time, in space-time or defined specifically accord-
ing to the problem which is considered (see later in sections 4, 5 and 6).
In the case of optimal disturbances, we will consider in section 5 an energy
inner product in order to determine the energy of the initial disturbances.

The constraint F is then enforced by introducing a Lagrangian functional
L defined as:

L(φ, c, ξ) � J (φ, c) − 〈F (φ, c), ξ〉a. (8)

The new unconstrained optimization problem can then be stated as:

determine the state variables φ, the control parameters c and the
adjoint variables ξ, such as the Lagrangian functional L reaches
an extremum.

3.2.2 Derivation of the optimality system

The Lagrangian functional L admits an extremum when L is rendered sta-
tionary. A first-order necessary condition for an extremum of L is that its
first-order variation δL is equal to 0 i.e.

δL =
∂L

∂φ
δφ +

∂L

∂c
δc +

∂L

∂ξ
δξ = 0.

For simplifying further the expression of δL, each argument of L is con-
sidered21 as independent of the others. The necessary condition is then
equivalent to

∂L

∂φ
δφ =

∂L

∂c
δc =

∂L

∂ξ
δξ = 0, (9)

where the variations δφ, δc and δξ are arbitrary.

Equivalently, the stationary points of the LagrangianL can be character-
ized by the gradients of L with respect to all the variables. By convention,
the gradients of L with respect to φ, c and ξ are denoted in the follow-
ing respectively by ∇φL, ∇cL and ∇ξL. The stationary points of L then
correspond to:

∇φL = ∇cL = ∇ξL = 0. (10)

21Note that this is obviously wrong for the original problem involving J since the vari-

ables φ and c were constrained to satisfy F (φ, c) = 0.
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These gradients are determined as projections of ∇L(Φ), gradient of the
Lagrangian at point Φ, onto the different subspaces corresponding to each of
the variables φ, c and ξ. Assuming that L is Fréchet-differentiable, ∇L(Φ)
is such that for any variation δΦ we have:

{∇L(Φ), δΦ} = d L|
Φ (δΦ), (11)

where {·, ·} is the scalar product introduced in (7). Furthermore, the Gâteau
differential d L|Φ of the Lagrangian L evaluated at point Φ is given by

d L|Φ (δΦ) = lim
ε−→0

L(Φ + εδΦ) − L(Φ)

ε
. (12)

The expressions (9) and (10) correspond to a necessary and sufficient
condition for determining a local extremum of L, but it constitutes only a
necessary condition for obtaining a minimum or a maximum. This type of
method thus ensures only to obtain a local extremum but not a global one.
We then have to keep in mind while using it that the algorithm of opti-
mization may be remain trapped in a local minimum without any physical
interest. Obviously, it would be better to use methods of global optimiza-
tion (genetic algorithms for instance) but those are still too expensive to be
used currently in fluid mechanics.

We will now derive the optimality system by setting successively the first
variations of L with respect to the adjoint variable ξ, direct variable φ and
control variable c equal to zero.

� Determination of ∇ξL or directional derivative in the direc-

tion δξ:

A variation δΦ given by (0, 0, δξ) is considered. Using the definition (8)
of the Lagrangian functional L, and the definitions (11) and (12) respectively
of the Fréchet and Gâteau derivatives, it yields to:

〈∇ξL, δξ〉a =

lim
ε−→0

J (φ, c) − 〈F (φ, c), ξ + εδξ〉a − J (φ, c) + 〈F (φ, c), ξ〉a
ε

= 0,

i.e. after simplification,
〈F (φ, c), δξ〉a = 0.

Since δξ is arbitrary, it can be deduced that

F (φ, c) = 0, (13)
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what corresponds to the constraints of the original problem of optimization.

Thus, setting the first variation of L with respect to the Lagrange mul-
tiplier equal to zero gives back the equations of constraints (state equa-

tions).

� Determination of ∇φL or directional derivative in the direc-

tion δφ:

In this case, we consider a perturbation δΦ given by (δφ, 0, 0). Following
the same procedure as for the state equations, we obtain:

〈∇φL, δφ〉s =

lim
ε−→0

J (φ + εδφ, c) − 〈F (φ + εδφ, c), ξ〉a − J (φ, c) + 〈F (φ, c), ξ〉a
ε

= 0.

Introducing the Taylor series of J and F at the order O(ε), the previous
relation becomes:

lim
ε−→0

(
∂J

∂φ
δφ − 〈

∂F

∂φ
δφ, ξ〉a + O(1)

)
= 0

i.e.
∂J

∂φ
δφ − 〈

∂F

∂φ
δφ, ξ〉a = 0.

The first term can be expressed with the inner product 〈., .〉a yielding
to:

〈
∂J

∂φ
δφ, 1〉a − 〈

∂F

∂φ
δφ, ξ〉a = 0.

Introducing the adjoint operator (see appendix A) (.)
+

with respect to
the inner product 〈., .〉a, we can write the previous relation as:

〈δφ,

(
∂J

∂φ

)+

〉a − 〈δφ,

(
∂F

∂φ

)+

ξ〉a = 0.

This equality must be verified whatever the variation δφ of φ is. We
then obtain the adjoint equations:(

∂F

∂φ

)+

ξ =

(
∂J

∂φ

)+

. (14)

These equations correspond to the adjoint of the state equations lin-
earized around the state. They are thus linear in the adjoint variables ξ,
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thus facilitating their resolution. In addition, the Lagrange multipliers sat-
isfy the equations associated to the constraints with a source term resulting
from the cost functional; this justifies the name of adjoint variables given
to the Lagrange multipliers.

When the state equations are non-linear (a typical case being the Navier-
Stokes equations), the adjoint equations (14) depend on the solution of the
state equations (13). The solution of the direct equations is then required
before the adjoint equations can be solved. Moreover, it can be shown
that for time-dependent problems, the adjoint equations are defined back-
ward in time (see section 4.3.2 for the LQR control). Therefore, in solving
the adjoint equations, the calculations start from the terminal condition
rather than an initial condition. This characteristic poses a unique chal-
lenge for efficient solution of unsteady adjoint equations since the solution
of the adjoint equations at each time step requires the solution of the direct
equations at the same time step. This leads to a serious demand on com-
puter memory. Some solutions to this problem are proposed in section 3.2.3.

� Determination of ∇cL or directional derivative in the direc-

tion δc:

Here, we consider δΦ = (0, 0, δc). We obtain immediately that:

〈∇cL, δc〉c =

lim
ε−→0

J (φ, c + εδc) − 〈F (φ, c + εδc), ξ〉a − J (φ, c) + 〈F (φ, c), ξ〉a
ε

= 0.

Then we proceed as we did for the adjoint equations. We first introduce
the Taylor series of J and F at the order O(ε). It comes

∂J

∂c
δc − 〈

∂F

∂c
δc, ξ〉a = 0,

i.e. after writing the first term with an inner product

〈
∂J

∂c
δc, 1〉a − 〈

∂F

∂c
δc, ξ〉a = 0.

Finally, we introduce the adjoint operators to yield

〈∇cL, δc〉c = 〈δc,

(
∂J

∂c

)+

〉a − 〈δc,

(
∂F

∂c

)+

ξ〉a = 0. (15)
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Since the variation δc of c is arbitrary, we obtain the optimality con-

ditions: (
∂F

∂c

)+

ξ =

(
∂J

∂c

)+

. (16)

These optimality conditions are first order. They are satisfied exactly
only when an extremum of the cost functional is achieved. One advantage
of the Lagrangian-based formulation is to provide not only the optimality
condition but also an expression for the gradient of the cost functional J
with respect to the control c. Indeed, in the constrained subspace where
F (φ, c) = 0, the gradient of the Lagrangian simply reduces to

∇cL = ∇cJ . (17)

Starting from (15), we can determine an expression for ∇cL when the
relation between the inner products 〈·, ·〉c and 〈·, ·〉a is known. A striking
example can be found in section 5.1.2.3 for the optimal growth perturba-
tion. Finally, the optimality condition (16) must be interpreted as the gap
to zero of the gradient of the cost functional ∇cJ .

The necessary conditions (13), (14) and (16) form a coupled system of
partial differential equations called optimality system. When the number of
unknowns of the optimality system is not too important, a direct method
of resolution known as ”one shot method” can be used to obtain without
iteration the optimal solution (see Galletti et al., 2007, for example, for an
application to the calibration of POD reduced order models). Unfortunately,
in fluid mechanics, the optimization problems comprise too many degrees
of freedom (107 for the turbulent channel flow studied by Direct Numerical
Simulation in Bewley et al. 2001) to prevent the use of a direct method.
It turns out that it is necessary to have recourse to iterative methods for
which the optimal control is approximated step by step until convergence.
This approach is described in the next section.

3.2.3 Numerical resolution

The optimality system can be solved iteratively in the following manner.
The resolution is initialized with a given control c(0) (here and below, the
superscripts (n) denote the iteration number). Then, for n = 0, 1, 2, ... and
as long as a given criterion of convergence is not satisfied, the following
steps are carried out:
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Step 1: Solve the state equations (13) forward in time to determine the
state variables φ(n)

F (φ(n), c(n)) = 0.

Step 2: Use the state variables computed in step 3.2.3 to solve the adjoint
equations (14) backward in time for the adjoint variables ξ(n)

(
∂F

∂φ

)+(n)

ξ(n) =

(
∂J

∂φ

)+(n)

.

Step 3: Use the state variables φ(n) computed in step 3.2.3 and the ad-
joint variables ξ(n) computed in step 3.2.3 to estimate the optimality
conditions (16) (

∂J

∂c

)+(n)

=

(
∂F

∂c

)+(n)

ξ(n).

Step 4: Set n = n + 1 and return at step 3.2.3 until a given criterion of
convergence is satisfied.

At stage 3.2.3 of the iterative process, a new control can be determined
with a gradient type method:

c(n+1) = c(n) − ω(n) (∇cJ )
(n)

. (18)

The relaxation parameter ω(n) is given using a line search method (No-
cedal and Wright, 1999). It can be shown that this simple iterative method
corresponds to a steepest descent algorithm for the unconstrained functional
J (φ(c), c). Figure 7 represents schematically the above algorithm.

This iterative procedure enables the reduction of the memory required
for the resolution of the optimality system. However, for time-dependent
problems, the adjoint equations are marched backward in time. For solv-
ing the adjoint equations at any time step, it is then necessary to know the
solution of the state equations at the same time step. According to the rela-
tive importance of CPU and memory in the optimization procedure, several
numerical strategies are possible. Let us consider22 for the discussion that
the memory is the limiting criterion in our application. The first method,
referred to as instantaneous control in the control literature (see Fig. 8),
consists in dividing the time horizon To on which optimization is performed

22In most of the applications, the memory is indeed the limiting criterion. One exception

is the case of real-time flow control where the main objective is to reduce the CPU

time necessary for solving the optimality system.
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Initial values at t = 0

n = 0 ; c(n) = c0

Solving the state
equations

φ(n), c(n)

Solving the adjoint
equations

φ(n), c(n), ξ(n) Estimating the
optimality condition

∇cJ (n)

Minimization of J
n = n + 1

c(n+1)

Resolution of the optimality system on [0;To]

Optimal solution
copt

Figure 7. Iterative resolution of the optimality system (schematic repre-
sentation).

0
T 2T 3T To − T To t

Solving the state equations

Solving the adjoint equations (gradient evaluation)

Optimality condition (control update)

Advance flow

Figure 8. Instantaneous control approach.
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in N smaller time window [Tk; Tk+1] (k = 0, · · · , N) of size T . The optimal-
ity system is successively solved on each window, where the state reached by
the optimized flow at the end of a given interval is taken as guess values for
optimization on the following interval (see Fig. 9). Of course, instantaneous
control will not lead in general to the same control that would be obtained
by optimizing the cost functional over To. However, this strategy was used
successfully in the past for the turbulent channel flow (Bewley et al., 2001;
Chang, 2000; El Shrif, 2008) and for the cylinder wake flow in laminar
regime (Protas, 2002; Bergmann et al., 2005). Another method for reduc-

Initial values on [Tk; Tk+1]

c(n) = c
(k)
opt

Solving the state
equations

φ(n), c(n)

Solving the adjoint
equations

φ(n), c(n), ξ(n) Estimating the
optimality condition

∇cJ (n)

Minimization of J
n = n + 1

k = k + 1

c(n+1)

Resolution of the optimality system on [Tk; Tk+1]

Optimal solution

c
(k+1)
opt = copt

Initial values at T0

n = 0 ; k = 0 ; c
(k)
opt = c0

Figure 9. Iterative resolution of the optimality system for the instantaneous
control approach (schematic representation).

ing the memory requirement is the use of reduced-order models (see section
2.3) as state equations. Depending on the configurations, these approxima-
tion models can be mathematically or physically derived. For instance, in
Bergmann et al. (2005), a POD reduced-order model was derived as state
equations for the cylinder wake flow and, in El Shrif (2008), a Large Eddy
Simulation was used as approximate model for the turbulent channel flow.
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Compared to previous studies where a Direct Numerical Simulation was
employed as state equations, drastic reductions of the computational costs
(memory and CPU) were found. The conceptual drawback of this method
is that there is no mathematical assurance that the solution of the optimiza-
tion algorithm working with the approximation models will correspond to
the solution of the optimization problem for the original dynamical system.
To circumvent this limitation, one possibility is to embed POD reduced-
order modeling in the framework of trust-region optimization as was done
with the Trust Region Proper Orthogonal Decomposition algorithm intro-
duced in Fahl (2000). Indeed, with this algorithm, mathematical proofs
exist that the solutions converge at least to a local optimum of the origi-
nal high-fidelity problem (see Bergmann and Cordier, 2008, for numerical
evidence in the case of the cylinder wake flow). A third method for simpli-
fying the resolution of the optimality system is to change the time-reversed
nature of the adjoint equations. For that, Wang et al. (2008) proposed re-
cently to use a Monte Carlo linear solver for solving forward in time the
unsteady adjoint equations. This method was only demonstrated for the
Burgers’ equation. Many issues remain to be solved before this method can
be employed for the Navier-Stokes equations. A last method is using a dy-
namic checkpointing scheme. The basic idea of checkpointing methods is to
solve the state equations first, and store its solution at selected time steps
called checkpoints. When the adjoint equations are integrated backward in
time, the solutions at corresponding time steps are calculated by re-solving
the state equations starting from the nearest checkpoint (Griewank and
Walther, 2008). Recently, Wang et al. (2009) suggested a dynamic check-
point scheme that minimizes the maximum number of recalculations for
each time step, and guarantees an efficient calculation of the adjoint equa-
tions when memory storage is limited. Moreover, in contrast to previous
checkpointing methods, their scheme has provable performance bounds and
works for arbitrarily large number of time steps.

3.3 Optimization methods

The second class of methods for solving constrained optimization problems
corresponds to the use of optimization algorithms. Many of these algorithms
require the gradient of the cost functional with respect to the control pa-
rameters or at least an approximation of this gradient. Since the iterative
algorithm presented in section 3.2.3 is equivalent to a steepest descent al-
gorithm which does not converge very quickly, it is preferable to use more
sophisticated methods of optimization. A typical algorithm of optimization
is written as follows:
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Start with an initial guess c(0) for the control. Then, for n = 0, 1, 2, . . .
and until a given convergence criterion is achieved, the following phases are
carried out:

Step 1: Solve the state equations F (φ(n), c(n)) = 0 to determine the state
variables φ(n).

Step 2: Compute the gradient of the functional J with respect to the

control variables c: dJ /dc|c(n) or (∇cJ )(n).
Step 3: Use the results of stages 3.3 and 3.3 to compute an increment δc(n).
Step 4: Determine new control parameters

c(n+1) = c(n) + δc(n)

Step 5: Set n = n + 1 and return at stage 3.3.
For each iteration of the optimization algorithm, it is necessary to solve

at least one state equation. To reduce the computational costs, it is thus in-
teresting to replace the state equations by reduced-order models (see section
2.3). In addition, many points of this algorithm must be specified:

1. How to determine the gradient of the cost functional at stage 3.3?
2. How to determine the increment of the control at stage 3.3?
3. How to choose the criterion of convergence for the optimization algo-

rithm?
The possible methods that can be used to determine the gradient of the

cost functional is discussed in more details in section 3.3.1. For determining
the increment of the control, different gradient-based optimization methods
(Nocedal and Wright, 1999) can be used such as non-linear conjugate gra-
dient methods (Fletcher-Reeves, Polak-Ribire, Hestenes-Stiefel,. . . ), trust-
region methods, quasi-Newton methods (BFGS, DFP, SR1,. . . ). Finally,
for the convergence criterion, a stopping test ‖ dJ /dc|c(n) ‖ < ε for ε −→ 0
is in general sufficient.

3.3.1 Functional gradients through sensitivities

To obtain the gradient of the cost functional with respect to the control
variables at stage 3.3 of the previous algorithm, the chain rule can be applied
to J (φ(c), c). The following expression is then obtained23:

dJ (φ, c)

dc
=

∂J (φ, c)

∂φ

dφ

dc
+

∂J (φ, c)

∂c
. (19)

23There will be an equation similar to (19) for each control parameter.
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Since the cost functional J depends explicitly of φ and c (see section

3.1.2), the partial derivatives
∂J

∂φ
and

∂J

∂c
will be ”easy” to determine.

On the other hand, the implicit dependency of the state variables φ on the
control variables c renders more delicate the evaluation of the sensitivities
dφ

dc
. In practice, two approaches can however be used:

By finite differences. Indeed, the sensitivities can be approximated by
finite difference in the following way:

dφ

dc

∣∣∣∣
c(n)

	
φ(c(n) + Δc(n)) − φ(c(n))

Δc(n)

where the step size Δc(n) is chosen as small as possible to minimize
truncation error but not too small for avoiding that errors due to
subtractive cancellation become dominant.

The cost of calculating sensitivities with finite differences is pro-
portional to the number of design variables. This method is expensive
numerically since the state equations must be solved for each pertur-
bation of c(n).

By solving linear systems. Another method for calculating the sensitiv-
ities consists in differentiating the state equation F (φ, c) = 0. We then
obtain:

dF =
∂F

∂φ
dφ +

∂F

∂c
dc = 0,

i.e. (
∂F

∂φ

∣∣∣∣
c(n)

)
dφ

dc

∣∣∣∣
c(n)

= −
∂F

∂c

∣∣∣∣
c(n)

. (20)

Finally, the sensitivities are obtained by resolution of this linear
system. The major drawback of this approach is that it is necessary
to solve as many24 linear systems that there are control parameters.
This method is however much more efficient than the approach by
finite differences: indeed, the sensitivities are determined exactly by
resolution of linear systems.

24One can however reduce the computational cost related to this method by noticing

that only the right-hand side of (20) depends on a particular control parameter. Then,

at a given iteration number n, the left-hand side operator can be discretized once for

all and then used to solve all the linear systems.
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3.3.2 Functional gradients through adjoint equations

The gradient of the cost functional J with respect to the control variables
c can also be obtained while combining the adjoint equation (14) and the

expression (19) giving
dJ

dc
.

Indeed, the adjoint of (14) corresponds to

ξ+ ∂F

∂φ
=

∂J

∂φ
. (21)

By introducing this equation into the expression (19) of the gradient of
the cost functional with respect to the control variables, one obtains:

dJ (φ, c)

dc
= ξ+ ∂F (φ, c)

∂φ

dφ

dc
+

∂J (φ, c)

∂c
.

Finally, using (20), it yields to:

dJ

dc
(φ(n), c(n)) = −

(
ξ+
)(n) ∂F

∂c

∣∣∣∣
c(n)

+
∂J

∂c

∣∣∣∣
c(n)

. (22)

The advantage of this method compared to that of the sensitivities is
that it is necessary to solve only one linear system (the adjoint system 21)
and that independently of the number of control parameters.

3.4 Differentiation and discretization

Two distinct approaches exist for formulating the adjoint system: continu-
ous and discrete, or using the terminology of Gunzburger (2003) differentiate-
then-discretize and discretize-then-differentiate. In the differentiate-then-
discretize approach (see Fig. 10), the adjoint problem is derived analytically,
based on the original system of partial differential equations, and then dis-
cretized using similar numerical methods to those used for discretizing the
state equations. In the discretize-then-differentiate approach (see Fig. 11),
the continuous direct problem is first discretized and these equations are
then differentiated to obtain the discretized adjoint equations. For finite
values of the grid sizes, the approximations of the discrete adjoints ob-
tained by the continuous and discrete approaches are different, because the
differentiation and discretization steps do not commute. Thus, we have to
decide which approach is better for a specific problem.

The main advantage of the discretize-then-differentiate approach is that
it yields to the exact gradient (except for round-off errors) of the discretized
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State equations +
Cost functional

Continuous in time

Continuous in space

State equations +
Adjoint equations +
Optimality conditions

Continuous in time

Continuous in space

State equations +
Adjoint equations +
Optimality conditions

Discrete in time

Discrete in space

Differentiation

Discretization

in time and

in space

Figure 10. Differentiate-then-discretize approach for adjoint-based opti-
mization methods.

State equations +
Cost functional

Continuous in time

Continuous in space

State equations +
Cost functional

Discrete in time

Discrete in space

State equations +
Adjoint equations +
Optimality conditions

Discrete in time

Discrete in space

Differentiation

Discretization

in time and

in space

Figure 11. Discretize-then-differentiate approach for adjoint-based opti-
mization methods.
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functional. On the other hand, discrete adjoints obtained through the
differentiate-then-discretize approach can yield to inconsistent gradients of
cost functionals. Indeed, the approximate discrete adjoints are not the
exact derivatives of the continuous functional, nor of a discretized func-
tional. If the consistency of functional gradients is the only criterion that is
considered then the advantage goes clearly to the discrete approach. How-
ever, differentiating by hand the discretized equations may become rapidly
a formidable task, all the more if the state equations are strongly non-linear
and if the discretization schemes are complex. Fortunately, to simplify the
writing of adjoint codes, automatic differentiation software (see the web
site http://www.autodiff.org) can be used to generate discrete adjoints.
However, as one can imagine, adjoint codes created by automatic differ-
entiation tools such as ADIFOR, TAMC, FastOpt, Tapenade, . . . usually
require more storage and CPU time that those written with the continuous
approach. One advantage of using the differentiate-then-discretize approach
is the possibility that is offered to design numerical grids that are specifi-
cally well suited to the adjoint systems. Indeed, if automatic differentiation
tool is used to evaluate the approximate adjoint variables, the same grids
are used for the state and adjoint equations what is clearly not optimal for
numerical convergence. In the end, the continuous approach seems more
natural for deriving the adjoint equations. For this reason, this is the ap-
proach that will be used in all the applications described in this chapter.

4 Linear quadratic optimal control

The Linear Quadratic Regulator (LQR) is an optimal control problem where
the state equation is linear, the cost functional is quadratic, and the objec-
tive of the controller is to regulate, i.e. return to zero, some measure of the
reference output z without using excessive amounts of control. The cost is
evaluated subject to the initial condition x(0) = x0 and with the assump-
tion of no disturbance input w. Therefore, we can use for plant model the
LTI system given by (1). We must now specify the measure which is used
for minimizing the reference output.

4.1 Choice of the cost functional

Let the time horizon for the optimal control be T , a natural choice of the
cost functional is

J =

∫ T

0

‖z‖2
2 dt.
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To evaluate ‖z‖2
2, we start from the definition of the L2 norm and con-

sider that the variable z is given by

z(t) = C1 x(t) + D12 u(t).

We then obtain immediately that:

‖z‖2
2 = zHz = (C1 x + D12 u)H(C1 x + D12 u) (23)

= (xHCH
1 + uHDH

12)(C1 x + D12u)

= xHCH
1 C1 x + uHDH

12D12u + uHDH
12C1 x + xHCH

1 D12u︸ ︷︷ ︸
=2xHCH

1 D12u

.

The next step is to simplify this expression. A traditional assumption in
control theory (Burl, 1999; Zhou et al., 1996) is to postulate that CH

1 D12 =
0. For that, a natural choice is to consider that

C1 =

(
Q

1/2
x

0

)
and D12 =

(
0

Q
1/2
u

)
where Q

1/2
x and Q

1/2
u are respectively the square root of two positive-definite

matrices Qx and Qu, to be justified below. Introducing C1 and D12 in the
expression of the norm of the reference output z, we obtain for the cost
functional:

J =

∫ T

0

‖z‖2
2 dt =

∫ T

0

(xHQx x + uHQu u) dt.

Furthermore, since Qx and Qu are positive-definite matrices, the follow-
ing weighted inner products

‖x‖2
Qx

� xH Qx x and ‖u‖2
Qu

� uH Qu u

can be defined, and thus we can rewrite J as

J =

∫ T

0

(‖x‖2
Qx

+ ‖u‖2
Qu

) dt.

A typical choice for the weight matrix Qu is Qu = �2 Id where � is a
real positive number (� = 0) and Id is the identity matrix. Finally, the cost
functional may be expressed25 as

J =

∫ T

0

(
‖x‖2

Qx
+ �2 uH u

)
dt. (24)

25In this form, the link with the optimal perturbation problem discussed in section 5

becomes obvious. Indeed, when the penalization term � is equal to zero, the expression

under the integral is equivalent to the amplification rate of energy G considered in

section 5.
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The term involving ‖x‖2
Qx

is a measure of the energy of the state variable

x integrated over the time horizon of optimization. The term involving uH u

corresponds to the energy of the control signal. The role of the scalar �2

is to establish a trade off between two conflicting goals: i) decreasing the
energy of the state variable which may require a large control signal, and ii)
a small magnitude of the control which may lead to large amplitude of the
state variable. The penalization term �2 must thus be viewed as a measure of
the control cost. When the value of �2 is large, it means that the practical
implementation of the control is ”expensive”. At the opposite, when the
value of �2 is small, the control is considered as ”cheap”. Consequently, the
minimal value of the cost functional J is expected when � tends to zero. A
first choice for the matrix Qx and the scalar �2 is given by the Bryson’s rule
(Bryson Jr. and Ho, 1975).

4.2 Original problem and Lagrange multipliers

The objective of this section is to formulate the LQR problem in the general
framework of optimal control theory (see section 3). For that, in addition
to the state variables x and control variables u, it is necessary to introduce
successively the state equation and the cost functional.

As it was already mentioned at the beginning of section 4, the state
equation is written here in the form of an LTI system, i.e.

F (x, u) = ẋ − Ax − B2u = 0.

The development of the expression of the cost functional was the subject
of section 4.1. On the basis of (24), the objective functional can also be
written as

J =
1

2

[
〈C1x, C1x〉 + �2 〈u, u〉

]
where the inner product 〈·, ·〉 is defined as

〈a, b〉 =

∫ T

0

aH(t)b(t) dt + complex conjugate. (25)

In the case of the LQR problem, the three inner products 〈·, ·〉s, 〈·, ·〉c
and 〈·, ·〉a introduced in section 3.2.1 are identical and correspond to (25)
since all the direct, adjoint and control variables are only functions of time.
This way, the derivation of the optimality condition in section 4.3.3 will be
simplified.
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The original constrained optimization problem is:

Determine the solution x(t) and the control parameter u(t) such that
the cost functional J reaches a minimum subject to F (x, u) = 0.

Following the philosophy of the optimal control theory, we then introduce
the Lagrange multiplier or adjoint variable x+(t) to enforce the constraint
F = 0, and define the Lagrangian functional as

L(x, u, x+) � J (x, u) −
〈
F (x, u), x+

〉
.

We then consider the unconstrained optimization problem given by:

Determine the solution x(t), the control parameter u(t) and the
Lagrange multipliers x+(t) such that the Lagrangian functional
L reaches a minimum.

Since each argument of L is supposed to be independent of the others, the
first-order necessary conditions for the minimum of L yield to an optimality
system derived in the general case in section 3.2.2.

4.3 Derivation of the optimality system

For deriving the optimality system, we now have to set successively the first
variation of L with respect to x+, x and u equal to zero.

4.3.1 Direct problem

Setting the first variation of L with respect to the Lagrange multiplier x+

equal to zero is equivalent to the condition:

〈
∇x+L, δx+

〉
= lim

ε→0

L(x, u, x+ + εδx+) − L(x, u, x+)

ε
= 0

= lim
ε→0

J (x, u) − J (x, u)

ε

− lim
ε→0

〈
ẋ − Ax − B2u, x+ + εδx+

〉
−
〈
ẋ − Ax − B2u, x+

〉
ε

= −
〈
ẋ − Ax − B2u, δx+

〉
= 0.

Since the variation δx+ is arbitrary, we recover the state equation:

ẋ = Ax + B2u.
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4.3.2 Adjoint problem

Setting the first variation of L with respect to the state x equal to zero is
equivalent to the condition

〈∇xL, δx〉 = lim
ε→0

L(x + εδx, u, x+) − L(x, u, x+)

ε
= 0,

where the variation δx is arbitrary. Substituting L with its definition, we
have

〈∇xL, δx〉 = lim
ε→0

J (x + εδx, u)− J (x, u)

ε

− lim
ε→0

〈
( ˙x + εδx) − A (x + εδx) − B2u, x+

〉
−
〈
ẋ − Ax − B2u, x+

〉
ε

=
∂J

∂x
δx︸ ︷︷ ︸

TI

−
〈

˙(δx), x+
〉

︸ ︷︷ ︸
TII

+
〈
Aδx, x+

〉︸ ︷︷ ︸
TIII

= 0. (26)

The objective is now to write the terms TI to TIII , appearing in the
right-hand side, as a particular inner product utilizing δx. For TI , we have
by definition

TI = lim
ε→0

J (x + εδx, u) − J (x, u)

ε
=

1

2
[〈C1δx, C1x〉 + 〈C1x, C1δx〉] .

Using the symmetry of the inner product (25) and introducing the ad-
joint C+

1 of C1 with respect to (25), TI becomes

TI = 〈C1δx, C1x〉 =
〈
δx, C+

1 C1x
〉
.

For TII , we first use the definition of the inner product and then integrate
by part in time. We obtain26:

TII =
〈

˙(δx), x+
〉

=

∫ T

0

(
˙δx
)H

x+ dt + c.c.

=
[
δxH x+

]T
0
−

∫ T

0

δxH ˙x+ dt + c.c.

Since the initial condition x(0) is perfectly known, we have δx(0) = 0.
To simplify further TII , we then consider that x+(T ) = 0. Finally, TII is

26The symbol c.c. denotes the complex conjugate.
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reduced27 to
TII =

〈
δx,− ˙x+

〉
.

Lastly, to transform TIII we introduce the adjoint matrix A+ of A with
respect to the inner product (25). We thus obtain:

TIII =
〈
Aδx, x+

〉
=
〈
δx, A+x+

〉
.

By gathering the terms TI to TIII , we can then write (26) as

〈∇xL, δx〉 =
〈
δx, C+

1 C1x
〉

+
〈
δx, ˙x+

〉
+
〈
δx, A+x+

〉
=
〈
δx, C+

1 C1x + ˙x+ + A+x+
〉

= 0.

Since the variation δx in the state x is arbitrary, we obtain the adjoint
equation

− ˙x+ = A+x+ + C+
1 C1x.

With this definition, the adjoint state must be marched backward in
time over the optimization horizon, starting the time integration with the
terminal condition

x+(T ) = 0.

4.3.3 Optimality conditions

Setting the first variation of L with respect to the control u equal to zero
is equivalent to the condition

〈∇uL, δu〉 = lim
ε→0

L(x, u + εδu, x+) − L(x, u, x+)

ε
= 0,

where the variation δu of the control u is arbitrary. If we now substitute
the Lagrangian L with its definition, we directly obtain:

〈∇uL, δu〉 = lim
ε→0

J (x, u + εδu) − J (x, u)

ε

− lim
ε→0

〈
ẋ − Ax − B2(u + εδu), x+

〉
−
〈
ẋ − Ax − B2u, x+

〉
ε

=
∂J

∂u
δu︸ ︷︷ ︸

TI

+
〈
B2δu, x+

〉︸ ︷︷ ︸
TII

= 0. (27)

27The minus sign, which appeared in front of ˙x+ following the temporal integration by

part, makes that the adjoint equation is now defined backward in time.
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Proceeding similarly as we did for the adjoint equation in section 4.3.2,
we immediately find:

TI = lim
ε→0

J (x, u + εδu) − J (x, u)

ε
=

�2

2
[〈u, δu〉 + 〈δu, u〉] = �2 〈δu, u〉

and
TII =

〈
B2δu, x+

〉
=
〈
δu, B+

2 x+
〉

where B+
2 is the adjoint matrix of B2 with respect to the inner product (25).

If we gather the two terms, (27) simplifies to

〈∇uL, δu〉 = �2 〈δu, u〉 +
〈
δu, B+

2 x+
〉

= 0 ∀δu.

Finally, since the variation δu of u is arbitrary, we obtain the optimality
condition

B+
2 x+ = −�2u,

and the gradient of J with respect to u

∇uL = B+
2 x+ + �2u.

Collecting the results of setting the first variations of the Lagrangian
functional to zero yields the optimality system given in Fig. 12. The aim of
the next section is to solve this optimality system by utilizing a nonlinear
matrix differential equation, known as the Riccati equation.

4.4 Riccati equation

In order to solve the optimality system of the LQR problem (see Fig. 12),
we must eliminate two variables among the three unknowns x, u and x+.
Solving for the optimal control u in the optimality condition yields

u(t) = −
1

�2
B+

2 x+(t) (28)

where the inverse of � is guaranteed to exist since � is a positive real number
(see section 4.1). Eliminating u from the direct and adjoint equations, and
combining the resulting equations into a single state equation yields(

ẋ
˙x+

)
=

(
A − 1

�2 B2B
+
2

−C+
1 C1 −A+

)(
x

x+

)
(29)

with
x(0) = x0 and x+(T ) = 0. (30)
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State equation:

ẋ = Ax + B2u

x(0) = x0 (I.C.)

Adjoint equation:

− ˙x+ = A+x+ + C+
1 C1x

x+(T ) = 0 (T.C.)

Optimality condition:

B+
2 x+ = −�2u

Cost functional:

J =
1

2

∫ T

0

(
xH CH

1 C1 x + �2 uH u
)

dt

Figure 12. Optimality system for the linear quadratic regulator problem.
I.C.: initial condition, T.C.: terminal condition.

The Hamiltonian system (29) represents a set of necessary and sufficient
conditions for the control to minimize the cost functional J . This results
from the fact that J is quadratic and from the positivity requirements on
the weighting matrix Qx = CH

1 C1.
By integrating in time the Hamiltonian system (29) subject to the ini-

tial and final conditions (30), it can be shown (Burl, 1999, p. 186) that
the adjoint variable can be found from the state variable using the linear
relationship

x+(t) = Π(t)x(t) (31)

where Π(t) is a square matrix of size nx. The optimal state-feedback control
is found from (28):

u(t) = −
1

�2
B+

2 Π(t)x(t) = K(t)x(t)
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where K(t) is called the feedback gain matrix. To evaluate the gain matrix
K, it is thus necessary to determine the matrix Π. A differential equation
for Π(t) can then be obtained by first taking the time derivative of (31) and

then substituting ẋ and ˙x+ from (29). After rearrangement, we obtain the
Riccati28 equation:

−Π̇ = A+ Π + ΠA −
1

�2
ΠB2 B+

2 Π + C+
1 C1. (32)

This equation depends only on the Hamiltonian matrix introduced in (29).
The matrix Π(t) is found by solving (32) backward in time from the terminal
condition given by:

Π(T ) = 0.

In applications where the control is designed to operate for T −→ +∞,
it is reasonable to ignore the transient time of the optimal gains and use
steady-state gains instead. The steady-state solution of the Riccati equation
is then generated from (31) by setting the derivative to zero. We then obtain
the continuous time algebraic Riccati equation (CARE) given by29:

A+ Π + ΠA −
1

�2
ΠB2 B+

2 Π + C+
1 C1 = 0. (33)

The solution of (33) can be used to generate the cost associated with
the optimal control. Given x(0), the optimal cost Jmin is given (Burl, 1999)
by:

Jmin = xH(0)Π(0)x(0).

To conclude this section, we give in Fig. 13 a summary of the solutions
for the LQR problem considered in the general case where the weighting
matrix Qu is not necessarily equal to �2 Id.

28The name Riccati is given to the equation by analogy to the Riccati differential equa-

tion: the unknown appears linearly and in a quadratic term (but no higher-order

terms).
29When the system order is not too high (about 300), (33) can be solved directly with the

care function under Matlab (Control System Toolbox) or alternatively with the Slicot

library. However, numerical algorithms for the solution of large-scale algebraic Riccati

equations are still nowadays a topic of research (Benner et al., 2008, for instance). It is

then evident that if we want to have a chance to apply sophisticated control algorithms

in real systems, strategies of model reduction, such as those discussed in section 2.3,

are fundamental.
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State-space system:

ẋ(t) = Ax(t) + B2u(t), with x(0) = x0.

z(t) = C1 x(t) + D12u(t), with C1 =

(
Q

1/2
x

0

)
and D12 =

(
0

Q
1/2
u

)
.

Cost functional:

J =

∫ T

0

(‖x‖2
Qx

+ ‖u‖2
Qu

) dt

State feedback:

u(t) = Kx(t)

Optimal feedback gain:

K(t) = −Q−1
u B+

2 Π(t)

Riccati equation:

−Π̇(t) = A+ Π(t) + Π(t)A − Π(t)B2 Q−1
u B+

2 Π(t) + Qx, with Π(T ) = 0.

Figure 13. Solutions of the Linear Quadratic Regulator (LQR) problem.

5 Optimal growth perturbation

In stability theory (Schmid and Henningson, 2001), people are interested
by the determination of the initial condition which maximizes the energy
amplification of the disturbances on a given time horizon 0 ≤ t ≤ T . Since
stability analysis is concerned with the disturbances around a base flow, we
will consider the linearized Navier-Stokes equations. Using compact nota-
tions, those equations can be written (Bewley and Liu, 1998, for instance)
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as30:

F (q) = q̇ − A q = 0 with q(x, t = 0) = q0(x) (34)

where the matrix A corresponds to the linearized Navier-Stokes operator
and x belongs to the spatial domain Ωx. By definition, the search of optimal
disturbances is thus equivalent to an optimization problem. A measure of
performance of the optimization can be given by the ratio of disturbance
energy at time T to the initial energy i.e.

J (q, q0) =
‖q(x, T )‖2

E

‖q0(x)‖2
E

. (35)

The energy inner product (·, ·)E is defined as

(
qI , qII

)
E

=

∫
Ωx

(
qI
)H

MqII dx + c.c. (36)

where M is a matrix that is case dependent, see Guegan et al. (2006) or
Antkowiak and Brancher (2007) for two typical examples.

The optimization process corresponding to the maximization of J should
respect the constraints given by the linearized Navier-Stokes equations and
the specified boundary and initial conditions. This problem is then amenable
to the classical framework of constrained optimization problem as discussed
in the next section.

5.1 Variational formulation

The objective of this section is to formulate the problem of optimal energy
growth in the framework of optimal control theory (see section 3). As we
will see thereafter, this problem has many points in common with the LQR
control considered in section 4. Indeed, the constraints (34) are also linear
and the cost functional (35) is also quadratic. The only differences are that
there are now two constraint equations instead of one and that the control
corresponds to the initial condition of the linearized system instead of a
boundary condition.

30In this section, we use the traditional notations in stability theory, q for the perturba-

tion, x for the spatial variable and t for time.
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5.1.1 Original problem, inner products and Lagrangian

formulation

To enforce the initial condition, we relate the solution q at initial time and
q0, the optimal growth perturbation we are looking for, through the relation

H(q, q0) = q(x, 0) − q0(x) = 0. (37)

The original constrained optimization problem is then formulated as:

Determine the solution q(x, t) and the control parameter q0(t)
(optimal disturbance) such that the cost functional J reaches a
maximum subject to F (q) = 0 and H(q, q0) = 0.

As outlined in section 3.2, the optimal control procedure requires the
introduction of Lagrange multipliers or adjoint variables q̃(x, t) and q̃0(x)
to enforce respectively the constraints F = 0 and H = 0. Furthermore,
to lead properly the developments of the optimality system, we need to
introduce two additional inner products:

〈
q̃I , q̃II

〉
=

∫ T

0

∫
Ωx

(
q̃I
)H

q̃II dx dt + c.c. (38)

and (
q̃I , q̃II

)
=

∫
Ωx

(
q̃I
)H

q̃II dx + c.c. (39)

Following the procedure presented in section 3.2.1, a single vector space
Θ = q × q0 × q̃ × q̃0 including all the direct and adjoint variables is intro-
duced. Let Qi =

(
qi, qi

0, q̃i, q̃i
0

)
with i = I, II be two arbitrary elements

of Θ, an inner product including all the three inner products (36), (38) and
(39) is defined as

{QI , QII} =
〈
qI , qII

〉
+
(
qI
0 , qII

0

)
E

+
〈
q̃I , q̃II

〉
+
(
q̃I
0, q̃II

0

)
. (40)

The constrained optimization problem is circumvented by introducing
the Lagrangian functional

L(q, q0, q̃, q̃0) = J (q, q0) − 〈F (q), q̃〉 − (H(q, q0), q̃0) ,

where the constraints have already been included by means of appropriate
Lagrange multipliers.
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5.1.2 Gradients of the Lagrangian

As outlined in section 3.2.2, determining the stationary points of the La-
grangian L requires the computation of the gradients of L with respect to all
the variables. By convention, the gradients of L with respect to q, q0, q̃ and
q̃0 are denoted in the following respectively by ∇qL, ∇q0L, ∇q̃L and ∇q̃0

L.
These gradients are determined as projections of ∇L(Q), gradient of the
Lagrangian at point Q, onto the different subspaces corresponding to each
of the variables q, q0, q̃ and q̃0. Assuming that L is Fréchet-differentiable,
∇L(Q) is such that for any variation δQ we have:

{∇L(Q), δQ} = lim
ε−→0

L(Q + εδQ) − L(Q)

ε
. (41)

5.1.2.1 Determination of ∇q̃L and ∇q̃0
L: direct equations Con-

sidering respectively δQ = (0, 0, δq̃, 0) and δQ = (0, 0, 0, δq̃0) in (41), we
obtain immediately (see section 4.3.1 for similar developments):〈

∇q̃L, δq̃
〉

= −〈F (q), δq̃〉 ,(
∇q̃0

L, δq̃0

)
= − (H(q, q0), δq̃0) .

At the stationary points of L, these gradients are by definition equal to zero.
Since the variations δq̃ and δq̃0 are arbitrary, the constraints F (q) = 0 and
H(q, q0) = 0 are recovered.

5.1.2.2 Determination of ∇qL: adjoint equations For evaluating
∇qL, δQ = (δq, 0, 0, 0) is introduced in (41). After some developments
which are exactly similar to those presented in section (4.3.2) for the LQR
control, we obtain

〈∇qL, δq〉 =
2

‖q0‖2
E

(δq|T , q|T )E +

〈
δq,

dq̃

dt
+ A+q̃

〉
− (δ q|T , q̃|T )

− (δq|0 , q̃0) + (δq|0 , q̃|0) ,

(42)

where δq|t stands for δq(x, t) with t = 0 or T . The expression (42) has to
hold true for any δq which entails:

1. Adjoint equations
dq̃

dt
= −A+q̃, (43)

2. Terminal adjoint condition

q̃|T =
2

‖q0‖2
E

q|T , (44)
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3. Compatibility condition
q̃0 = q̃|0 . (45)

5.1.2.3 Determination of ∇q0L: optimality conditions Finally, to
determine ∇q0L, we consider δQ = (0, δq0, 0, 0) in (41). While proceeding
similarly that in section 4.3.3, we obtain:

(∇q0L, δq0)E = −2
‖ q|T ‖2

E

(‖q0‖2
E)

2 (q0, δq0)E + (δq0, q̃0) . (46)

According to definitions (36) and (39) of the inner products, the following
expression holds:

(δq0, q̃0) =
(
M−1q̃0, δq0

)
E

where M−1 is the inverse of the matrix M . Consequently, (46) is equivalent
to

(∇q0L, δq0)E = −2
‖ q|T ‖2

E

(‖q0‖2
E)

2 (q0, δq0)E +
(
M−1q̃0, δq0

)
E

. (47)

Since δq0 is arbitrary, the gradient of the Lagrangian with respect to the
initial perturbation is

∇q0L = −2
‖ q|T ‖2

E

(‖q0‖2
E)

2 q0 + M−1q̃0,

and the optimality condition corresponds to

q0 =

(
‖q0‖2

E

)2
2‖ q|T ‖2

E

M−1q̃0 (48)

where q̃0 = q̃(x, t = 0) due to the compatibility condition (45). If we sup-
pose that M is equal to the identity matrix then the optimality system given
in Schmid (2007) on page 145 is recovered. Furthermore, in the constrained
subspace where F (q) = 0 and H(q, q0) = 0, the gradient of the Lagrangian
simply reduces to

∇q0L(Q) = ∇q0J (Q). (49)

The optimality system corresponding to the search of optimal growth
perturbation at a fixed time T is given in Fig. 14. This optimality sys-
tem can be solved iteratively using the procedure described in section 3.2.3
where ∇q0J given by (49) is used for determining the descent direction
(see section 7). By varying the time T over which the optimization is per-
formed, the maximum growth curve G(t) (see Fig. 15 for an example) is
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State equation:

q̇ = A q

q(x, t = 0) = q0(x) (I.C.) and control parameter

Adjoint equation:

dq̃

dt
= −A+q̃

q̃|T =
2

‖q0‖2
E

q|T (T.C.)

Optimality condition:

q0 =

(
‖q0‖2

E

)2
2‖ q|T ‖2

E

M−1q̃0

Compatibility condition:

q̃0 = q̃|0

Cost functional:

J (q, q0) =
‖q(x, T )‖2

E

‖q0(x)‖2
E

Figure 14. Optimality system for the optimal growth perturbation prob-
lem. I.C.: initial condition, T.C.: terminal condition.



54 L. Cordier

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

t

G
(t

)

Figure 15. Maximum growth curve G(t) for Poiseuille flow at Re = 1000.
The streamwise and spanwise wavenumbers are α = 0 and β = 2 (see
Cordier, 2009, for the details). The number of Chebyshev points for the
discretization is 200.

obtained. A second step consists in seeking the time tmax for which the
curve G(t) reached its maximum. The corresponding initial condition q0 is
called global optimal perturbation, or, in short, optimal perturbation. An
example of optimal perturbation for the Poiseuille flow is given in Fig. 16
and the corresponding solution q(x, tmax) displayed in Fig. 17.

Another way of determining the optimal disturbances is based on the
use of matrix exponential directly related to the linear system (34). This
is the method which is the most used in the literature because, as it will
be described in the following section, it is not necessary to use iterative
methods to determine the curve of temporal amplification energy.

5.2 Formulation based on matrix exponential

In this section, the same notations as in Schmid and Henningson (2001) are
used what means that the disturbance q is now discretized in space. We
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Figure 16. Optimal initial condition for Poiseuille flow at Re = 1000.
The streamwise and spanwise wavenumbers are α = 0 and β = 2 (see
Cordier, 2009, for the details). The number of Chebyshev points for the
discretization is 200. x and η are respectively the streamwise and wall-
normal non-dimensional coordinates.
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Figure 17. Optimal perturbation for Poiseuille flow at t = tmax and Re =
1000. The streamwise and spanwise wavenumbers are α = 0 and β = 2
(see Cordier, 2009, for the details). The number of Chebyshev points for
the discretization is 200. x and η are respectively the streamwise and wall-
normal non-dimensional coordinates.
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will thus have q � q(t) and no more q = q(x, t) as in section 5.1. The
objective is to determine the maximum possible amplification G of initial
energy density i.e.

G(t) = max
q0 �=0

‖q(t)‖2
E

‖q0‖2
E

with q0 = q(0) (50)

where the energy inner product is now defined as ‖q(t)‖2
E = q(t)H Qq q(t)

with Qq an appropriate weighting matrix. For practical reasons, it is more
desirable to work with the standard-L2 norm than with weighting matrices.
Using the Cholesky decomposition, we then decompose the weight matrix
Qq as Qq = FHF . This way, the energy inner product can be written also
as

‖q(t)‖2
E = q(t)H Qq q(t) = q(t)H FHF q(t) = ‖F q(t)‖2

2. (51)

Furthermore, for a linear state-space model defined by

q̇ = A q with q(0) = q0, (52)

the solution at all positive times is given by (see section 2.1.2)

q(t) = eAt q0. (53)

Consequently, the maximum energy amplification G may be written also:

G(t) = max
q0 �=0

‖q(t)‖2
E

‖q0‖2
E

= max
q0 �=0

‖F q(t)‖2
2

‖F q0‖2
2

= max
q0 �=0

‖F eAt q0‖2
2

‖F q0‖2
2

.

Introducing the change of variable s0 = Fq0, the previous expression
becomes:

G(t) = max
s0 �=0

‖F eAtF−1 s0‖2
2

‖s0‖2
2

= max
‖s0‖2=1

‖F eAtF−1 s0‖
2
2 � ‖F eAtF−1‖2

2

= σ2
1

where σ1 is the maximum singular value of F eAtF−1. Computationally, it
is expensive in general to evaluate eAt since, depending on the numerical
discretization, A may be a dense matrix. A better solution is to change
the formulation of the original problem by writing it in the basis of the
eigenvectors of A. Using the eigenvalue decomposition of A, i.e. A =
PDP−1, it is obvious that the linear state-space system (52) simplifies in

K̇ = D K with K(0) = K0. (54)
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Here, K(t) corresponds to the coefficients of the development of q into the
eigenvectors of A: q(t) = PK(t). The solution of (54) writes immediately

K(t) = eDtK0, (55)

where D is the diagonal matrix of eigenvalues of A.

With this new formulation, the energy inner product is:

‖q(t)‖2
E = q(t)H Qq q(t) = K(t)H PHQqP K(t) = K(t)H FHF K(t)

= ‖F K(t)‖2
2

where this time the matrix F corresponds to the Cholesky decomposition
of P HQqP .

Following exactly the same approach as previously in this section, we
obtain

G(t) = ‖F eDtF−1‖2
2 = σ2

1 . (56)

This expression corresponds to a convenient and efficient way of com-
puting the maximum transient growth. Indeed, (56) involves the L2-norm
(very convenient) and evaluates the matrix exponential of a diagonal matrix
(very efficient).

6 Linearized Burgers equation

In section 4, we considered the LQR control where the state equation was
written as a Linear Time Invariant state-space model, the cost objective
was quadratic and the control was distributed. Section 5 was dedicated to
the study of optimal growth disturbances where, compared to the case of
LQR, the control corresponded to the initial condition of the linear state
equation and where the objective was to maximize the energy amplitude of
the perturbations. In this section, we now consider the case of the bound-
ary control where the state equation is a Partial Differential Equation. This
configuration is characteristic from the applications that can be met in fluid
mechanics (Bewley et al., 2001; El Shrif, 2008), heat transfers and thermal
systems (Müller, 2006). To simplify the presentation, we consider a one-
dimensional configuration and take for state equation the linearized Burgers
equation. The optimality system for the nonlinear Burgers equation with
boundary and distributed control is given in section 7.

We will follow as closely as possible the presentation made in section 5
for the optimal growth perturbations.
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6.1 Problem formulation and Lagrangian-based approach

Define Ξ = {(x, t) | (x, t) ∈ [0, L] × [t0, tf ]} as the physical domain of the
process. To simplify the future developments, we consider that Ξ = Ωx×Ωt

where Ωx = [0, L] and Ωt = [t0, tf ] and introduce three inner products

〈u, v〉Ξ =

∫
Ξ

u(x, t)v(x, t) dx dt, (57)

〈u, v〉Ωx
=

∫
Ωx

u(x, t)v(x, t) dx, (58)

〈u, v〉Ωt
=

∫
Ωt

u(x, t)v(x, t) dt, (59)

where u(x, t) and v(x, t) are two sufficiently regular real-valued functions
defined on Ξ.

The linearized Burgers equation is given by

FU (u) = ut + U(x)ux − uxx = 0 with u(x, t0) = u0(x), (60)

where ut =
∂u

∂t
, ux =

∂u

∂x
and uxx =

∂2u

∂x2
. In (60), U(x) is a real-valued

function defined on Ωx. Furthermore, we consider that at the upper bound-
ary of Ωx, we have u(L, t) = 0.

In this section, our objective is to determine the function uw(t) = u(x =
0, t) (i.e. the temporal disturbance at the lower boundary of the domain)
such that the classical L2 norm of u is minimized at the final time of inte-
gration (t = tf ). In other words, we seek to minimize the cost functional
defined by

J (u, uw) =

(∫
Ωx

u2 dx

)
t=tf

= 〈u, u〉Ωx
|t=tf

.

In addition, the optimization problem must be mathematically well-
posed (see the discussion in section 3.1.2). It is then necessary to add a
regularization term to the cost functional J . Finally, the cost functional

J (u, uw) =

(∫ L

0

u2 dx

)
t=tf

+ �

∫ tf

t0

u2
w dt,

= [[u, u]] + �〈uw, uw〉Ωt
,

(61)
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is used where the penalty parameter � > 0 allows us to set the ”price” of
the control effort. To simplify further the expression of J , an additional
inner product was introduced in (61). This scalar product is defined as

[[u, v]] =

(∫
Ωx

u(x, t)v(x, t) dx

)
t=tf

= 〈u, v〉Ωx
|t=tf

. (62)

Contrary to the case of the optimal disturbances (see section 5.1), the
control intervenes as a boundary condition and no more as an initial con-
dition. However, the same formalism remains applicable and the boundary
condition can be enforced through the relation:

H(u, uw) = u(0, t) − uw(t) = 0.

The original constrained optimization problem is then stated:

Determine the solution u(x, t) and the control parameter uw(t)
(upper boundary condition) such that the cost functional J reaches
a minimum subject to FU (u) = 0 and H(u, uw) = 0.

The procedure described in section 3.2 is then followed for enforcing the
constraints31. For that, we introduce a single vector space Θ = u × uw ×
u+×λ+ where u+(x, t) and λ+(t) are the Lagrange multipliers corresponding

respectively to FU = 0 and H = 0. Let Qi =
(
ui, ui

w, (u+)
i
, (λ+)

i
)

with

i = I, II be two arbitrary elements of Θ, an inner product including the
inner products (57) and (59) is defined as

{QI , QII} =
〈
uI , uII

〉
Ξ

+
〈
uI

w, uII
w

〉
Ωt

+
〈(

u+
)I

,
(
u+
)II
〉

Ξ
+
〈(

λ+
)I

,
(
λ+
)II
〉

Ωt

. (63)

The constraints are then enforced by introducing the Lagrangian func-
tional

L(u, uw, u+, λ+) = J (u, uw) − 〈FU (u), u+〉Ξ − 〈H(u, uw), λ+〉Ωt
. (64)

The new unconstrained optimization problem can then be stated as:

31The constraints of the problem which are not imposed by Lagrange multipliers (initial

condition and boundary condition at the upper boundary of the spatial domain) will

be enforced a posteriori on the solutions.
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Determine the solution u(x, t), the control parameter uw(t) and
the Lagrange multipliers u+(x, t) and λ+(t) such that the La-
grangian functional L reaches a minimum.

6.2 Optimality system

As it was discussed in details in section 3.2.2, a necessary condition for
obtaining a minimum or maximum of the Lagrangian is to set the gradients
of L with respect to u, uw, u+ and λ+ equal to zero i.e.

∇uL = ∇uw
L = ∇u+L = ∇λ+L = 0.

The derivation of the optimality system thus passes by the computation
of the gradients of L with respect to all the variables.

6.2.1 Direct equations

Differentiating (64) with respect to the adjoint variables u+ and λ+ yields
immediately to

〈∇u+L, δu+〉Ξ = lim
ε→0

L(u, uw, u+ + εδu+, λ+) − L(u, uw, u+, λ+)

ε

= −〈FU (u), δu+〉Ξ = 0, (65)

and

〈∇λ+L, δλ+〉Ωt
= lim

ε→0

L(u, uw, u+, λ+ + εδλ+) − L(u, uw, u+, λ+)

ε

= −〈H(u, uw), δλ+〉Ωt
= 0. (66)

Since the variations δu+ and δλ+ are arbitrary, FU and H necessarily
have to vanish, and we thus recover the constraints.

6.2.2 Adjoint equations

For differentiating (64) with respect to the direct variable u, we consider a
variation δQ = (δu, 0, 0, 0). It yields

〈∇uL, δu〉Ξ = lim
ε→0

L(u + εδu, uw, u+, λ+) − L(u, uw, u+, λ+)

ε
= 0. (67)
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Substituting L with its definition, we have immediately due to the lin-
earity of FU and H :

〈∇uL, δu〉Ξ = lim
ε→0

J (u + εδu, uw) − J (u, uw)

ε

− lim
ε→0

〈FU (u + εδu), u+〉Ξ − 〈FU (u), u+〉Ξ
ε

− lim
ε→0

〈H(u + εδu, uw), λ+〉Ωt
− 〈H(u, uw), λ+〉Ωt

ε

= 2[[u, δu]] − 〈FU (δu), u+〉Ξ − 〈δu(0, t), λ+〉Ωt
. (68)

The objective is now to write the term 〈FU (δu), u+〉Ξ as a particular
inner product utilizing δu. By definitions of the scalar product (57) and of
FU , we have:

〈FU (δu), u+〉Ξ = 〈(δu)t, u
+〉Ξ︸ ︷︷ ︸

TI

+ 〈U(x)(δu)x, u+〉Ξ︸ ︷︷ ︸
TII

−〈(δu)xx, u+〉Ξ︸ ︷︷ ︸
TIII

.

The simplification of the terms TI to TIII is then equivalent to an exercise
of integration by parts. We obtain immediately:

TI =

∫
Ξ

u+ (δu)t dx dt =

[∫
Ωx

u+δu dx

]t=tf

t=t0

− 〈δu, u+
t 〉Ξ,

TII =

∫
Ξ

u+ U(x) (δu)x dx dt =

[∫
Ωt

U u+δu dt

]x=L

x=0

− 〈δu,
(
U u+

)
x
〉Ξ,

and

TIII =

∫
Ξ

u+ (δu)xx dx dt =

[∫
Ωt

u+ (δu)x dt

]x=L

x=0

−

∫
Ξ

u+
x (δu)x dx dt

where ∫
Ξ

u+
x (δu)x dx dt =

[∫
Ωt

δu u+
x dt

]x=L

x=0

− 〈δu, u+
xx〉Ξ.

By replacing the terms TI to TIII by their expressions, we can write (68)
as

2

(∫
Ωx

u δu dx

)
t=tf

−

∫
Ωt

λ+ δu(0, t) dt + 〈u+
t +
(
Uu+

)
x

+ u+
xx, δu〉Ξ

−

[∫
Ωt

((
Uu+ + u+

x

)
δu − u+ (δu)x

)
dt

]x=L

x=0

−

[∫
Ωx

u+δu dx

]t=tf

t=t0

= 0.

(69)
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This last expression has to hold true for any variation δu. That means
that (69) must be in particular true for variations presumed unspecified on
Ξ, except at its boundaries ∂Ξ where we consider

δu(x, t) = 0 ∀(x, t) ∈ ∂Ξ.

Introducing this particular perturbation in (69) yields to

〈u+
t +
(
Uu+

)
x

+ u+
xx, δu〉Ξ = 0,

what leads to the adjoint equation of the linearized Burgers equation

F+
U (u+) = u+

t + (Uu+)x + u+
xx = 0 ∀(x, t) ∈ Ξ. (70)

Contrary to the direct equation (60), the adjoint equation is now parabolic
in decreasing time. As a consequence, it is then necessary to provide (70)
with a terminal condition. In addition, since the cost functional J that
we considered is defined locally in time (minimization of the norm of u at
final time tf ), the adjoint equation is independent of the optimization prob-
lem. This was not the case for the LQR problem (see section 4.3.2) where
a source term coming directly from J appears in the adjoint equation.

According to the adjoint equation, (69) is now equivalent to

2

(∫
Ωx

u δu dx

)
t=tf

−

∫
Ωt

λ+ δu(0, t) dt

−

[∫
Ωt

((
Uu+ + u+

x

)
δu − u+ (δu)x

)
dt

]x=L

x=0

−

[∫
Ωx

u+δu dx

]t=tf

t=t0

= 0.

(71)

In terms of perturbations, the initial and upper boundary conditions of
the original problem result in

δu(x, t0) = 0 and δu(L, t) = 0.

Using these conditions, (71) may then be rewritten as(∫
Ωx

(
2u − u+

)
δu dx

)
t=tf

+

(∫
Ωt

u+ (δu)x dt

)
x=L

+

[∫
Ωt

((
Uu+ + u+

x − λ+
)
δu − u+ (δu)x

)
dt

]
x=0

= 0. (72)

Since the perturbation δu may be chosen arbitrarily, we can consider:
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- Functions u which are unspecified at t = tf but with constant val-
ues along x = 0 and x = L. In terms of perturbations, this choice
corresponds to

δu(0, t) = 0 and δu(L, t) = 0.

Inserting these particular perturbations in (72) lead to the terminal
condition of the adjoint equation:

u+(x, tf ) = 2u(x, tf). (73)

- Functions u which are constant everywhere on Ξ except at x = L, i.e.

δu(0, t) = 0 and (δu)x (0, t) = 0.

This choice yields to a first boundary condition for the adjoint equa-
tion:

u+(L, t) = 0. (74)

- Finally, we consider functions u which are constant everywhere on Ξ
except at x = 0, i.e.

(δu)x (L, t) = 0.

This type of perturbation leads to a second boundary condition for
the adjoint equation:

u+(0, t) = 0 (75)

and to the compatibility condition

u+
x (0, t) − λ+(t) = 0. (76)

6.2.3 Optimality conditions

For the differentiation of (64) with respect to the control variable uw, a
variation δQ = (0, δuw, 0, 0) is considered. By definition of the Fréchet and
Gâteau differentials, we obtain:

〈∇uw
L, δuw〉Ωt

= lim
ε→0

L(u, uw + εδuw, u+, λ+) − L(u, uw, u+, λ+)

ε
= 0.

(77)
If we then replace the Lagrangian functional L by its definition, we obtain

immediately by linearizing the expression of J and by linearity of H that:

〈∇uw
L, δuw〉Ωt

= lim
ε→0

J (u, uw + εδuw) − J (u, uw)

ε

− lim
ε→0

〈H(u, uw + εδuw) − H(u, uw), λ+〉Ωt

ε

= 2�〈uw, δuw〉Ωt
+ 〈λ+, δuw〉Ωt

= 0. (78)
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Since the variation δuw is arbitrary, we determine the gradient of J with
respect to u

∇uw
L = 2�uw + λ+,

and the optimality condition

−2�uw(t) = λ+(t).

Using the compatibility condition (76), the optimality condition simpli-
fies in

−2�uw(t) = u+
x (0, t). (79)

The optimality system corresponding to the linearized Burgers equation
is given in Fig. 18.

7 Non-linear Burgers equation

In this section, we consider the case of the nonlinear Burgers equation where
the control is both distributed and applied at the boundaries of the spatial
domain. Since this is a natural extension to the linearized Burgers equation
studied in section 6, we will not detail the derivation of the optimality
system (see El Shrif, 2008, for that) but we will present some numerical
results of optimal control (section 7.2).

7.1 Formulation and optimality system

The Burgers equation that we consider is given by

F (u, Φ) =
∂u

∂t
+

1

2

∂u2

∂x
− ν

∂2u

∂x2
− Φ = 0 with u(x, t0) = u0(x),

where ν is the kinematic viscosity and Φ(x, t) corresponds to the distributed
control. In our application, this equation is solved on a physical domain
defined by Ξ = {(x, t) \ (x, t) ∈ Ωx × Ωt} with Ωx = [0, L] and Ωt = [t0, tf ].
Furthermore, we suppose that boundary controls are applied at the left and
right boundaries of the domain. The boundary conditions are then

u(0, t) = φL(t)

u(L, t) = φR(t)

where φL and φR correspond to control parameters.
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State equation:

FU (u) = ut + U(x)ux − uxx = 0

u(x, t0) = u0(x) (I.C.)

u(0, t) = uw(t) (B.C.) and control parameter

u(L, t) = 0 (B.C.)

Adjoint equation:

F+
U (u+) = u+

t + (Uu+)x + u+
xx = 0 ∀(x, t) ∈ Ξ

u+(0, t) = 0 (B.C.)

u+(L, t) = 0 (B.C.)

u+(x, tf ) = 2u(x, tf ) (T.C.)

Optimality condition:

−2�uw(t) = u+
x (0, t)

Cost functional:

J (u, uw) =

(∫ L

0

u2 dx

)
t=tf

+ �

∫ tf

t0

u2
w dt

Figure 18. Optimality system for the linearized Burgers equation. B.C.:
boundary condition, I.C.: initial condition, T.C.: terminal condition.
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In this section, we seek to minimize the cost functional defined by

J (u, Φ, φL, φR) =
ω1

2

∫
Ωt

∫
Ωx

(u − û)2 dx dt +
ω2

2

∫
Ωx

[u(x, tf ) − ū(x)]2 dx

+
�1

2

∫
Ωt

φ2
L(t) dt +

�2

2

∫
Ωt

φ2
R(t) dt

+
�

2

∫
Ωt

∫
Ωx

Φ2(x, t) dx dt.

The first two terms try to match the solution u respectively on Ξ and
over the spatial domain Ωx at tf to given functions û and ū. These two tar-
gets are generally determined based on physical arguments: laminar flow,
solutions of minimum drag, unstable steady solutions,. . . This type of func-
tional corresponds to a target optimization problem. The last three terms
are penalty terms that limit the size of the control functions Φ, φL and φR.
The positive constants ω1, ω2, �, �1 and �2 are chosen to adjust the relative
importance of the five terms in J .

The problem of optimization that we are interested to solve is

Determine the solution u and the control parameters Φ, φL and
φR such that the cost functional J reaches a minimum.

This constrained optimization problem is absolutely similar to the one
treated in section 6.2 for the linearized Burgers equation. After develop-
ments (see El Shrif, 2008, for the details), the optimality system summarized
in Fig. 19 is obtained.

7.2 Results of optimal control

7.2.1 Numerical parameters and space-time discretization

For the numerical applications, we consider a simplified version of the orig-
inal optimization problem described in section 7.1. First, we suppose that
the control is not applied at the spatial boundaries i.e. φL = φR = 0 in
Fig. 19. Second, we assume that the targets û and ū are equal to the initial
condition u0 (see below for the expression). Third, we take as weighting
coefficients for the two targets ω1 = ω2 = 1. Finally, the cost functional
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State equation:

F (u) =
∂u

∂t
+

1

2

∂u2

∂x
− ν

∂2u

∂x2
− Φ = 0 (80a)

u(0, t) = φL (B.C.)

u(L, t) = φR (B.C.)

u(x, 0) = u0(x) (I.C.)

Adjoint equation:

F+(u+) = −
∂u+

∂t
− u

∂u+

∂x
− ν

∂2u+

∂x2
= ω1 (u − û) (80b)

u+(0, t) = 0 (B.C.)

u+(L, t) = 0 (B.C.)

u+(x, tf ) = ω2 (u(x, tf ) − ū(x)) (T.C.) (80c)

Optimality condition:

∇ΦJ = � Φ + u+ (80d)

∇φL
J = �1φL + ν

∂u+

∂x
(0, t)

∇φR
J = �2φR − ν

∂u+

∂x
(L, t)

Cost functional:

J =
ω1

2

∫
Ωt

∫ L

0

(u − û)2 dx dt +
ω2

2

∫
Ωx

[u(x, tf ) − ū(x)]2 dx

+
�

2

∫
Ωt

∫
Ωx

Φ2(x, t) dx dt +
�1

2

∫
Ωt

φ2
L(t) dt +

�2

2

∫
Ωt

φ2
R(t) dt

Figure 19. Optimality system for the non-linear Burgers equation. B.C.:
boundary condition, IC: initial condition, T.C.: terminal condition.
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corresponds to

J (u, Φ) =
1

2

∫
Ωt

∫
Ωx

(u − u0)
2

dx dt +
1

2

∫
Ωx

[u(x, tf ) − u0(x)]
2

dx

+
�

2

∫
Ωt

∫
Ωx

Φ2(x, t) dx dt

with Ωx = [0, 1] and Ωt = [0, 1]. Here the initial condition is selected as

u0(x) = sin

(
π

tan (cs (2x − 1))

tan(cs)

)
where cs is a stretching coefficient introduced to represent correctly the
boundary layers. In our simulations, we choose cs = 1.3 and ν = 0.01.

To solve numerically the Burgers equation (80a) and the adjoint equation
(80b), a numerical scheme known as Forward Time, Centered Space (FTCS)
is used. This method corresponds to a forward scheme in time and to
a centered finite difference sheme of order 2 in space. The main interest
of this scheme is its easiness of implementation. The direct and adjoint
equations are discretized in time and space on a constant mesh (Δt, Δx).
Noting uj,n = u(jΔx, nΔt), the discretized versions of (80a) and (80b) are
respectively

uj,n+1 = uj,n (1 − 2s) + s (uj+1,n + uj−1,n)

−
Δt

2Δx
uj,n (uj+1,n − uj−1,n) + Φj,n, (81)

and

u+
j,n+1 = u+

j,n (1 + 2s) − s
(
u+

j+1,n + u+
j−1,n

)
−

Δt

2Δx
uj,n

(
u+

j+1,n − u+
j−1,n

)
− ω1 (uj,n − ûj,n)Δt, (82)

where s = ν Δt
Δx2 .

7.2.2 Optimization procedure

The optimality system given in Fig. 19 is now solved iteratively. The proce-
dure is similar to the one described in section 3.2.3 in the general framework.
Let k (k = 0, · · · , +∞) be the iteration number of the optimization proce-
dure, the gradient g(k) determined from the adjoint formulation can be used
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to estimate a descent32 direction p(k). A strategy for optimization of the
control parameters33 c(k) is then to approach the minimum by a sequence
of steps constructed as

c(k+1) = c(k) + α(k) p(k) (83)

where α(k) is a positive scalar called step length.

The computation of α(k) is the linesearch, and may itself be iterative.
It can be proved (Gould and Leyffer, 2002) that if the linesearch allows
steps that are either too long or too short relative to the amount of de-
crease that they provide, then wrong convergences may appear. For deter-
mining the values of α(k), one possibility is to search for the minimizer of
J (u, c(k) + α(k) p(k)). Due to the expensive cost of the method, this type
of exact linesearch is rarely employed nowadays. Here, we prefer to use
the backtracking Armijo method for which there exists some guarantee of
sufficient decrease of the cost functional (see Nocedal and Wright, 1999, for
the algorithm).

The simplest choice of the descent direction corresponds to the steepest-
descent method for which p(k) = −g(k). The drawback of such a steepest
descent technique is that the descent direction is only based on local infor-
mation whereas after some iterations, we have a more global description of
the cost functional. For this reason, a particular variant of the conjugate
gradient algorithm, referred as the Hestenes-Stiefel method (Nocedal and
Wright, 1999), was selected. It is given by

p(k+1) = −g(k+1) + β(k+1) p(k) with p(0) = −g(0) (84)

where the coefficient β(k+1) is defined as

β(k+1) =

(
g(k+1)

)T (
g(k+1) − g(k)

)(
g(k+1) − g(k)

)T
p(k)

.

The optimization algorithm is the following:

Step 1: Starting from a guess value c(k) for the distributed control (no con-
trol is in general an acceptable guess value for k = 0), the discretized
version (81) of the direct Burgers equation (80a) is solved forward in
time from t = 0 to t = tf .

32By definition, p(k) is a descent direction if
(
p(k)
)T

g(k) < 0 where (·)T denotes the

transposition.
33For the Burgers equation, the control parameter c is Φ.
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Step 2: The terminal condition u+(x, tf ) for the adjoint variable is com-
puted using (80c).

Step 3: The discretized version (82) of the adjoint Burgers equation (80b)
is solved backward in time from t = tf to t = 0.

Step 4: The gradient of the cost functional J with respect to the control

variable c is computed using (80d). This gradient g(k) = (∇cJ )
(k)

is
estimated based on the adjoint variable u+ determined in step 7.2.2.

Step 5: The gradient-based optimization method (83) is used for updating
the control.
Step 5.1: The direction of descent p(k) is determined by (84) based

on the gradient g(k) computed in step 7.2.2 and previous descent
directions (conjugate gradient).

Step 5.2: An inexact linesearch (backtracking Armijo method) is
used to determine the step length α(k).

Step 5.3: The previous estimate of the optimal control is updated
by c(k+1) = c(k) + α(k) p(k).

Step 6: Return to step 7.2.2 and iterate until a given criterion of conver-
gence is satisfied.

7.2.3 Results

Figure 20 represents at the final time of integration tf , the solution u ob-
tained by optimal control of the Burgers equation for the three first itera-
tions of the optimization procedure. In accordance with what is expected,
u converges rapidly to the target solution u0. Indeed, we observe in Fig. 21
that about twenty iterations of the iterative procedure are sufficient for the
cost functional J to converge. Finally, Fig. 22 represents the spatial evo-
lution of the distributed control obtained at convergence at four different
time instants.

8 Conclusion

In this chapter, we have outlined the interest of constrained optimization
for solving different types of problems encountered in fluid mechanics, and
particularly in flow control. Indeed, constrained optimization methods are
in the heart of reduced-order modeling techniques such as POD, and of data
assimilation methods used everyday in weather forecast or, within a differ-
ent framework, for determining optimal growth perturbations. In addition,
constrained optimization appears naturally in control theory, whether in lin-
ear control techniques such as LQR and LQG, or in nonlinear approaches
such as Model Predictive Control (see the contribution by R. King in this
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Figure 20. Distributed control of the Burgers equation with � = 0.01.
Comparison of the solutions at final time tf with and without control.
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Figure 21. Distributed control of the Burgers equation with � = 0.01.
Decrease of the cost functional J with the iteration number.
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Figure 22. Distributed control of the Burgers equation with � = 0.01.
Distributed control Φ(x, t) at convergence.

book), frequently used experimentally in process engineering. Lastly, op-
timal control and shape optimization, often considered in many fields of
applied mathematics (computer fluid dynamics, computer graphics, multi-
disciplinary optimization to name a few), are nothing else than constrained
optimization methods adapted to the resolution of a given problem. In sec-
tion 3, fundamentals aspects of optimal control theory have been explained
in details. This should allow an interested reader to derive a corresponding
optimality system for his/her own problem of interest. In sections 4 to 6,
different constrained optimization problems were formulated for linear 1D
configuration. Finally, in section 7, the formalism is extended to a non-
linear 1D PDE equation. The reader is referred to El Shrif (2008) for the
derivation of optimality systems for the Navier-Stokes equations where a
Direct Numerical Simulation and a Large Eddy Simulation of the flow are
both considered. Particularly noteworthy is the similarity of the formula-
tion between the determination of optimal growth perturbations and other
methods employed in control.
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A Adjoint operator and inner product

Suppose Ω is an Hilbert space, with inner product 〈·, ·〉. Consider a contin-
uous linear operator N : Ω −→ Ω. Using the Riesz representation theorem,
one can show that there exists a unique continuous operator N+ : Ω −→ Ω
with the following property:

〈Nx, y〉 = 〈x,N+y〉 ∀x, y ∈ Ω.

Here, the symbol + denotes the adjoint, and the operator N+ is the
adjoint of N . Since N is assumed linear, this definition can be extended
directly to the matrix A associated to N .

It should be noted that in general for a given matrix A, we have A+ =
AH , the two being equal only when the inner product used to derive the
adjoint does not have an associated weight (classical Euclidean inner prod-
uct). Indeed, if we consider the weighted inner product of two vectors x

and y given by

〈x, y〉W = xHWy

where W is positive definite, the continuous adjoint operator of A with
respect to this inner product is defined as:

〈Ax, y〉W = 〈x,A+y〉W ∀x, y ∈ Ω

⇐⇒ (Ax)
H

Wy = xHWA+y

⇐⇒ xHAHWy = xHWA+y

⇐⇒ AHW = WA+

⇐⇒ A+ = W−1AHW.

Since W is positive definite, W−1 is well defined and we thus have A+ =
W−1AHW i.e. A+ = AH only when W is equal to the identity matrix.
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