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Abstract Global stability analysis of fluid flows is presented as

a method of extracting physical eigenmodes with associated linear

dynamic models. These reduced-order models (ROM) are optimal

for the transients near the onset of instability. We describe the

computational aspects of the eigenmode extraction in detail. This

outline includes (i) the discretization technique of the eigenproblem

in the framework of computational fluid dynamics (CFD) and (ii)

the solution algorithms for the discretized eigenproblem. As regards

physical aspects, the linear ROM are improved by enriching the

basis with POD modes and by incorporating weakly nonlinear base

flow variations. Results of stability computations are presented for

the circular cylinder wake, the flow around a NACA-0012 airfoil and

the optimization of passive control. Preliminary 3D eigensolutions

show the potential of the global stability method.

1 Introduction

The first pioneering papers on global flow stability (Zebib, 1987; Jackson,
1987) presented a novel method of investigating non-parallel flows. These
and other early articles concentrated mainly on critical Reynolds numbers
and on the leading eigenvalues comprising growth rates and frequencies.
Interest in the corresponding spectrum of physical eigenmodes was small.
The opportunities of global stability in designing passive control means was
realized from the very beginning but not widely exploited. Active, feedback
flow control applications with physical ROM were beyond the scope at that
time.

The birth of global stability was possible due to computer power brought
by a new generation of vector computers like, for example, the Cray YMP.
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Global non-parallel flow stability does not need a frequently employed as-
sumption of a dominating flow direction. It generates a large, fully two-
or three-dimensional eigenvalue problem. The new hardware and solution
techniques allowed to solve it for the first time for two dimensions. In this
way, methods that assume weakly non-parallel flow, being effectively one-
dimensional, were enriched by the new approach (Wolter et al., 1989).

The recent period brought a boost of interest in reduced order models
(ROM) for various purposes. For example, modern aeroelastics presently
uses ROMs of the flow, mode interpolation and many of the techniques
described in this chapter. These ROMs serve as cheaper surrogate plants
for costly unsteady RANS computations (Lieu et al., 2006; Amsallem and
Farhat, 2008). Here, we concentrate on ROM for model based flow control
and the role of physical modes in flow modeling.

Flow control is a key technology in improving the performance of trans-
port systems, like cars, trains and airplanes. Actuators may be operate in
passive, active open-loop or active closed-loop mode. The latter variant
may be considered as the most general type of control. The potential of
closed-loop flow control is increasingly realized and exploited (Becker et al.,
2002). A systematic control-theoretical treatment of flow control has ac-
tively been pursued since one decade. The review article (Theofilis, 2003)
serves as a good starting point for a more detailed reading. The use of
model-based feed-back control, requires low dimensionality of the model for
online capability and robustness (see chapter of R. King in this volume).
POD modes, being the result of pure signal processing, were used in early
days of flow modeling are now enriched by numerous novel and interesting
improvements (Bergmann et al., 2005; Deane et al., 1991; Jørgensen et al.,
2003; Khibnik et al., 2000; Ma and Karniadakis, 2002; Siegel et al., 2006).
The more successful ROM approaches typically incorporated more physical
information about the modeled system. The need for new methods in flow
modeling enhanced interest also in global stability method and led to devel-
opment of new tools (Schmid and Sesterhenn, 2008; Rowley et al., 2009). In
(Åkervik et al., 2007; Bagheri et al., 2009), control design employs stability
modes.

This chapter is organized as follows. After a description of the global
stability problem in § 2, computational aspects are outlined, namely the
FEM discretization in § 3 and iterative eigensolvers in § 4. Results for the
cylinder wake are presented for the natural wake stability (§ 5) and control
design (§ 6). In § 7, we outline the role of nonlinearity for dynamic model
development.



Global Stability Analysis for Linear Dynamics 79

2 Global flow stability analysis

We consider the flow stability problem for the incompressible fluid motion in
a Cartesian coordinate system (x1, x2, x3). The velocity vector (u1, u2, u3)
comprises components in these three coordinate directions. The pressure is
denoted by p. We assume that all quantities are non-dimensionalized with
scale D, velocity U and density ρ. The flow properties are thus characterized
by the Reynolds number Re = UD/ν, ν being the kinematic viscosity of
the fluid.

The fluid motion is described by the incompressibility condition

ui,i = 0

and the unsteady Navier-Stokes equation:

u̇i + ui,juj + p,i −
1

Re
ui,jj = 0. (1)

Here and henceforth, we apply the summation convention for double indices.
The subscripts ’, j’ and ’, jj’ denote the first and second derivatives in j-th
direction and u̇i is the time derivative of ui, respectively.

We decompose the unsteady solution of the Navier-Stokes equation (1)
as the sum of its steady solution (indicated by the bar) and the disturbance
(indicated by the prime):

ui = ūi + úi,

p = p̄ + ṕ.

This decomposition leads us to the disturbance equation in the form:

˙́ui + új ūi,j + ūj úi,j + új úi,j + ṕ,i −
1

Re
úi,jj = 0 (2)

and the continuity equation for the disturbance:

úi,i = 0. (3)

We consider the global non-parallel flow stability, yielding global eigen-
modes. None of the spatial direction is distinguished. In particular, we
do not assume any dominating flow direction or weakly non-parallel flow.
This is the most general assumption of linear stability theory. Under non-
degenerate conditions, the evolution of any infinitesimal disturbance is com-
posed of normal solutions with product ansatz for space and time depen-
dency:

úi(x, y, z, t) = ũi(x, y, z) eλt, (4)

ṕ(x, y, z, t) = p̃(x, y, z) eλt.
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A traveling wave may appear as a solution of the problem but is form is not
pre-assumed.

To formulate a differential eigenvalue problem, we linearize the equation
(2), i.e. we ignore the quadratic term új úi,j . In this linearized disturbance
equation, we separate the time and space dependence according to (4).

Introducing (4) into the linearized form of (2) results in a linear system
of partial differential equations:

λũi + ũj ūi,j + ūj ũi,j + p̃,i −
1

Re
ũi,jj = 0,

ũi,i = 0. (5)

Equation (5) represents the generalized differential eigenvalue problem.

3 Finite Element Method discretization of the global

flow stability problem

We use the Finite Element Method with its penalty formulation for dis-
cretization of the Navier-Stokes equation (1) and for the eigenvalue prob-
lem (5). Fluid velocity is expressed by sums of the quadratic interpolation
functions:

ui = Φkuik. (6)

The index sets for i, k are i = 1, 2; k = 1, . . . , 6 for 2D and i = 1, 2, 3; k =
1, . . . , 10 for 3D. The interpolation function is defined on a 6-node triangular
or 10-node tetrahedral element depicted in Fig. 1.

1

2

3

4

5

6

Figure 1. Natural coordinate triangular and tetrahedral element with
quadratic interpolation function
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The penalty method eliminates the pressure from governing equations
via:

1

ε
p = ui,i. (7)

The penalty FEM approach is described in detail in (Baker, 1983; Chung,
2002). The penalty parameter ε is usually chosen to be a large number,
related to computer word length. Sometimes it is varied within the itera-
tion process to increase the convergence rate. Numerical experiments show
that variation of ε in the range of 103–107 has negligible influence on the
steady flow solutions. In the calculations presented in the following sec-
tions, we assume ε = 105 and keep it constant in the iteration process. In
mixed (velocity-pressure) FEM formulation poor conditioning of the linear
equation system can be avoided with an interpolation function for pressure
of lower order as compared to the velocity one. In penalty formulation, we
apply a similar technique and assume linear interpolation of velocity in the
penalty term and a quadratic interpolation in all other terms.

First, we have to find the steady solution for the flow eigenanalysis.
We present the FEM procedure in detail, since it is very similar to the

eigensolver one. The approximation residual R
(1)
i of the steady Navier-

Stokes equation with FEM approximation (6) reads:

ui,juj + p,i −
1

Re
ui,jj = R

(1)
i . (8)

We introduce a set of weighting functions wi and evaluate the standard

inner product (R
(1)
i , wi) on each triangular or tetrahedral volume element.

With the Galerkin method

(R
(1)
i , wi) = 0, (9)

we formulate the FEM discretization:∫
Ω

(
ui,juj + p,i −

1

Re
ui,jj

)
Φm dΩ = 0. (10)

We employ the interpolation functions for the velocity field and obtain∫
Ω

(
Φk,juikΦoujo + p,i −

1

Re
Φk,jjuik

)
Φm dΩ = 0. (11)

The equation (11) is used to calculate the element matrices. Further, we
exploit the weak formulation of the problem. This allows a lower differen-
tiation order of weighting and interpolation functions and delivers a very
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convenient stress–free natural boundary condition. In this formulation, we
apply the Gauss-Green theorem to the diffusion term:∫

Ω

uikΦk,jjΦm dΩ =

∫
Γ

Φmui,jnj dΓ −

∫
Ω

uikΦk,jΦm,j dΩ. (12)

The same procedure is applied to the pressure term:∫
Ω

p,iΦm dΩ =

∫
Γ

pΦmδijnjdΓ −

∫
Ω

pΦm,i dΩ. (13)

With the penalty function given by (7), we obtain the final version of the
FEM equation:

uikujo

∫
Ω

Φk,jΦoΦm dΩ − εujk

∫
Ω

Φk,jΦm,i dΩ − (14)∫
Γ

Φm(−pδij +
1

Re
ui,j)njdΓ +

1

Re
uik

∫
Ω

Φk,jΦm,j dΩ = 0.

For triangular and tetrahedral elements it is possible to integrate the FEM
matrix exactly with formulas given in FEM textbooks (see, e.g., (Chung,
2002; Baker, 1983)). For this purpose, we use the symbolic manipulation
program REDUCE. For example, element A(1, 1) for the 3D case is given
by:

a(1,1)=(re*vol*(2*ux(10)*b1+4*ux(10)*b3+4*ux(10)*b4+2*ux(9)*b1
. +4*ux(9)*b2+4*ux(9)*b4+8*ux(8)*b1+12*ux(8)*b4+8*ux(7)*b1+12*ux
. (7)*b3+2*ux(6)*b1+4*ux(6)*b2+4*ux(6)*b3+8*ux(5)*b1+12*ux(5)*b2
. -ux(4)*b1-2*ux(4)*b4-ux(3)*b1-2*ux(3)*b3-ux(2)*b1-2*ux(2)*b2+
. 12*ux(1)*b1+2*uy(10)*c1+2*uy(9)*c1+4*uy(8)*c1+4*uy(7)*c1+2*uy(
. 6)*c1+4*uy(5)*c1-uy(4)*c1-uy(3)*c1-uy(2)*c1+6*uy(1)*c1+2*uz(10
. )*d1+2*uz(9)*d1+4*uz(8)*d1+4*uz(7)*d1+2*uz(6)*d1+4*uz(5)*d1-uz
. (4)*d1-uz(3)*d1-uz(2)*d1+6*uz(1)*d1+252*b1**2*eps)+252*vol*(b1
. **2+c1**2+d1**2))/420

The equation (14) is nonlinear. We define the residual vector as:

Ri(u) := Fij(u)uj (15)

We solve the nonlinear steady-state equation with the Newton–Raphson

method for the linearized equation. Introducing the Jacobian J
(0)
ij and the

guess solution u(0):

J
(0)
ij =

∂Ri(u
(0))

∂uj
, (16)

we obtai n the expression for the correction of the solution in the subsequent
iteration:

J
(0)
ij Δuj = −Ri(u

(0)). (17)
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This linear equation is solved iteratively until the desired accuracy is
obtained.

By analogy with the steady flow equation, we can derive the penalty-
formulation FEM equation for the eigenvalue problem:

λ

∫
Ω

Φkũi dΩ +

∫
Ω

Φk [ũj ūi,j + ūj ũi,j + p̃,i] dΩ −
1

Re

∫
Ω

Φkũi,jj dΩ = 0.

After integration we obtain:

λũim

∫
Ω

ΦkΦm dΩ + (ũikūjo + ūikũjo)

∫
Ω

Φk,jΦoΦm dΩ

−εũjk

∫
Ω

Φk,jΦm,i dΩ (18)

−

∫
Γ

Φm(−p̃δij +
1

Re
ũi,k)njdΓ + ũik

1

Re

∫
Ω

Φk,jΦm,j dΩ = 0.

This equation represents the generalized complex, non-Hermitian eigen-
value problem:

Ax − λBx = 0 (19)

4 Numerical techniques to solution of the eigenvalue

problem

Before attempting to solve equation (19), let us consider the possible ap-
proaches for the linearized equation (2). We intend to identify the eigen-
modes and eigenvalues for this dynamical system. Model (2) is a white–box
system and we can use a discretized eigenvalue problem (19) to find an
eigensolution. The alternative method of system identification is known as
the black–box method. One can exemplify these approaches considering
identification of eigenmodes in aeroelasticity. If the structural model of the
airplane is available, we can use the FEM ( white–box model) to compute
the normal modes necessary for aeroelastic analysis. However, an alterna-
tive procedure is often used in the ground tests. We have the airplane but
the complete technical documentation is unavailable. The modes for aeroe-
lastic analysis are needed to asses the necessary modifications, e.g. change
of the stores. Now, in the ground test, we force the ( black–box ) system
and record the answers. Postprocessing of these measurements gives the
required eigensolutions. The latter method also be used also for the lin-
earized equation (2). We concentrate then on the flow snapshots generated
by unsteady integration of this equation and try to identify the empirical



84 M. Morzynski, B.R. Noack and G. TadmorN

eigenmodes of the system. The results presented in following chapters are
based only on solution of the algebraic eigenvalue system. As this black-
box method is intensively developed recently (Rowley et al., 2009; Schmid
and Sesterhenn, 2008), the time domain system identification is presented
briefly in § 4.4.

4.1 Solution of Algebraic Eigenvalue Problem

Equation (19) represents a non-Hermitian, generalized eigenvalue prob-
lem. The matrices are unsymmetrical, not positive definite, large and sparse.
The solution of large eigenproblems is not trivial, even in case of Hermitian
matrices. Here, the solution is even more difficult. The algorithms (e.g. QZ)
of library routines (like EISPACK) are not suitable for solution, even in two-
dimensional case. We can relay only on iterative solvers. Iterative methods
are based on determination of both the eigenvalue and the eigenvector at
the same time. The simplest power method for the eigenproblem

Ax = λx (20)

starts the solution from the random vector x. Computation of A2x =
A(Ax) ∼ λ2x then A3x = A(A2x) ∼ λ3x and finally, Anx = A(An−1x) ∼
λnx enables determination of the largest eigenvalue λ of the matrix A.

If we are interested in several eigenvalues we can reduce the system (19)
exactly in the same way as model reduction of large linear dynamic systems
is performed. We define a projection of the high dimensional space to a
lower dimensional one for which we intend to build a model which preserves
principal dynamics properties:

ΘT B Θ ẋr = ΘT A Θ xr (21)

where x = Θ xr and r denotes the reduced system having a dimension m
which is much smaller then the original one (19). For the projection, we use
the Krylov subspace, spanned by m vectors and defined as:

Km = [x,Ax,A2x, ..Am−1x]. (22)

To assure that the vectors constituting the Krylov subspace are linearly
independent, Gram–Schmidt orthogonalization is usually used. Instead of
a single vector in the power method, we compute now several vectors simul-
taneously. The vectors of Krylov subspace converge now to n dominating
eigenvectors of A. The stabilized version of the Krylov subspace algorithm
is Arnoldi method, the most often used eigensolver procedure for the global
flow stability.
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The power method converges to the largest eigenvalue of A while we
are interested in the smallest one, more precisely in the rightmost having
the smallest real part of the complex eigenvalue. If we substitute A with
A−1 the power method is now the inverse iteration method and gives us
the desired eigensolution. In practice we do not invert matrix A but use
the LU decomposition. For subspace iteration the procedure is similar, but
now we compute m eigenvalues and eigenvectors simultaneously.

4.2 Subspace iteration method

Technically, the subspace iteration is a natural extension of the power
method to m eigensolutions instead of one. We can iterate in direct or
inverse mode finding the largest or the smallest eigenvalues.

Physically, the concept of the method is to reduce the system for which
the eigenvalues have to be calculated to another one, with less degrees of
freedom, for which eigensolution can be found much easier.

In subspace iteration, the first step is to assign initial values to the ele-
ments of m linearly independent vectors. In practice we use the orthogonal
vectors obtained by setting unit value to a zero vector. In this way the
orthogonality condition is easily fulfilled:

R(0) =
[
R

(0)
1 ,R

(0)
2 ,R

(0)
3 , ...R(0)

m

]
. (23)

It should be noted that the procedure described above is — from CFD
point of view — equivalent to forcing of the system. The base Ritz matrix
is most often calculated as:

AΘ(n) = R(n−1) (24)

where n is a number of the iteration. With a given initial set of R(0), the
set of Θ(0) vectors is found. The LU-decomposition of the A matrix can
be done only once and several back-substitutions involving R vectors are
quite effective, but requirements of storage for the decomposed matrix is
rising dramatically with the number of degrees of freedom. In this work,
the penalty method with the Finite Element Method and effective Quasi-
Minimal-Residual Lanczos solver was adopted. We re-use the incomplete LU
(ILU) decomposed matrix in each step. ILU decomposition is a compromise
between the efficiency of back-substitution and memory limitations. To
increase the numerical stability, the Θ(i) vectors are normalized after each
step. The matrices for the reduced problem are calculated according to:

Â(n) = Θ(n)T

AΘ(n) = Θ(n)T

R(n−1) (25)

B̂(n) = Θ(n)T

BΘ(n).
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The matrix Θ(n) multiplication with matrices A,B and the right-hand side
reduces the eigenvalue problem to a smaller one. Matrices Â(n) and B̂(n)

have the assumed range of m. The value of m has to be a compromise be-
tween the computational resources as the eigenvalues for generalized eigen-
value problem for the m×m matrices has to be solved and the accuracy of
the adequate representation of the physical problem.

The reduced generalized eigenvalue problem can be written as:(
Â(n) − Ω̂(n) B̂(n)

)
ˆϕ(n) = 0. (26)

Here, Ω̂ is a diagonal matrix containing the eigenvalues of the reduced
problem. This eigenvalue problem can be easily solved using any existing
library algorithm. The eigenvectors for n-th iteration can be recalculated
from the equation:

ϕ(n) = Θ(n)T

ϕ̂(n). (27)

If the convergence is not obtained, the new set of vectors R(n) is calculated
from

R(n) = Bϕ(n) (28)

and the iteration has to be repeated.

4.3 Preconditioning

In the subspace iteration process, the subspace span
[
Θ

(k)
1 ,Θ

(k)
2 , . . .Θ

(k)
m

]
tends to the subspace spanned by the eigenvectors corresponding to the
eigenvalues having the smallest modulus. This is the so-called dominant
subspace of the problem (19). The computed eigenpairs (λk

i ,xk
i ), i = 1, . . . m

approximate the dominant eigensolution of the problem (19). The larger the
difference (in sense of modulus) between the computed eigenvalues, the bet-
ter is the convergence of the process. Because of this, we calculate more
(m) to increase the convergence, even if we need only one eigenvalue. The
convergence ratio is different for different eigenvalues To speed up the it-
eration we have to transform the rightmost eigenvalues into the dominant
ones. For symmetrical eigenvalue problem already the real shift α is very
effective if we know that α approximates the eigenvalue μ:

(A − αB)x − μBx = 0. (29)

In the case of the unsymmetrical eigenvalue problem, the eigenvalues are
complex. This forces us to use a complex shift. However, a complex shift
leads to complex matrices and thus increases significantly the computational
costs. In order to avoid this complication, the inverse Cayley transformation
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Figure 2. Spectrum
mapping before (top)
and after (bottom) the
inverse Cayley trans-
formation

with the real shift can be applied. Fig. 2 explains the transformation. The
transformation of the problem (19) with the Cayley method results in:

((1 − α3)A − (α1 − α2α3)B)x − μ(A − α2B)x = 0. (30)

The eigenvalues of the base problem (19) can be recalculated from the eigen-
values of (30) via the following formula:

λ = (α2(μ + α3) − α1)/(μ + α3 − 1). (31)

The parameters α1, α2, α3 are real and enable us to deal only with the
real system of equations. The uninteresting eigenvalues can be removed
by manipulation of the subspace dimension and appropriate choice of shift
parameters. The convergence rate can be significantly increased with the
α3 shift (α3 has the same meaning as α in (29)). The rule is to set α3 so
that the modulus of the leftmost eigenvalue is smaller than all remaining
eigenvalue moduli.



88 M. Morzynski, B.R. Noack and G. TadmorN

4.4 Eigensolution via system identification

The procedure based on snapshots starts with formulation of Hankel
matrix (32), also called trajectory matrix:⎡⎢⎢⎢⎣

u0 u1 · · · un

u1 u2 · · · un+1

...
...

. . .
...

un un+1 · · · u2n−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ũ11 ũ12 · · · ũ1n

ũ21 ũ22 · · · ũ2n

...
...

. . .
...

ũn1 ũn2 · · · ũnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

eλ1t1 eλ1t2 · · · eλ1tn

eλ2t1 eλ2t2 · · · eλ2tn

...
...

. . .
...

eλnt1 eλnt2 · · · eλntn

⎤⎥⎥⎥⎦ . (32)

It consists of values characterizing the flow, e.g. velocity, shifted by one
position for subsequent time steps. The elements of Hankel matrix can be
vectors consisting of values in a ’window’ (block) over the flow.

The second matrix in (32) can be simplified assuming that t1 = 0, having
in mind that tn = t1 + (n − 1)Δt and denoting Λn = eλnnΔt:⎡⎢⎢⎢⎣

1 Λ1 · · · Λ1
n−1

1 Λ2 · · · Λ2
n−1

...
...

. . .
...

1 Λn · · · Λn
n−1

⎤⎥⎥⎥⎦ . (33)

This is called Vandermonde matrix. Now we construct another Hankel
matrix, starting from the snapshot at t = t1 + Δt. If we write the equation
(32) in the form:

u = ũeλt, (34)

the new equation will have the form:

ut+1 = ũΛeλt. (35)

The shift to the left is equivalent to adding Δt to the exponents in (32),
or, equivalently, the multiplication of the Vandermonde matrix with the
diagonal matrix: ⎡⎢⎢⎢⎣

Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 0 · · · Λn

⎤⎥⎥⎥⎦ . (36)



Global Stability Analysis for Linear Dynamics 89

With equations (34) and (35), the eigenvalue problem can be re-stated:

Aũ = ũΛ with A = ut+1u
−1. (37)

The A matrix can be also formulated in a more complex way employing
ut+1,ut+2 etc. Important factors are, however, not the formulation but
the eigensolutions of the (37). The mentioned similarity to POD approach
would suggest the Singular Value Decomposition (SVD) method. The algo-
rithm of SVD, which consists mainly of the eigensolver, could be potentially
used also in this case. The A matrix is now real but non-Hermitian. Hence,
a complex procedure has to be applied and complex eigenvalues and eigen-
vectors are the result, as in case of eigenproblem resulting from linearized
Navier–Stokes equations (§ 4.1). In the form (37) the matrix is large but
we can apply reduction of the large-dimensional space similarly to meth-
ods applied in § 4.1. We can also formulate the trajectory matrix for the
part of the domain- ’window’ only. There are also more serious numerical
challenges. A matrix is a product of weighting ut+1u

−1 and forms a com-
panion matrix, with only one non-zero column and unit values below main
diagonal:

C(p) =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2

...
...

...
...

...
0 0 . . . 1 −cn−1

⎤⎥⎥⎥⎥⎥⎦ . (38)

Performing the SVD on the product may introduce catastrophic round-
off errors. In case of wide range of singular values of both matrices, the
small singular values of the product can be either not computed accurately
or not found at all. To compute the SVD of (37) AB−1 = UΣV∗, two
decompositions of A and B are performed: A = UΣAX and B = VΣBX.
The generalized singular values of A and B are computed with diagonal
matrices Σ = ΣAΣ−1

B . The keywords for solution of the problem (37) is
PSVD (for Product SVD), QSVD (for Quotient SVD). The details of the
algorithms are provided in numerous papers of G.H. Golub.

5 Stability results for the cylinder wake

5.1 Steady flow global stability

A solution of the eigenvalue problem (19) consists of the leading eigen-
values depicted in Fig. 3 and eigenvectors shown in Fig. 7. The eigenvalues
are mostly complex with the real part being the growth rate and the imag-
inary part being the angular frequency, i.e. 2π ×St (St: Strouhal number).
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Figure 3. The eigen-
value spectrum for
a circular cylinder
flow and its change
with the increasing
Reynolds number

Complex eigenvalues are characteristic for oscillatory flow. Non-oscillatory
modes, with the eigenvalues laying on the imaginary axis are characterized
by vanishing frequency. The dominant non-oscillatory flow is typically re-
lated to base flow changes, and thus to the shift mode explained later. With
increasing Reynolds number, the flow becomes unstable, i.e. the leading
eigenvalue moves from the left into the right-half plane of Fig. 3. For wake
behind a circular cylinder, the critical Reynolds number is about Rec = 47.
At larger (smaller) Reynolds numbers any disturbance present in the flow
is amplified (decaying).

Figure 4. Compa-
rison of the distur-
bance growth-rate ob-
tained in computation
(SIM) and experiment
(Schumm, 1991)

The critical Reynolds number determined by the global stability analy-



Global Stability Analysis for Linear Dynamics 91

Figure 5. Strouhal
number of circular
cylinder flow obtained
with the stability anal-
ysis of the steady flow
and of the averaged
solution. In addition,
experimental values
for periodic vortex
shedding are shown.
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Figure 6. Compari-
son of the growth-rate
based on the steady
solution and averaged
periodic one.

sis compare (Tab. 1) is in very good agreement with the experiment. Also
the growth rate, Fig. 4, agrees with the experimental values by Schumm
(Schumm, 1991) in the neighborhood of the critical Reynolds number. The
values of the Strouhal number and growth rate deviate from the experi-
ment as the Reynolds number increases above the critical value as shown
in Figs. 5 and 6. The Strouhal number at larger Reynolds numbers is un-
physically decreasing, while the growth rate is monotonically increasing,
even for Reynolds number higher than the critical one. This feature is the
consequence of linearization of our flow model.

The eigenanalysis of the flow is targeting the determination of the physi-
cal modes — as opposed to numerical ones. The leading complex eigenvector
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Table 1. Critical values for circular cylinder flow

Critical value Rec Stc

Jackson (Jackson, 1987) 45.4 0.1363
Zebib (Zebib, 1987) 39 − 43 0.11 − 0.13
Strykowski (Strykowski and Sreenivasan, 1990) 46.0 -
Schumm (Schumm, 1991) 46.6

global stability analysis 47.00 0.1320

relates to von Kármán vortex shedding for the flow around circular cylin-
der and is shown in Fig. 7 at various Reynolds numbers. The eigenvector
patterns of Fig. 7 are similar for a large class of wake flows. The modes can
be determined even for stable flows at small Reynolds numbers. At larger
Reynolds number, the maximum intensity of disturbance energy is moving
toward the cylinder. The disturbance structures are getting smaller as the
wavenumber increases with the flow Reynolds number. Fig. 8 depicts the
result of the computation for much larger computational domain (x = 45D)
and Re = 100. It shows the streamlines in the domain, with maximum in-
tensity of the fluctuation behind the cylinder and decaying in the direction
of the outflow. Fig. 8 confirms that computations depicted in Fig. 7 are
not significantly effected by the far–field boundary conditions at x = 15.

5.2 Time–averaged flow stability

We observe that ROM with the stability eigenmodes can be accurate at
the Reynolds numbers close to the critical one. See also the results pre-
sented in § 5. The results presented in § 7.4 for the airfoil corroborate that
statement. The stability analysis of the mean flow is an interesting alterna-
tive to the one of the steady solution. One can expect that a linearization
of the Navier-Stokes equation at the center of the flow attractor may, in
some sense, be more accurate than at the steady solution, which is further
away. The base flow has frequently been observed to be marginally stable
corroborating a conjecture by Malkus (Malkus, 1956). Under mean-field as-
sumptions, marginal stability of time–averaged (mean) flow was proven by
Noack et al. (Noack et al., 2003). The plots in Fig. 5 and 6 showing that in-
deed the time–averaged flow has physically correct, nearly zero growth rate
(is marginally stable). Moreover, the stability-inferred frequency approx-
imates the true Strouhal number for the whole laminar Reynolds number
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 Re=20  Re=20

Re=20
 Re=40  Re=40

Re=40
 Re=60  Re=60

Re=60
 Re=80  Re=80

Re=80
 Re=100  Re=100

Re=100

Figure 7. Leading complex eigenvector for the flow around a circular cylin-
der at Re = 20, 40, 60, 80 and 100 from top to bottom, respectively. The
real (imaginary) part is shown in the left (right) column.

range. This was first presented in 1999 in (Morzyński et al., 1999a). Also
the eigenmodes of time–averaged flow are more ’POD–like’ (Fig. 9), suggest-
ing that these modes can be a better alternative than the classical, steady
flow based ones at supercritical Reynolds numbers. The theory and results
are not presented here, the results in (Morzyński et al., 2006a) show the im-
plementation of time–averaged eigenmodes in construction of the a priori
flow model.
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 Real Part  Imag Part

Figure 8. Same as Fig. 7 but at Re = 100 in larger computational domain.

Eigenmode (steady) 1 Eigenmode (steady) 2

Eigenmode (mean) 1 Eigenmode (mean) 2

Figure 9. Flow around a circular cylinder at Re = 100. Streamlines of
real (left) and imaginary (right) parts of the leading pair of eigenmodes for
linearization around steady solution (top) and time-averaged one (bottom).

6 Wake control

6.1 General philosophy of flow control for stabilization

In the following, we show how flow control for stabilization can be guided
by CFD and the global stability analysis presented earlier.

Any spatial discretization (FDM, FEM, FVM) of the linearized distur-
bance equation (2) yields a finite-dimensional evolution equation of the form

d

dt
a = A a, (39)

where a is a vector of state variables. State variables are dependent on the
formulation, for instance, the velocity components at the grid nodes, stream
function, stream function and vorticity.

The matrix A has a natural spectrum of eigenvalues similar to depicted
in Fig. 10. A conjugate pair of eigenvalues laying in the right-hand side of
the imaginary axes of the complex plane represent the flow instability. Flow
control techniques are targeting suppression of the instability.1

1Enhancement of instability for instance to increase mixing is also possible but not in

the scope of this chapter.



Global Stability Analysis for Linear Dynamics 95

Figure 10. Stabil-
ity spectrum of steady
flow around a circular
cylinder at Re = 100

Suppression of instability implies an actuator leading to a small change
of matrix A which moves the unstable eigenvalues to the left-hand (stable)
half of the complex plane. A general control approach can be expressed by
adding to the Navier-Stokes equations a volume force term. This leads to a
finite-dimensional evolution equation of the form

d

dt
a = A a + B b. (40)

Here b represents a vector for the volume force amplitudes and the matrix
B is the gain from the corresponding local force fields. The volume force Bb

can substantially change the solution of the Navier-Stokes equations. It can
mimic active or passive control devices. An active proportional controller
b = −K a , for instance, gives rise to the forced dynamics

d

dt
a = Aca, (41)

with the modified linear term Ac = A − B K. Here, the design parameter
K may be used to stabilize or destabilize the system. With this assumption,
(41) has the same form as (39) and the control goal becomes once more the
desired manipulation of the eigenvalue spectrum of a matrix.

Besides volume forces, also models with wall-mounted actuators can be
written in the form (40) (Rediniotis et al., 2002).

In the penalty method of CFD, obstacles are modeled by time-dependent
volume forces which lead to vanishing velocity inside the obstacle. This cor-
responds to a local actuation term Bb and a strongly stabilizing controller
b = −Ka. Thus, the actuation term of (41) may model passive control with
control wires, splitter plates, riblets or other devices. Here, Ac describes
the effect of the device and optimization of a passive device may be guided
by global stability analysis. An example is provided in § 6.2.
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6.2 Wake stabilization using model-based passive control

(a) (b)

Figure 11. Real (a) and imaginary (b) part of the most unstable eigen-
mode of the passively manipulated cylinder wake at Re = 100. The control
cylinder (d/D = 0.1) is placed at x = 1.2, y = 1.2. The cylinder is indicated
by the solid circle and the flow field is visualized with streamlines. Thick
(thin) lines correspond to positive (negative) stream-function values.

(a) One control cylinder (b) Two control cylinders

Figure 12. Optimization of passive control with one and two Strykowski
wires employing global flow stability analysis. The dots and numbers in the
field denote the control cylinder position and respective critical Reynolds
numbers. The second control cylinder in subfigure (b) is placed symmetri-
cally with respect to the x-axis.

Passive suppression of vortex shedding may be achieved with splitter
plates (Unal and Rockwell, 1987; Mittal, 2003) or small control cylinders
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(Strykowski and Sreenivasan, 1990). In this case, the Ac matrix of (41) is
computed in terms of parameters of passive actuators. The no-slip condi-
tions on the surface of a control cylinder or a splitter plate can be imposed
with a penalization of the surface velocities with time- and space-dependent
volume forces. Thus, we can study how the geometry of passive actuators
is related to the flow stability varying the parameters of the actuator (like
position or size). In this way, the linear model can be employed to optimize
passive control. This approach is demonstrated for the Strykowski control
cylinder (Strykowski and Sreenivasan, 1990). The critical Reynolds num-
ber is determined at different locations of the control cylinder with global
nonparallel flow stability analysis (Fig. 11). The eigenanalysis (see Fig. 12)
yields the optimal position for one and two symmetrically placed control
cylinders. Isolines in that figure denote the critical Reynolds number values
found experimentally in (Strykowski and Sreenivasan, 1990), small circles
denote analyzed positions of the control cylinder, and the numbers represent
critical values obtained by global stability analysis.

The critical Reynolds number is largest for control wire positions in a
narrow shear-layer region behind the cylinder. Global stability analysis
predicts also that any non-symmetrical configuration is less effective for
stabilization than the optimal symmetrical one.

The passive control optimization with Strykowski wires depicted in Fig.
12 shows good agreement with experiment. Below the position-dependent
critical Reynolds number, the steady solution is at least locally stable. The
agreement of the largest achievable critical Reynolds number in experiment
and in the current study suggests the domain of attraction of the steady
solution contains at least the periodic shedding state and may even contain
all flows. We can also extend the investigation and solve the sensitivity
problem for the flow to determine the regions most sensitive to passive
actuation. Technically, one has to solve the adjoint eigenvalue problem
(Giannetti and Luchini, 2007) with similar techniques as used for the regular
one (19).

7 Weakly non-linear models

7.1 Mean-field correction

We can use real and imaginary part of the eigenvector to build a Galerkin
model of the flow. For the flow around a circular cylinder, the initial growth
rate σ = 0.1439 and Strouhal number St = 0.1346 are in good agreement
with the simulation. Apart from exponential divergence of the Galerkin
solution, the stability modes can resolve only about 41% of the turbulent
kinetic energy of the periodic vortex shedding. The reason is the changing
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structure of vortex shedding at the limit cycle. The maximum fluctuation
level moves from far downstream, as predicted by the stability modes, to
close to the cylinder, as resolved by the first POD modes.

The alternative, a ROM obtained with the POD Galerkin method (see
chapter of B.R. Noack et al.) is highly efficient and resolves nearly perfectly
the kinematics of the flow. At the same time, it is highly fragile and sensi-
tive to changes in the parameters or operating conditions. For the circular
cylinder wake, the first two POD modes capture about 95% of the fluctua-
tion energy. Yet, a Galerkin model (GM) based on these two modes alone is
unstable for physical reasons. The inclusion of eight POD modes, capturing
the first four harmonics of the attractor, suffices to achieve nearly perfect
resolution and weakly stable Galerkin model. Yet, the correct prediction
of the system dynamics with this model is limited to a small neighborhood
of the attractor and to relatively small Reynolds number changes. In par-
ticular, the oscillatory dynamics associated with linear instability from the
steady solution is not well resolved. Further increase in number of POD
modes does not cure the problem and violates the targeted low dimension-
ality of the model. Hence, we have to find other ways of stabilization.

Stabilization of the GM can be obtained with the shift mode (Noack
et al., 2003) as suggested by the mean-field theory. The shift mode is a
normalized difference u0 − us where u0 is mean flow solution and us is
(unstable) steady solution. Figure 13 illustrates the concept. The vertical
axis is referring to the base flow state. The radius of the paraboloid is the
amplitude of the fluctuation for natural transient between instability and
the limit cycle at the top of the paraboloid. The bottom fixed point on the
paraboloid represents the unstable steady flow solution shown at the left
part of the figure. Fluctuations at this point are well approximated by the
stability eigenmodes. One of the modes is shown at the right part of the
figure. The center of the limit cycle corresponds the the mean flow (left)
with associated POD modes (right). The difference between the steady flow
solution and the mean flow of the limit cycle is characterized by the length of
the recirculation bubble. Evidently, this base flow change cannot be resolved
by the oscillatory eigenmodes obtained with global stability analysis.

For robustness, we have to add to the Galerkin system the missing direc-
tion, connecting both states of the flow. It is the shift mode depicted in the
middle of the figure. The inclusion of the shift mode reduces significantly
the model sensitivity to parameter variations.

Up to now, we only defined the kinematic shift mode and pointed out
its importance for flow modeling. In (Tadmor et al., 2010), the dynamic
role of mean-field variations and transient energy flow analysis is presented.
It is proven that the shift mode is indispensable to represent that contri-
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Figure 13. Principal sketch of the transient wake dynamics. The left side
displays the mean flow (top), shift-mode (middle) and steady solution (bot-
tom). The right side illustrates interpolated modes and vortex streets on
the mean-field paraboloid. The flow fields are depicted as the streamline
plots.

bution. The shift mode can be computed with many methods as presented
in (Tadmor et al., 2010). We show only the shift mode derived from the
Reynolds-Averaged Navier-Stokes (RANS) equation:

ūj ūi,j + p̄,i −
1

Re
ūi,jj + (új úi),j = 0. (42)

The Reynolds stress term is well approximated by:

(új úi),j = K∇ · (ũ1 ⊗ ũ1 + ũ2 ⊗ ũ2) , (43)

where K(t) is the mean fluctuation energy averaged over one period T , and
ũ1 ,2 is the dominant POD mode pair.

Figure 14 shows the kinematic and an a priori shift mode computed
with (42), in virtually good agreement. It may be worthwhile to note that
higher-order modes can be derived from the non-linear Navier-Stokes term
and utilizing harmonic expansions (Dus̆ek et al., 1994), considering each
POD mode pair as one harmonic. Hence, refined a priori models are in
reach, too.

The dynamics of the least-order (3-dimensional) Galerkin model enriched
with a shift mode is compared with a DNS in Fig. 15. The shift mode is
the the first step and the key enabler for construction of transient, control-
oriented models. This subject will be elaborated in the chapter by G. Tad-
mor et al. The reader should refer for more details there.



100 M. Morzynski, B.R. Noack and G. TadmorN

(a) (b)

Figure 14. Empirical (left) and a priori (right) shift mode. The empirical
mode is computed from the mean flow and steady solution as described in
(Noack et al., 2003). The a priori shift mode is derived from the Reynolds
equation using the POD representation of the Reynolds stress tensor.

7.2 Hybrid model employing stability modes

Further improvement of the model dynamics can be obtained with a hy-
brid model employing POD and stability modes (Morzyński et al., 1999b).
In this model, POD resolves the attractor and stability eigenmodes resolve
the linearized dynamics. Thus, dynamic transient and post-transient flow
behavior is accurately predicted. The concept of hybrid model reduces sig-
nificantly the number of necessary degrees of freedom of the system in com-
parison to the purely POD-based one. The hybrid approach is demonstrated
for benchmark problem of the flow around circular cylinder in (Noack et al.,
2003). The transients of the hybrid models are compared with DNS in Fig.
15. The hybrid model combines the advantages of both reduced models. It
converges to the limit cycle preserving initially the growth rate predicted
by global stability analysis.

Figure 15. Transients of var-
ious Galerkin models. The
logarithm of the fluctuation
energy over time nondimen-
sionalized with the period T .
Galerkin model: GM 1 - with
shift mode and 2 interpolated
modes, GM 2 - as GM 3 with
shift mode and leading stabil-
ity mode added, GM 3 - with
8 POD modes.



Global Stability Analysis for Linear Dynamics 101

7.3 Continuous mode interpolation

Additive interpolation procedures, based on the superposition of two
modes ensembles like the one described in section § 7.2 may resolve differ-
ent operating conditions. For model–based control the modes need to be
additionally ’flexible’ and smoothly change at different operating conditions
(Luchtenburg et al., 2006)(Siegel et al., 2006). Let us consider the inter-
polation problem of periodic cylinder wakes at two operating conditions.
The resulting vortex streets look similar but may have slightly different
wavenumbers, frequencies, and fluctuation envelopes. The states may, for
instance, be near the onset of vortex shedding and the asymptotic state
(Noack et al., 2003)(Siegel et al., 2006). Other pairs of states are the nat-
ural and forced wake (Luchtenburg et al., 2006), or the natural flow at two
different Reynolds number (Deane et al., 1991). We are looking for a method
which smoothly interpolates the modes of different states in the way shown
schematically in Fig. 16. The straightforward idea of ’morphing’ used in
image processing could be an inspiration but we shall use here a more ad-
vanced method and interpolate the discrete operators for different operating
conditions, to generate the modes for a continuum of intermediate states.

Figure 16. Principal
sketch of continuous
mode interpolation.
Left: Transition
between stability
eigenmodes and
POD modes. Right:
streamlines of the
intermediate states

In the following, we outline a continuous interpolation technique which
will yield modes with all intermediate wavenumbers and frequencies.

For example, the most amplified stability eigenmodes of the linearized
Navier-Stokes equation at two base flows can be interpolated. We assume
one dominant oscillatory eigenmode, like for the flow around a bluff cylinder
(Morzyński et al., 1999b). Then, the associated two sets of modes constitute
complex eigenmodes fκ = uκ

1 + ıuκ
2 of the eigenvalue problem

Aκ fκ = λκ fκ, κ = 0, 1, (44)

where λκ are the associated eigenvalues. Here, Aκ is the linearized FEM
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discretization of the Navier-Stokes operator forming the stability matrix.
The stability matrix may be linearly interpolated for κ ∈ [0, 1],

Aκ = A0 + κ (A1 − A0), (45)

thus giving rise the intermediate eigenproblems of the form (44) and inter-
mediate complex eigenmodes fκ = uκ

1 + ıuκ
2 . A smooth connection between

both eigenmodes is not guaranteed per se but can be expected for the most
unstable stability modes of shear flows.

The example presented here represents the simplest case of continuous
mode interpolation. More advanced problems of interpolation of stability
and POD bases, characterized by matrices of different size, mode extrap-
olation to new operating conditions or building of a priori flow models
with stability eigenmodes are described in (Morzyński et al., 2006a) and
(Morzyński et al., 2006b).

7.4 Mean field correction and Galerkin Model for NACA-0012

flow

We aim at designing a flow model for feedback flow control. Low-
dimensionality and simplicity is required for the online-capable feedback
laws. Robustness of flow control models implies even stronger limitations
on ’superfluous’ degrees of freedom. A frequent observation is that observers
and controllers derived from higher-fidelity models are less robust.

A low-dimensional representation of the natural flow should be the first
test of such a model. We first construct a ROM using the Galerkin method,
presented in the chapter of B.R. Noack et al. in this volume. As mode
basis, we can use POD and stability eigenmodes. We apply the technique
of continuous mode interpolation to connect both types of modes smoothly.

We continue our ROM flow consideration for the example of a flow
around a NACA-0012 airfoil having the angle of attack of 30 degrees. This
typical wake flow can be treated as representative for ’real life’ one, for
which we intend to build the Galerkin model. With standard procedure,
described in § 4 we determine the base flow, Fig. 17, and eigenmodes of the
steady and time-averaged solutions, Fig. 18.

Figure 17. Flow
around NACA-0012
airfoil - streamlines of
the steady solution.

 Steady solution
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Figure 18. The
most dominant eigen-
modes pairs based
on the steady solu-
tion (top two figures,
λ = −0.147 ± 0.720ı)
and time-averaged
solution (bot-
tom two figures,
λ = 0.018 ± 0.915ı)

 EigS mode 1

 EigS mode 2

 EigM mode 1

 EigM mode 2

We also compute the first four POD modes with the snapshot POD
method (Sirovich, 1987). (Fig. 19).

With the determined mode basis and POD Galerkin method, we con-
struct the Galerkin model of the flow. The conclusions from this numerical
experiment can be expected to representative for all Galerkin models of the
wake flow. In Fig. 21, the shift-mode amplitude is shown as a function of
fluctuation amplitude, both, for the Galerkin model and for the DNS. The
deviation of the curves from the values for DNS is a measure of the model
quality.

The first observation is that for all presented models, we have to employ
the mean-field correction (shift mode) to avoid the structural instability and
thus fragility of the ROM.

It can be seen in Fig. 21 that POD modes allow the reconstruction of
Navier-Stokes attractor (limit cycle), but they are unable to reproduce the
dynamical properties of transitional flow. For the flow states close to fixed
point (steady solution, small values of shift-mode coefficient), the kinetic
energy of the flow is overestimated — especially in POD-2 Galerkin model.

The models based on the two most unstable eigenmodes (Fig. 20, middle)
reconstruct the flow states close to fixed-point (steady solution) and the
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Figure 19. First 4
POD modes for the
NACA-0012 airfoil
flow

 POD mode 1

 POD mode 2

 POD mode 3

 POD mode 4

transition to limit cycle better than POD Galerkin models. On the other
hand the limit-cycle disturbance kinetic energy and shift-mode coefficients
of periodic flow are significantly underestimated with these mode bases.

The last of the models presented here is the least-dimensional model of
continuous interpolated mode pair using the technique described in section
§ 7.3.

The comparison shows that dynamical properties of simple ROMs can
be unsatisfactory. At the same time, special techniques allows construction
of least–dimensional model having very good dynamical properties. This
study demonstrates that not only the appropriate expansion mode basis
but also modeling skills are a necessary ingredient in ROM design.

8 Summary and perspectives - 3D flow stability

analysis

We have presented the foundations of global flow stability analysis and its
role in fluid dynamics. An interested reader should be able to adapt his own
numerical code or any of the open source ones to compute the global stability
eigensolutions and use the results for ROM modeling, possibly employing
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Figure 20. Shift-
mode amplitude as a
function of fluctuation
amplitude for POD-
based models (top),
eigenmode-based
models (middle), and
interpolated model
(bottom). The solid
black line corre-
sponds to the CFD
benchmark.

further detailed descriptions.
The global stability analysis begun in late 80’s of the last century. Recent

interest in feed-back control using ROM enhanced also investigations in this
direction. Stability modes are characterized by a single frequency for each
mode pair and may thus constitute a ’clean’ piano with ’pure tones’. By
construction, stability modes are the optimal mode basis for modeling the
transients near the onset of instability. As alternative, Galerkin expansion
piano may be build from POD modes of given solutions. By construction,
POD resolves the energy of the fluctuation in optimal way but may mix
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Figure 21. The vari-
ation of disturbance
kinetic energy (TKE)
for different Galerkin
models and interpola-
tion parameter κ as
a function of time.
The flow transitions
from steady state to
the limit cycle oscilla-
tion. The displayed
Galerkin model can be
inferred from the leg-
end.

several frequencies in a single mode (Rowley et al., 2009). Combination of
the POD mode basis with stability modes is shown to improve the ROM
dynamics. In a more refined approach, the evolution of stability eigenmodes
towards POD modes is parameterized by a continuous mode interpolation,
thus removing unnecessary degrees of freedom in the modal expansion. In
this case, the interpolation employs also a solution of the eigenvalue prob-
lem.

The computational aspects of the eigensolution computation has been
explained in detail. The formulation of the problem was presented for 2D
and 3D case. We interpreted the eigenvalue solution procedure from the
point of view of CFD methods, speaking in terms of practical numerics.
Particularly noteworthy is the similarity between state space reduction for
solution of the eigenvalue problem and other methods employed in model
reduction. The computational methods of global flow stability analysis have
benefitted from recent developments in global flow stability from physical
methods employed for ROMs, from signal processing, from system identifi-
cation and from CFD.

The computational challenges of 2D global flow stability are now trivial
in comparison with problems of early development of the method. At the
same time, the 3D global flow stability is still a challenge, no matter what
method is used for eigensolution. In Figs. 22 and 23 we show that also for
3D geometry it is possible to extract eigenmodes with the described method.
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The solution of these computational problems are a key enabler for ROMs
of 3D flows of practical importance. Other methods, as described in this
chapter and in this book can be expected to serve as further catalyzers.

Figure 22. Left: Unstructured, 3D computational grid with partitioning
for parallel computation; Right: Steady flow solution for the 3D flow around
the sphere - zero velocity isosurface is shown for Re = 300.

Figure 23. Real parts of two higher eigenmodes for the 3D flow around the
sphere at Re = 300. Isosurfaces indicate constant streamwise (Vx) velocity.
The grayscale shows the positive and negative sign of the velocity.
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