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Abstract A Galerkin method is presented for control-oriented reduced-

order models (ROM). This method generalizes linear approaches

elaborated by M. Morzyński et al. for the nonlinear Navier-Stokes

equation. These ROM are used as plants for control design in the

chapters by G. Tadmor et al., S. Siegel, and R. King in this volume.

Focus is placed on empirical ROM which compress flow data in the

proper orthogonal decomposition (POD). The chapter shall provide

a complete description for construction of straight-forward ROM as

well as the physical understanding and teste

1 Introduction

In the previous chapter by M. Morzyński et al., stability analysis was intro-
duced as one foundation for control-oriented reduced-order models (ROM).
These ROM constitute least-order descriptions optimized for linear flow
dynamics. Here, the mathematical framework is extended to traditional
Galerkin methods employing a larger class of expansion modes and resolv-
ing fully the nonlinear dynamics. The following chapters by G. Tadmor et
al. and R. King in this volume will provide control studies based on the
Galerkin method.

The current chapter is organized as follows: First (§2), the traditional
Galerkin method is elaborated. This includes dynamic models based on the
stability eigenmodes and the proper orthogonal decomposition (POD). In
§3, a modal refinement of statistical fluid mechanics is outlined. This in-
cludes a novel closure for the first and second statistical moments based on
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finite-time thermodynamics (Andresen, 1983). The resulting modal balance
equations give important insights in the modal interactions and serve as de-
sign tool in model development. In §4, key enablers for control-oriented
Galerkin models of turbulent flows are revisited. The conclusions (§5) sum-
marize the previous chapters and outline challenges for future research.

2 Galerkin method as foundation

Focus of this section is a traditional Galerkin method for incompressible flow
(Fletcher, 1984). This method shall approximately solve an initial boundary
value problem which is formulated in §2.1. The postulates of the method are
outlined in §2.2. The approximation ansatz is a finite Galerkin expansion in
terms of global modes (§2.3). The derivation of the evolution equation for
the mode amplitudes, the Galerkin system, is described in §2.4. In §2.5, we
revisit this derivation for stability eigenmodes elaborated by M. Morzyński
et al. in his chapter. A popular empirical realization is the proper orthogonal
decomposition (POD), which minimizes a residual for a given data ensemble
(§2.6). In general, this Galerkin method can approximate the flow evolution
over a finite time horizon and may even reproduce the main characteristics
of the long-term behavior.

2.1 Problem formulation

The incompressible, viscous flow is described in a Cartesian coordinate
system x = (x, y, z) in the finite steady domain Ω. The x-, y- and z-axes are
described by unit vectors ex, ey, ez, respectively. For the cylinder wake, the
x-axis is aligned with the flow, the y-axis parallel to the shear and the z-axis
parallel to cylinder axis. The velocity u = (u, v, w) has the components u,
v and w in x-, y-and z-direction, respectively. The time is denoted by t and
considered in the interval [0, T ]. The pressure field is represented by p. The
Cartesian components may also be indicated by indices, e.g. x = (x1, x2, x3)
or u = (u1, u2, u3). An analogous convention applies to the unit vectors e1,
e2, e3.

Kinematically, the flow is characterized by D, a characteristic length of
the geometry, and U , a characteristic velocity. For the flow around the
cylinder, D is chosen to be the diameter and U the oncoming velocity.
The Newtonian fluid has constant density ρ and dynamic viscosity μ. In
the following, we assume that all dependent and independent variables are
non-dimensionalized with D, U , ρ and μ. The flow is characterized by the
Reynolds number Re = ρUD/μ or, equivalently, by its reciprocal denoted
by ν := 1/Re.
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For the formulation of the initial boundary value problem (IBVP), we
introduce ∂x, ∂y, ∂z, and ∂t for derivatives with respect to x, y, z and
t. Alternatively, ∂α indicates a derivate in the α-th Cartesian direction.
Second derivatives are denoted similarly, e.g. ∂2

xx for the second derivative
with respect to x. The Nabla operator ∇ := (∂x, ∂y, ∂z) comprises first
derivatives in a vector. The Laplace operator � := ∂2

xx + ∂2
yy + ∂2

zz can act
on a scalar or on a vector by acting on each Cartesian component.

We employ tensor algebra for products of scalars (0-th order tensors),
vectors (1st order tensors) and matrices (representing 2nd-order tensors).
The product between two tensors is by default an outer product, e.g. ∇u =
(∂αuβ) represents the Jacobian of the velocity field. Similarly, uu := (uαuβ)
denotes the dyadic product (a matrix). Inner products are denoted by ·
and contract the inner indices. Let a and b be two vectors, then a · b :=

3∑
α=1

aαbα represents the standard Euclidean product yielding a scalar. Let

A be a matrix, then A · b :=
3∑

α=1
eα

(
3∑

β=1

Aαβbβ

)
. For later reference, we

introduce the double contraction ’ : ’. Let A and B two matrices, then

A : B :=
3∑

α=1

3∑
β=1

AαβBβα. Details can be inferred from any text book of

tensor algebra.
It should be emphasized that tensor algebra and linear algebra have quite

different notations. In tensor algebra the indices are tied to physical space
and imply well-defined behavior for physical coordinate transformations. In
linear algebra, vectors and matrices are just book-keeping quantities and
the elements having no a priori meaning or transformation properties. Also
the mathematics is different. Let A be a matrix and b a vector. Then
Ab represents an outer product leading to a 3-rd order tensor in tensor
algebra and inner product yielding a vector in matrix algebra. To cleanly
separate both worlds, we keep round brackets for tensors and introduce
square brackets for elements of linear algebra.

The evolution of the flow obeys mass and momentum balance, i.e. the
equation of continuity and Navier-Stokes equation:

∇ · u = 0, (1a)

∂tu + ∇ · (u u) = −∇p + ν �u + g b (1b)

The flow is actuated with a simple volume force g(x) b(t) with a steady
carrier field g and time-dependent amplitude b. An example is a Lorentz
force of magnetohydrodynamics or a buoyancy term in the Boussinesq ap-
proximation.
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A unique solution of (1) is expected when completed with an initial
condition at time t = 0 and a boundary condition on the domain boundary
∂Ω in the integration time interval [0, T ]. These conditions typically read

u(x, 0) = uIC(x) ∀x ∈ Ω, (2)

u(x, t) = uBC(x) ∀x ∈ ∂Ω, t ∈ [0, T ]. (3)

We assume uIC = uBC for x ∈ ∂Ω. The Dirichlet boundary condition (3)
may be the no-slip condition on the wall or the free-stream condition at
infinity. The following considerations can easily be applied also to periodic
boundary conditions in nominally homogeneous directions or convective out-
flow conditions. The initial boundary value problem (1),(2),(3) defines flows
around obstacles, like spheres, cylinders and airfoils, in uniform stream as
well as most internal flows.

Typically, the pressure is considered as a Lagrange multiplier ensuring
incompressibility (1a). The pressure can be computed from the velocity
field by taking the divergence of (1b) and exploiting (1a). This yields the
pressure-Poisson equation,

�p = −(∇u)� : ∇u. (4)

Here, the superscript � denotes a transpose (exchange of indices) in the
velocity Jacobian. At the boundary, the multiplication of (1b) with the wall
normal n yields a Robins boundary condition for p. This condition and (4)
define p uniquely up to an arbitrary constant. The constant does not affect
the velocity field. Hence, we can consider the Navier-Stokes residual

R (u) := ∂tu + ∇ · (u u) + ∇p − ν�u − g b (5)

as a function of the velocity field only.
The above consideration apply to low-Mach number flows of Newtonian

fluids in steady domains. The consideration does not include compressibil-
ity (e.g. transonic or supersonic flows), wall motion (e.g. aeroelastics) and
combustion (or other multi-physics phenomena).

2.2 Traditional Galerkin method

The Galerkin method (Fletcher, 1984) approximates the solution of the
IBVP (1), (2), (3) in the form

u[0...N ](x, t) = u0(x) +

N∑
i=1

ai(t) ui(x) (6a)

d

dt
a = f [0...N ] (a, b) . (6b)
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Here, the velocity field is approximated by u[0...N ], a finite expansion in
terms of the base flow u0, N space-dependent modes ui and corresponding
time-dependent mode amplitudes ai. The evolution equation is compressed
in a system of ordinary differential equations for the mode amplitudes

a := [a1, . . . , aN ]
�

via the propagator f [0...N ] =
[
f

[0...N ]
1 , . . . , f

[0...N ]
N

]�
.

The control command b is included in (6b) to match (1b). The bulky su-
perscript [0 . . . N ] shall remind which index set of modes is employed in the
approximation and may be omitted without warning.

Almost any computational solution method of the Navier-Stokes equa-
tion can be framed in the form (6). The particularity of the traditional
Galerkin method is aiming at a low dimension N as first priority. This
method is deeply rooted in functional analysis and has following properties:
GM1: The incompressibility (1a) is exactly fulfilled for all choices of mode

amplitudes.
GM2: The boundary condition (3) is exactly fulfilled for all choices of mode

amplitudes.
GM3: The modes are a subset of a complete orthonormal system (ONS)

{ui}
∞
i=0 of the Hilbert space of square integrable vector fields L2(Ω), or

an Hilbert subspace H(Ω) ⊂ L2(Ω) guaranteeing a problem-specific,
sufficiently high regularity of the considered functions. The Hilbert
space L2(Ω) is equipped with an inner product between two vector
fields v and w

(v,w)Ω :=

∫
Ω

dx v · w (7)

and the associated norm

‖v‖Ω :=
√

(v,v)Ω. (8)

Orthonormality of the modes reads

∀i, j ∈ {1, . . . , N} : (ui,uj)Ω = δij . (9)

The completeness of the ONS implies that an arbitrary accuracy of
(6a) is achievable by increasing the mode number N .

GM4: The ansatz should be compatible with the weak solution of the
Navier-Stokes equation, i.e.

∀v ∈ H(Ω) : (v,R(u))Ω = 0 , (10)

where R represents the Navier-Stokes operator based on generalized
derivatives.
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The numbering of the postulate reflects its relative importance in the tradi-
tional Galerkin method. Property GM3 implies that the resolution accuracy
is controlled by the number of global modes, defined on the whole domain
Ω. No existence of grid is implied or necessary in this analytical framework.
Property GM3 discriminates the traditional Galerkin method from grid-
based discretizations of the Navier-Stokes equation, like finite-difference,
finite-volume or finite-element schemes. Here, the local modes are tied to
the grid and an increasing grid resolution requires a new set of modes. A
rigorous mathematical theory detailing GM4 and other aspects is outside
the scope of this book. Instead, we refer to the classics by Ladyzhenskaya
(1963).

2.3 Galerkin expansion

In this section, properties of the Galerkin expansion (6a) are derived.
The first property GM1 of the previous section implies

∇ · ui = 0, i = 0, 1, . . . , N. (11)

This condition liberates us from re-considering the mass balance (1a) in
future considerations.

The second property GM2 yields

∀x ∈ ∂Ω : u0(x) = uBC(x) and ui(x) = 0, i = 1, . . . , N. (12)

Now, the boundary conditions are incorporated.
The third property GM3 allows to determine the mode amplitudes for

a given velocity field u by minimizing the residual
∥∥u − u[0...N ]

∥∥
Ω
:

ai = (u − u0,ui)Ω . (13)

It should be noted that the mode amplitude ai is not distorted by the

orthogonal residual
∞∑

i=N+1

aiui of the Galerkin expansion, i.e. is independent

of N .

The energy content of the fluctuation u′ := u−u0 =
∞∑

i=1

aiui is quanti-

fied by the instantaneous fluctuation energy

K(t) =
1

2
‖u′‖

2
Ω . (14)

In statistical fluid mechanics, K is also termed turbulent kinetic energy
(TKE ). The orthogonality of the modes allows to partition K into modal
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energies Ki(t), the energy content of each modal subspace contribution
u[i] = ai ui:

K(t) =
∞∑

i=1

Ki(t), where Ki(t) :=
1

2

∥∥∥u[i]
∥∥∥2

Ω
=

1

2
a2

i . (15)

For later reference, we note that (14) and (15) refer to the instantaneous
values of the energies. By default, K and Ki represent averaged values if
the argument ’(t)’ is omitted.

2.4 Galerkin system

Finally, we derive the evolution equation of the mode amplitudes. The
finite Galerkin expansion (6a) cannot be expected to yield an exact solution
of (10) under general conditions. However, (10) can be exactly satisfied for
all test functions from the same subspace as the Galerkin expansion. With-
out loss of generality, we choose the N expansion modes as test functions:(

ui,R
(
u[0...N ]

))
Ω

, i = 1, . . . , N. (16)

This step is called Galerkin projection, we project the Navier-Stokes equa-
tion on the subspace of the Galerkin expansion.

To simplify the Galerkin projection, we re-write (6a) as

u[0...N ] =

N∑
i=0

aiui, (17)

where a0 ≡ 1. Moreover we introduce (F )Ω :=
∫
Ω

dx F as notation for the
volume integral of F over the domain. [F ]∂Ω :=

∮
∂Ω

dA · F represents the
surface integral of F over the boundary of the domain. F is typically a
scalar, like pressure, but could also be a vector or higher-order tensor.

The projection of the local acceleration term reads⎛⎝ui, ∂t

⎡⎣ N∑
j=0

ajuj

⎤⎦⎞⎠
Ω

=

N∑
j=1

ȧj (ui,uj)Ω = ȧi, (18)

exploiting the steadiness of a0 and the orthonormality of the modes (9).
The Galerkin projection of the viscous term yields⎛⎝ui, ν�

⎡⎣ N∑
j=0

ajuj

⎤⎦⎞⎠
Ω

= ν
N∑

j=0

lνij aj , (19a)

lνij = (ui,�uj)Ω = [ui · ∇uj ]∂Ω − (∇ui : ∇uj)Ω (19b)
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The transformation of lνij to a term with first derivatives has been performed
employing Green’s identity. Numerically, the transformed term generally
leads to more accurate values of lνij and is hence preferred. For Dirichlet
boundary conditions, the surface integral vanishes, since ui ≡ 0 on the do-
main boundary. In this case, lνij represents a negative semi-definite matrix.

Note that (19) is linear (’pseudo-linear’) in [a0, . . . , aN ]
�

but contains a
constant term at j = 0 with respect to the non-trivial mode amplitudes
[a1, . . . , aN ]�.

The Galerkin projection of the convective term leads to a pseudo-quadratic
form ⎛⎝ui,−∇ ·

⎛⎝⎡⎣ N∑
j=0

ajuj

⎤⎦ [ N∑
k=0

akuk

]⎞⎠⎞⎠
Ω

=

N∑
j=0

N∑
k=0

qc
ijkajak(20a)

qc
ijk = − (ui,∇ · (ujuk))Ω . (20b)

For the Galerkin projection of the pressure term, we first construct a
solution of the pressure-Poisson equation with respect to p. Let pjk, termed
’partial pressures’ in the sequel, satisfy

�pjk = − (∇uj)
�

: ∇uk. (21)

Then, the pseudo-quadratic Galerkin ansatz of the pressure

p[0...N ](x, t) =

N∑
j=0

N∑
k=0

pjk(x) aj(t) ak(t) (22)

satisfies the pressure-Poisson equation (4) neglecting the residual of the
Galerkin expansion. Employing (22), the Galerkin projection of the pressure
term becomes (

ui,−∇p[0...N ]
)

Ω
=

N∑
j=0

N∑
k=0

qp
ijkaj ak (23a)

qp
ijk = − (ui,∇ · pjk)Ω = − [uipjk]∂Ω . (23b)

In the second transformation of qp
ijk, the incompressibility of the modes and

Gauss integral formula is exploited. Note that this surface integral vanishes
for Dirichlet boundary conditions (3), implying (12) for the modes. In this
case, the pressure-term representation vanishes identically in the Galerkin
projection. This behavior is consistent with the interpretation of pressure
as a Lagrange multiplier for incompressibility. The pressure has no role to
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play on the solenoidal affine space spanned by the Galerkin expansion (6a).
The same statement applies also to periodic boundary conditions, as proven
in Holmes et al. (1998).

In case of open flows with convective boundary conditions, the modes do
not vanish identically on the boundary and the pressure term may play an
important role (Noack et al., 2005; Noack, 2006). We refer to these original
papers for the details on the incorporation of the boundary conditions in
(4), (21).

In practice, the computation of partial pressures pjk is numerically del-
icate and expensive. Past studies (Noack et al., 2005; Noack, 2006) in-
dicate that the effect of the pressure term is well accounted by a linear
term. In fact, most authors employ a calibrated linear term to account
for the pressure term — starting with Galletti et al. (2004). We decom-
pose the pressure in a constant part pc = p00, a linear (so called ’fast’)

term pl =
N∑

j=1

(pj0 + p0j) aj , and a quadratic (so called ’slow’) contribution

pq =
N∑

j,k=1

pjk aj ak, respectively:

p = pc + pl + pq. (24)

The constant component may drive internal flows, like the pressure gradient
in pipe flow. For open flows, the Galerkin representation of this part tends
to be negligible. The quadratic component tends to be small compared to
linear pendant (Noack, 2006), justifying a posteriori the calibrated linear
term.

As a historical note, the pioneering work of Aubry et al. (1988) empha-
sized already the potentially important role of the pressure term, but did
not propose a physics-based model. Rempfer and Fasel (1994) bypassed
the modeling problem by projection on the pressure-free vorticity equation.
This projection lumps the effect of the convection- and the pressure-term
in a single term

qijk = qc
ijk + qp

ijk j, k = 0, . . . , N. (25)

Finally, the Galerkin projection of the volume force term reads

(ui, g b)Ω = gi b, where gi = (ui, g)Ω . (26)
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Summarizing, the projection (16) yields following Galerkin system:

ȧi︸︷︷︸
local

acceleration

= ν

N∑
j=0

lνij aj︸ ︷︷ ︸
viscous
term

+
N∑

j,k=0

qc
ijk aj ak︸ ︷︷ ︸

convective
term

+
N∑

j,k=0

qp
ijk aj ak︸ ︷︷ ︸

pressure
gradient

+ gib︸︷︷︸
volume
force

.

(27)
The form elegantly allows to trace back each term from the corresponding
Navier-Stokes pendant. However, dynamical system analyses are compli-
cated by the inclusion of a0 ≡ 1. Examples include finding the fixed point
and performing a stability analysis. Hence, we re-write (27) in the form

ȧi = ci +
N∑

j=1

lij aj +
N∑

j,k=1

qijk aj ak + gib, (28)

where ci = ν li0 + qc
i00 + qp

i00, lij = ν lνij + qc
ij0 + qc

i0j + qp
ij0 + qp

i0j , and qijk is
defined by (25). Note that the constant term ci would vanish if u0 is chosen
to be a steady Navier-Stokes solution.

2.5 Non-orthogonal modes

The eigenmodes of stability analysis are generally not orthogonal to each
other. In this case, we introduce a mass matrix M = (mij), where mij :=
(ui,uj)Ω and the Galerkin projection leads to

N∑
j=1

mij ȧj = ν

N∑
j=0

lνij aj +

N∑
j,k=0

qc
ijk aj ak +

N∑
j,k=0

qp
ijk aj ak + gib. (29)

The local acceleration term on the left-hand side is generalized, but all terms
on the right-hand side remain unaltered. This equation can be solved for ȧi

by multiplication with the inverse mass matrix. An alternative yet equiv-
alent trick is the use of adjoint modes vi as test functions in the Galerkin
projection (Haken, 1983):(

vi,R
(
u[0...N ]

))
Ω

, i = 1, . . . , N. (30)

The adjoint and original modes satisfy the orthogonality relationship (ui,vj)Ω =
δij . Thus, Galerkin projection leads to (27), again.
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2.6 POD models

The main art of Galerkin modeling is constructing a good low-dimensional
’modal piano.’ The modes should span a subspace in which the attractor
and nearby transients are well resolved.

Common choices of the basic mode u0 are the steady solution or the
mean flow. Both fulfill the incompressibility (1a) and the boundary condi-
tions (3). In principle, any velocity field satisfying these conditions serve
the purpose. In practice, the choice of the basic mode is not overly critical
if the expansion modes can compensate for deviations of the base flow.

In contrast, the performance of the Galerkin method depends quite sen-
sitively on the choice of the expansion modes. In principle, the Hilbert
space of square-integrable solenoidal velocity fields guarantees the existence
of a complete orthonormal system. This property is exploited by mathe-
matical approaches which are successfully applied to geometrically simple
internal flows (Lorenz, 1963; Busse, 1991) but also to open flows (Noack
and Eckelmann, 1994a,b). The method poses severe analytical and numer-
ical challenges for general 3D geometries. These challenges have excluded
an application for most engineering tasks. Moreover, the advantage of the
mathematical modes, guaranteed completeness independently of the evolu-
tion equation to be approximated, is at the same time a weakness in terms
of the required low dimensions.

A more problem-tailored physical method is a Galerkin model based
on stability eigenmodes of a linearized Navier-Stokes related equation, like
Stokes equation (Joseph, 1976), a modified Stokes equation (Batcho, 1994),
or the constitutive equation of stability analysis (see the chapter of M.
Morzyński et al.). This approach can be expected to lead to lower-order ex-
pansions since it includes properties of the evolution equation. However, the
property of completeness of the stability eigenmodes has only been proven
for very few highly symmetrical configurations (Joseph, 1976; Grosch and
Salwen, 1978; Salwen and Grosch, 1981) and may be questionable for open
flows. Physical Galerkin models have been constructed for internal flows
(Rummler, 2000), for wakes (Afanasiev, 2003) and for the flow over a cavity
(Åkervik et al., 2007).

A third empirical ansatz employs experimental or simulation flow data
from the target configuration. Often, the most energetic directions are ex-
tracted from snapshots um, m = 1, . . . , M in the observation domain Ω.
A canonical approach, is called principle axis, Karhunen-Lòeve or proper
orthogonal decomposition (POD). Let 〈 〉M denote the average over these
snapshots. Then, POD optimizes the averaged residual with respect to the
L2-norm. In other words, any other N -dimensional expansion w[0...N ] =
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N∑
i=0

ciwi of which the modes {wi}
N
i=0 satisfy incompressibility (11), the

boundary conditions (12) and orthonormality (9) cannot have a smaller
residual:

〈‖um −
N∑

i=0

am
i ui‖

2
Ω〉M ≤ 〈‖um −

N∑
i=0

cm
i wi‖

2
Ω〉M . (31)

Here, the superscript m of the snapshot is transferred to the mode ampli-
tudes. Apart from there usefulness for data compression, the POD modes
have no inherent physical meaning. For the soft onset of oscillatory fluctu-
ations, mean-field theory derives that the first 2 POD modes span the real
and imaginary part of the unstable complex stability eigenmode. Similarity
between selected POD modes and stability eigenmodes has been observed
for several configurations. In general, POD does not extract pure frequency
modes, like stability eigenmodes. Dynamic mode decomposition (DMD) is
another data-driven flow decomposition designed to match stability eigen-
modes under suitable conditions (Rowley et al., 2009; Schmid, 2010). DMD
trades the optimal resolution efficiency of POD against distillation of pure
eigenfrequencies in short-time sampled data.

The construction of POD modes can be inferred from many excellent
sources (Holmes et al., 1998). The modes are best conceptualized as princi-
ple axes of a Gaussian distribution fitted to the snapshots representing the
first and second moments (Cordier and Bergmann, 2003). Typically, the
number of POD modes is chosen much smaller than the number of snap-
shots, N � M . The maximum of number of modes reads N = M −1, since
M points span a M − 1-dimensional manifold.

Snapshot-based POD consists of 5 steps (Sirovich, 1987):
1. Compute the mean flow,

u0 :=
1

M

M∑
m=1

um. (32)

2. Compute the correlation matrix C = (Cmn) of the fluctuations,

Cmn :=
1

M
(um − u0,u

n − u0)Ω . (33)

Note that C is a symmetric positive semi-definite gramian matrix.
3. Perform the spectral analysis of this matrix, i.e. find the first N eigen-

vectors ei =
[
ei
1, . . . , e

i
M

]�
and sorted eigenvalues λ1 ≥ λ2 ≥ . . . ≥

λN ≥ 0,
Cei = λiei, i = 1, . . . , N. (34)
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Without loss of generality, the eigenvectors are assumed to be or-
thonormalized, ei · ej = δij , thanks to the symmetry of C.

4. Compute each POD mode as linear combination of the snapshot fluc-
tuations,

ui :=
1

√
M λi

M∑
m=1

ei
m (um − u0) , i = 1, . . . , N. (35)

The POD modes satisfy the orthonormality condition (9).
5. Compute the mode amplitudes,

am
i :=

√
λi M ei

m, i = 1, . . . , N. (36)

These amplitudes vanish on average and are uncorrelated (orthogonal
in time),

〈ai〉M = 0, 〈aiaj〉M = λi δij , i, j ∈ {1, . . . , N}. (37)

POD defines a second-order statistics providing the mean flow u0 and the
two-point autocorrelation function

u′(x, t) u′(y, t) =

N∑
i=1

λi ui(x) ui(y). (38)

Hence, a minimum requirement to the snapshot ensemble is the accuracy of
the derived mean flow and the second moments. Accuracy of the statistics
for a given number of snapshots is increased by uncorrelated snapshots as
required in the original paper on the snapshot POD method (Sirovich, 1987).

POD is optimal for the given data set in the sense of (31), but is gener-
ically not complete (violates GM3 ). Applicability for other Reynolds num-
bers, for transients and for actuation is very restricted (Deane et al., 1991).
Numerous suggestions have been made to improve or augment POD for sev-
eral operating conditions. We refer the interested reader to the literature
(Ma and Karniadakis, 2002; Noack et al., 2003; Jørgensen et al., 2003; Siegel
et al., 2008).

The Galerkin projection can be effected on any orthonormal(ized) set
of modes. It has become increasingly common to add calibrated correc-
tions to the constant and linear terms (Galletti et al., 2004; Tadmor and
Noack, 2004). These corrections shall account for the pressure term, the ne-
glected modes, mode deformations or other diseases of the Galerkin method.
The calibration of the whole Galerkin system with constant, linear, and
quadratic terms is generally badly conditioned and should invoke a penal-
ization procedure for the quadratic terms (Cordier et al., 2010).
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POD Galerkin models have been constructed for practically all flow con-
figurations. Examples are Couette flow (Moehlis et al., 2002), transitional
(Rempfer and Fasel, 1994) and turbulent boundary layers (Aubry et al.,
1988; Podvin, 2009), wakes (Deane et al., 1991; Noack et al., 2003), mix-
ing layers (Ukeiley et al., 2001; Noack et al., 2005; Wei and Rowley, 2009),
jets (Schlegel et al., 2009). The vast amount of published successful POD
models should not mislead the reader to assume that they can be easily
constructed with the standard approach, or that they are robust. Most
models are fragile and critically dependent on additional enablers, such as
discussed in §4.

3 Statistical fluid mechanics as design tool

POD can be considered as a refinement of the Reynolds decomposition of
velocity field. The fluctuation is decomposed in modal compartments,

u = u0 + u′, u′ =

∞∑
i=1

u[i], u[i] = aiui. (39)

In this section, we refine some well-known equations of statistical fluid me-
chanics for the fluctuation (Monin and Yaglom, 1971, 1975) into the modal
pendants. First (§3.1), the principles of global and modal balance equations
are revisited. The modal pendants of the Reynolds and TKE equation are
presented in §3.2. Finally, a novel closure for the first and second moments
of Galerkin systems is outlined (§3.3). The balance equations of this section
can be employed as powerful analysis and design tool. Examples are un-
derstanding the modal interactions, checking the accuracy of the numerical
data, evaluating the (reduced) Galerkin models, deriving free calibration
parameters, and determining the analytical form of the subgrid turbulence
models.

3.1 Principles of balance equations

Statistical fluid mechanics is based on a Reynolds average, denoted by an
overbar or 〈 〉. This average may be the infinite time mean, an ensemble
average, a spatial average over one or more homogeneous directions, or any
other filter satisfying the Reynolds properties (Monin and Yaglom, 1971).
A large class of global balance equations for the domain Ω can derived from
the average of (10)

(v,R(u))Ω = 0. (40)

The weak form of the Reynolds equation is obtained by substituting the
Reynolds decomposition in (40), and allowing any test function v. Choosing



Galerkin Method for Nonlinear Dynamics 125

v = u, u0, or u′ leads to global balance equation for the total kinetic energy,
the mean flow or the TKE, respectively. The drag or lift formulae are
derived by setting v = ex or v = ey, respectively. As a slight variation, the
Reynolds stress balance equations are inferred from the symmetric matrix
valued equation:

(u′ R(u) + R(u) u′)Ω = 0 , (41)

representing the special case v = u′ of a larger class of balance equations
given by

(v R(u) + R(u) v)Ω = 0 . (42)

Modal pendants of the above mentioned global equations are obtained by
substituting the POD (39) as argument in the Navier-Stokes residual and,
if necessary, by replacements of the test function. The i-th modal Reynolds
equation is obtained by setting v = ui in (40).

The i-th modal energy balance equation employs v = u[i] instead of
v = u′ for the TKE equation. Note that the linearity of (40) in v allows to
derive the original TKE from the modal compartments.

Similarly, the modal Reynolds stress balance equation is based on the
similar trick: insert v = u[i] in (42). The global pendant is obtained by the
sum of the original equation.

The effect of the modes on the energy of the mean flow, on the drag or
on the lift can be assessed when the Reynolds decomposition is replaced by
the POD in the original equation. Tab. 1 summarizes the discussion.

3.2 Modal balance equations

Detailing the discussion of the last section, we derive the modal Reynolds
and TKE equation for POD modes. This derivation can be based on the
Navier-Stokes equation or the Galerkin system (27), since there is a one-to-
one correspondence between Navier-Stokes and Galerkin-system terms (see
Tab. 2). We pursue the easier task based on deriving the balance equation
from the dynamical system. Moreover, we assume accuracy of the finite
Galerkin expansion with N modes and shall, at the moment, not pause to
discuss the effect of the residual.

The Reynolds decomposition of the POD mode amplitudes reads

a0 ≡ 1, a′
0 ≡ 0 (43a)

ai = a′
i, ai = 0 i = 1, . . . , N. (43b)

The modal Reynolds equation is obtained by Reynolds-averaging the Galerkin
system and exploiting (37). We chose the dynamical systems (28) for rea-
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Table 1. Constitutive equations for selected global and modal balances.

quantity global
balance equation

modal
balance equation

argument of R(u) u = u0 + u′ u =
∞∑

j=0

u[j]

Reynolds equation (40) for all test func-
tions v

(40) for v = ui

kinetic energy (40) for v = u0 + u′ (40) for v =
∞∑

j=0

u[j]

mean flow
kinetic energy

(40) for v = u0 (40) for v = u0

TKE / modal en-
ergy

(40) for v = u′ (40) for v = u[i]

Reynolds stress (42) for v = u′ (42) for v = u[i]

drag (40) for v = ex (40) for v = ex

lift (40) for v = ey (40) for v = ey

sons of brevity:

0 = ci +

N∑
j=1

2qijj Kj . (44)

Here, ci comprises the ui-projected Navier-Stokes residual of u0 and right
term resolves the effect of the Reynolds stress and of the quadratic pressure
term. There is only one energy distribution Ki = λi/2 consistent with the
mean flow (N equations for N energy values). The linear term is averaged
out and hence immaterial for POD modes.

The modal TKE equation is derived from the dynamical system by mul-
tiplying (28) with a′

i = ai and averaging:

d

dt
Ki = Qi + Ti, (45)

Qi := 2 lii Ki,

Ti :=

N∑
j,k=1

Tijk, Tijk := qijk aiajak.
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Table 2. Derivation diagram of the Galerkin system. In each column, all
Navier-Stokes terms are listed. From top to bottom, the local acceleration,
convective viscous and pressure gradient term are shown. From left to right,
the Navier-Stokes equation is processed from the original form, to a form
employing the Reynolds decomposition, and to a Galerkin projected form.
Note that the Galerkin system on the right-most column can be aggregated
form (27). with a0 ≡ 1.

NSE NSE with Galerkin- Galerkin-
u = u0 + u′ projection system

∂tu = ∂tu
′ = (ui, ∂tu

′)Ω = d
dtai =

−∇ · [u u] −∇ · [u0 u0] − (ui,∇ · [u0 u0])Ω qc
i00

−∇ · [u′ u0] − (ui,∇ · [u′ u0])Ω +
N∑

j=1

qc
ij0aj

−∇ · [u0 u′] − (ui,∇ · [u0 u′])Ω +
N∑

j=1

qc
i0jaj

−∇ · [u′ u′] − (ui,∇ · [u′ u′])Ω +
N∑

j,k=1

qc
ijkajak

+ν�u +ν�u0 +ν (ui,�u0)Ω +νli0

+ν�u′ +ν (ui,�u′)Ω +ν
N∑

j=1

lνijaj

−∇p −∇p0 − (ui,∇p0)Ω +qp
i00

−∇p′ − (ui,∇p′)Ω +
N∑

j,k=0
max{j,k}>0

qp
ijkajak

The time-derivative of Ki does not generally vanish for finite POD snapshot
ensembles. Qi lumps the effect of all Navier-Stokes terms which are linear
in u′. A look on Tab. 2 and the pressure model will reveal that these terms
contain either u0 or ν, i.e. describe interactions with the mean flow or with
the molecular chaos. Hence, Qi lumps the effect of external interactions
with respect to the mode ensemble. In contrast, Ti aggregates the energy
flow of internal triadic interactions Tijk from the convection term and the
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quadratic pressure term p(2). Hence, Ti is not effected by mean flow or
viscosity.

A refined physical resolution of the modal TKE equation is obtained by
repeating the operations for the Galerkin system (27). We shall refer to
the Navier-Stokes equation. Tab. 3 elucidates the origin of the TKE terms,
namely the production P , the convection C, the transfer T , the dissipation
D and the pressure power F . Tab. 4 contains the modal pendant. Neglecting
pressure terms, the external energy flow comprises production, convection
and dissipation Qi = Pi + Ci + Di while the transfer term Ti remains
unaltered. In (45), the linear pressure term pl of (24) contributes to Qi and
the quadratic term pq to Ti.

Table 3. Derivation scheme of the global TKE equation.

NSE with Galerkin global energy do.
u = u0 + u′ projection on u′ flow balance (short

(averaged) form)

∂tu
′ = (u′, ∂tu

′)Ω = dK/dt = dK/dt =

−∇ · [u0 u0] − (u′,∇ · [u0 u0])Ω

−∇ · [u′ u0] − (u′,∇ · [u′ u0])Ω −
(
u′ u′ : ∇ u0

)
Ω

P

−∇ · [u0 u′] − (u′,∇ · [u0 u′])Ω −
[
u0

1
2‖u

′‖2
]

∂Ω
+C

−∇ · [u′ u′] − (u′,∇ · [u′ u′])Ω −
[
u′ 1

2‖u
′‖2
]

∂Ω
+T

+ν�u0 +ν (u′,�u0)Ω

+ν�u′ +ν
(
u′,�u′

)
Ω

+ν
(
u′ · �u′

)
Ω

+D

−∇p − (u′,∇p)Ω −
[
u′ p′
]
∂Ω

+F
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Table 4. Derivation scheme of the modal energy flow balance analog to
Tab. 3 following the recipe of Tab. 1.

projection Galerkin- modal energy- do.
on aiui representation flow balance (short

(averaged) form)

(aiui, ∂tu
′)Ω = d

dt

(
1
2a2

i

)
= dKi/dt = do.

− (aiui,∇ · [u0 u0])Ω qc
i00ai

− (aiui,∇ · [u′ u0])Ω +
N∑

j=1

qc
ij0aiaj +2qc

ii0 Ki Pi

− (aiui,∇ · [u0 u′])Ω +
N∑

j=1

qc
i0jaiaj +2qc

i0i Ki +Ci

− (aiui,∇ · [u′ u′])Ω +
N∑

j,k=1

qc
ijkaiajak +

N∑
j,k=1

qc
ijkaiajak +Ti

+ν (aiui,�u0)Ω +νli0ai

+ν (aiui,�u′)Ω +ν
N∑

j=0

lijaiaj +2νliiKi +Di

− (aiui,∇p)Ω +
N∑

j,k=0

qp
ijkaiajak +

N∑
j,k=0

qp
ijkaiajak +Fi

3.3 Finite-time thermodynamics as closure model

In the following, we propose a closure for the first and second moments
of a Galerkin system, inspired by finite-time thermodynamics (FTT) (An-
dresen, 1983). The modal balance equation for momentum and for energy
constitute consistency conditions for Galerkin modeling process. The FTT
closure of these equations can provide further insights and make predictions.
These predictions may include intermodal dependencies, the behavior of a
reduced system, auxiliary terms needed for the reduced system, a good way
to aggregate mode groups in single ’quasi modes’, or transient behavior.

The consideration of transients may require the inclusion of non-POD
modes in the Galerkin model. Hence, we formulate the closure for gen-
eral orthogonal modes. The general Reynolds decomposition of the mode



130 B.R. Noack et al.

amplitudes read

ai = mi + a′
i, mi := 〈ai〉, Ki = 〈(a′

i)
2
〉/2. (46)

The closure shall determine the mean values mi and fluctuation levels Ki,
both for i = 1, . . . , N . We exploit the energy preservation of the quadratic
Galerkin-system term (Kraichnan and Chen, 1989). The main closure as-
sumptions are that the i-th external energy flow is only a function of the
i-th energy, Qi = Qi(Ki) and that the triadic interaction is only a function
of the involved modal energies Tijk = Tijk(Ki,Kj ,Kk), i.e. not higher or
lower moments.

The FTT modeled modal Reynolds and modal TKE equations read

ṁi = ci +

N∑
j=1

lij mj +

N∑
j,k=1

qijk mj mk +

N∑
j=1

2qijj Kj , (47a)

Ėi = Qi + Ti, where Qi = qiKi, Ti =

N∑
j,k=1

Tijk, (47b)

qi = χi +

N∑
j=1

χij mj , (47c)

Tijk = αχijk

√
KiKjKk

(
1 −

3Ki

Ki + Kj + Kk

)
, (47d)

where χi, χij and χijk are functions of the Galerkin system coefficients and
α is derived from an energetic consistency condition. For the details, the
reader is referred to the original publications (Noack et al., 2008, 2010).

Note that (47) represent 2N equations for 2N unknowns. The FTT
framework (47) includes, for instance, the amplitude equations for transient
and post-transient behavior of generalized mean-field models with one or
more incommensurable frequencies (Noack et al., 2003; Luchtenburg et al.,
2009a). Another implication is the absolute equilibrium ensemble (Lesieur,
1993) for Hamiltonized equations. In other words, a condition for equipar-
tition of energy between the modes is defined.

The statistical moments mj and Kj are searched as the fixed point of
the equation (47). Currently, the closure has been successfully applied to
a mathematical Galerkin model of the modified Burgers’ equation, a POD
model of the cylinder wake, and a physical Galerkin model mimicking homo-
geneous turbulence (Noack et al., 2008). More applications of this closure
are actively pursued by the authors.
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4 Auxiliary models as key enablers

In previous sections, we have outlined the POD Galerkin method (§2) and
associated balance equations (§3). More often than not this method may fail
to yield robust, control-oriented models. Root causes are the lack of com-
pleteness of POD modes or the intended compression of the physics into few
modes. This section shall serve as trouble shooting guide, showing physics-
based generalizations of the Galerkin expansion and helpful modifications
of the Galerkin system.

First (§4.1), the main challenges are enumerated. Cures are presented
in form of general modeling principles addressing the root causes of the
challenges. In the following, these principles are detailed as enablers for
the Galerkin expansion (§4.2), for the natural dynamics (§4.3), and for the
actuation effect (§4.4).

4.1 Challenges and modeling principles

Mathematical Galerkin models can be proven to converge to the Navier-
Stokes solution with increasing mode number under suitable conditions
(Ladyzhenskaya, 1963). The POD expansion can be expected to converge
against the original data in averaged L2 sense. However, the corresponding
hierarchy of Galerkin systems may fail to resolve the Navier-Stokes equa-
tion in important aspects. Moreover, the kinematic resolution of the POD
expansion may become unsuitable away from the design condition, e.g. at
another Reynolds number or with actuation applied. The reason of these
challenges can be traced back to the generic incompleteness of the POD in
L2(Ω).

Incompleteness of POD may lead to following challenges of the corre-
sponding Galerkin method:

1. If the Navier-Stokes solution depends sensitively on small variations
of the configuration or the initial condition, the model solution can be
expected to be correspondingly strongly effected by modeling errors,
even for direct numerical simulations. In the sequel, we assume that
the flow dynamics is robust, i.e. we can target a robust reduced-order
model as well.

2. The stability property of the Navier-Stokes solution is not conserved
during Galerkin projection, even if the Galerkin expansion is 100%
accurate. A stable Navier-Stokes solution may lead to an unsta-
ble Galerkin solution or the other way round. Simple 3-dimensional
models reveal that the omission of a single non-energetic mode may
drastically change the stability property of the remaining dynamics
(Rempfer, 2000; Noack et al., 2003). Even worse, mean-field models
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show that low-energy mean-field modes (shift-modes) lead to cubic
stabilizing terms in the Galerkin system (Aubry et al., 1988; Ukeiley
et al., 2001; Podvin, 2009), i.e. cannot be cured by re-calibrating the
constant, linear or quadratic term.

3. The solution of the Navier-Stokes equation will be a solution of the
Galerkin model if the Galerkin basis is accurate. But the Galerkin
system may have more unphysical solutions (Rempfer, 1995; Noack
et al., 2003). In other words, the Galerkin system may have a narrow
region of validity, possibly only the attractor.

4. Turbulent flows are by definition high-dimensional and the Galerkin
model shall by construction resolve only the gist, the coherent struc-
tures. These structures may contain only a fraction of the turbulent
kinetic energy, say 20–50% in case of highly visible coherency. Hence,
the effect of the Galerkin expansion residual on the dynamics cannot
be ignored and must be modeled. The general recipe to resolve 90%
of the fluctuation energy is typically not doable and misses the very
goal of reduced-order models.

5. The purpose of actuation is generally to change the coherent structures
not only in amplitude but also in shape. One example is to delay
vortex shedding behind a bluff body further downstream. Hence, the
application of control may invalidate the Galerkin model design at
natural conditions.

6. Local small-scale actuation may distort coherent structures from small
to large-scale structures. This multi-scale effect can generally not be
resolved in the standard POD Galerkin method — like in unsteady
RANS methods as well.

The challenges look intimidating. A rich kaleidoscope of seemingly un-
related cures can be found for numerous individual configurations. Fortu-
nately, the root causes for ailing POD models can easily be explained and
can often be cured by corresponding simple principles. We mentally parti-
tion the flow in coherent structures with characteristic dominant frequency
ωc, a base flow with slow variations ω � ωc, and small-scale stochastic tur-
bulent fluctuations at high frequencies ω � ωc. By construction, the POD
model may well resolve the coherent structures and associated instabilities
and nonlinearities. The coherent structures are continually ’nurtured’ by
the mean flow. The energy growth is limited by base flow variations and
by the turbulence cascade, i.e. by the low- and high-frequency side of the
spectrum. By construction, a POD model will fail to resolve the turbulence
cascade as energy sink and is not guaranteed to resolve stabilizing base flow
variations. Hence, the Galerkin model will be much stabler if the POD
bases is augmented by additional modes for the base flow variations and a
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Figure 1. Simplified flow physics and modeling principles. ’G.’ stands for
Galerkin. The figure is explained in the text.

good auxiliary model for unresolved fine-scale turbulence. Fig. 1 summa-
rizes these principles. In other words, there is no reason to hope for a stable
Galerkin model if the physical stabilizing effects are not resolved. Histori-
cally, the first pioneering POD model by Aubry et al. (1988) includes a base
flow model and an auxiliary turbulence model, i.e. is consistent with these
recipes.

4.2 Generalizations of the Galerkin expansion

We outline generalizations of the POD expansion, derived from the evo-
lution equation or resolving multiple operating conditions. First (§4.2), a
simple example demonstrates how the evolution equation can be used to
construct a dynamically important missing mode. Sections §4.2 and §4.2
address fluctuations with one varying frequency or multiple incommensu-
rable frequencies. Finally (§4.2), general approaches are enumerated.

Shift mode For reasons of simplicity, we consider a simple system of
ordinary differential equation illustrating the dynamic incompleteness of
POD and showing a necessary cure. This system is derived from the Navier-
Stokes equation under assumptions of mean-field theory, i.e. the soft onset
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of an oscillatory fluctuation (Noack et al., 2003):

u̇ = (σ1 − βw) u − (ω1 + γw) v (48a)

v̇ = (σ1 − βw) v + (ω1 + γw) u (48b)

ẇ = −σΔ w + α
(
u2 + v2

)
(48c)

The roles of the parameters σ1 > 0, σΔ > 0, α > 0, β > 0, and γ are
described below. The flow of (48) is illustrated in a phase portrait (Fig. 2).
The dynamic behavior is easily inferred from a transcription to cylindrical
coordinates r, θ, where r eıθ = u + ıv, ı =

√
−1 being the imaginary unit:

ṙ = (σ1 − βw) r, (49a)

θ̇ = (ω1 + γw) , (49b)

ẇ = −σΔ w + α r2. (49c)

We introduce u = [u, v, w]
�

. Evidently, us = 0 is the unstable fixed point of
the system (48). The neighboring infinitesimal fluctuation spirals outwards
in the w = 0 plane with growth rate σ1 and frequency ω1. The fluctuation
level r2 shifts the stable mean flow parameter w away from the origin.
Typically, the mean flow immediately adjusts to the fluctuation level (Noack
et al., 2003; Tadmor and Noack, 2004), σΔ � σ1, showing the slaving to
the parabolic mean-field manifold,

w =
α

σΔ
r2. (50)

This slaving (Haken, 1983) in (49a), (49b) yields the famous Landau equa-
tions for the onset of a supercritical Hopf bifurcation:

ṙ = σ1r − β�r3, θ̇ = ω1 + γ�r2, (51)

with β� = αβ/σΔ and γ� = αγ/σΔ. As a result of changing w, the growth
rate (frequency) is reduced (changed) via the β (γ) term. Saturation hap-
pens at ṙ = 0 or, equivalently, at fluctuation level r2

∞, height w∞ and
frequency ω∞ given by

r2
∞ =

σ1 σΔ

α β
, w∞ =

σ1

β
ω∞ = ω1 +

σ1γ

β
(52)

The periodic solution reads

u = u0 + a1 u1 + a2 u2, (53)
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Figure 2. Phase portrait of (48). The red curve shows a transient from the
unstable fixed point to the stable limit cycle on the mean-field paraboloid
which is indicated by a semi-transparent surface. In the planes, the tan-
gential flow component is visualized. Selected white arrows indicate the
direction of the flow. The lower (middle) plane contains the fixed point
(limit cycle). The half-plane v = 0, u > 0 displays the transient towards the
mean-field paraboloid.

where u0 = [0, 0, w∞]
�

represents the mean, and u1 = [1, 0, 0]
�

, u2 =

[0, 1, 0]
�

, a1 = r∞ cos ω∞t, a2 = r∞ sin ω∞t the harmonic oscillation mod-
ulo a phase shift. Not incidentally, (53) is the exact POD of the limit cycle
with u1 and u2 as POD modes and λ1 = λ2 = r2

∞/2 as eigenvalues. A
straight-forward Galerkin projection of the mean-field system (48) on these
2 POD modes yields a marginally stable center

ȧ1 = −a2 ȧ2 = a1. (54)
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The Galerkin system (54) illustrates the challenges 2 and 3 of §4.1. The
limit cycle is stable in the original 3-dimensional system (48), but only
marginally stable in the POD system (54). The POD system contains the
periodic solution (53), but also a continuum of unphysical solutions. The
truncated dynamics do not resolve the amplitude selection mechanism on
the mean-field paraboloid (50) described by the cubic (!) Landau equation
(51).

From this example, we can easily infer possible cures for the poorly
performing POD Galerkin method. We kinematically include the steady
solution in (53) by adding a3e3 to the expansion, i.e. the direction from
steady solution us to the mean flow u0. Thus, we restore the full dynamics
and associated damping mechanism. The direction may be called shift-mode
as it shifts the center of the attractor (here: limit cycle). The shift-mode
from the mean flow u0 and steady solution us is normalized:

uΔ =
u0 − us

‖u0 − us‖Ω
. (55)

We assume orthogonality with the POD modes, or enforce orthogonality
with a Gram-Schmidt orthonormalization.

The steady unstable Navier-Stokes solution may be difficult to compute.
Hence, we search for another approach. Reynolds-averaging of (48) yields
only one nontrivial equation, namely the average of the third equation (49c)

0 = σΔ w + α r2.

From this equation, we see that a change in the fluctuation level r2 imme-
diately affects w, i.e. shifts the limit cycle ’up’ or ’down’ in e3 direction.
This dynamic consideration also indicates that e3 is an important direction
to be included in the generalized POD expansion. The pendant for the
Navier-Stokes discussion is the Reynolds equation and POD decomposition
of the Reynolds stress tensor:

∇ · (u0u0) = −∇p0 + ν�u0 − ∇ ·

(
∞∑

i=1

λi ui ui.

)
(56)

Evidently, u0 varies with changes in each eigenvalue λi. This ansatz is
elaborated and exploited by Morzyński et al. (2006); Tadmor et al. (2010).
For nominally 1-dimensional channel, Couette, or mixing layer flows, the
Reynolds equation (56) can be solved directly (Aubry et al., 1988; Ukeiley
et al., 2001; Podvin, 2009). The slaving between mean-flow modes and fluc-
tuations leads to cubic terms, like in the Landau equation as an especially
simple slaving example.
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Deformable oscillatory modes In this section, we address a root cause
of the frequently observed narrow dynamic bandwidth of POD models, out-
lined first by Deane et al. (1991). Let us consider a 1-dimensional, slowly
spatially decaying traveling wave

u(x, t) = e−x/100 cos [κx − t] , x ≥ 0, t ≥ 0 (57)

with wave number κ > 0 and unit circular frequency. We keep the dis-
cussion at a qualitative level. The analytics is presented in Noack (2006);
Luchtenburg et al. (2009b). This wave motion is spanned by 2 POD modes
uκ

1,2 of similar energy.

u(x, t) = a1(t)u
κ
1 (x) + a2(t) uκ

2 (x). (58)

This POD is an exact representation for the chosen wave number, say κ = 1
but quickly deteriorates if κ is slightly, say 10%, of.

Suppose we want to capture a slow transient as κ increases from 1 to
1.5. A first idea may be a 4-dimensional expansion with POD mode pairs
at κ = 1 and κ = 1.5, targeting a resolution at intermediate wavenumbers.
However, superposition leads to an unphysical beat phenomena. A well
resolving POD of the transient requires a large number of modes. Exam-
ples of this type are POD modes of the cylinder wake under chirp forcing
(Bergmann et al., 2005). This large POD basis may lead to suitable models
targeting full-information control (Bergmann et al., 2005), i.e. when state
estimation is not an issue. For robust sensor-based control, the preservation
of least-order representation is a must, since each state space direction can
act as noise amplifier.

Strategies to preserve the least-order expansion (58) for variable param-
eter κ are abundantly offered in literature, mostly for the cylinder wake.
A straight-forward example is a look-up table with a ’stack’ of expansions
at different κ and κ-estimator (Lehmann et al., 2005). Double POD (see
the chapter of S. Siegel in this volume) follows a similar logic. Continuous
mode (Morzyński et al., 2007) and geodesic interpolation are continuous
interpolation variants.

Tracking mode changes is crucial if the model-based control is based on
sensors and actuators at different locations (Gerhard et al., 2003), i.e. if
POD modes communicate phase differences between input and output. In
some cases, slow variations of frequencies and wavenumbers can or shall be
ignored in the POD model, e.g. if only the near-wake region is of interest.
In this case, POD-based phase averaging techniques (Depardon et al., 2007)
can be employed.
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Modes for different frequencies Some flows display simultaneously two
or more distinct oscillatory structures at different locations. One example
is high-frequency forcing to mitigate von Kármán vortex shedding (Thiria
et al., 2006; Pastoor et al., 2008). In this case, modes based on extraction
of pure frequencies are desirable. Numerous straight-forward techniques
are available. Examples are frequency filtering, phase-averaging for natural
flow, or linear stochastic estimation (Bonnet et al., 1998) connecting the
flow to actuation signal. Corresponding 4-dimensional models for flows with
two dominant frequencies have been used for open- and closed-loop control
of wakes (Luchtenburg et al., 2010) and flow around airfoils (Luchtenburg
et al., 2009a).

General approaches Here, we discuss generalizations of POD compris-
ing multiple operating conditions. Consider, for instance, a flow actuated
at 5 different frequencies.

A POD of all operating conditions may be obtained by putting all snap-
shots in the same ’basket’, i.e. performing POD from this enlarged data set.
This approach has severe drawbacks: (1) The weighting of each operating
condition depends on the number and energy of the individual snapshots
at each operating condition. (2) There is no guaranteed minimal resolu-
tion at each operating condition. (3) The POD may show unphysical beat
phenomena (see §4.2) or the number of modes is unnecessarily large.

Sequential POD (Jørgensen et al., 2003) addresses the first two draw-
backs. Here, a minimal resolution at all operating conditions is prescribed.
In the first iteration, POD resolves the first data ensemble at prescribed
accuracy. In the second iteration, POD modes are added based on the
residual of the first expansion with respect to second data ensemble. The
new enlarged data set has prescribed accuracy at the first two operating
conditions. The procedure is continued until all operating conditions are
included.

The mentioned POD generalizations assume given ’off-line’ data. Ele-
gant ’online’ corrections of POD bases during a simulation or an experiment
are obtained with a trust-region (TR) approach (Fahl, 2000; Bergmann and
Cordier, 2008). This POD-TR approach is well aligned with the search for
least-order representations.

4.3 Modeling natural dynamics

In this section, we model the effect of unresolved fluctuations in the
Galerkin system. Periodic flows may be fully resolved by 4 to 10 modes
(Deane et al., 1991; Noack et al., 2003, 2005). Transitional flows may require
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thousands of modes for a 90% resolution of turbulent kinetic energy (TKE)
and a much smaller percentage of the dissipation. The number of modes
for fully turbulent flows may be estimated by the Kolmogorov dimension
N ∼ Re9/4 (see, e.g., Landau and Lifshitz (1987)).

The computational load for one time-step integration of a Galerkin sys-
tem (28) increases with N3 due to the quadratic term, while the load of
grid-based Navier-Stokes solvers increases only linearly with the number of
grid points. This limits the practicality of the Galerkin method to N ∼ 100
or N ∼ 1000. Robust sensor-based control design poses more severe restric-
tions on the dimension, say N ∼ 10. Hence, the Galerkin expansion with N
modes will have a non-negligible residual δu for most non-periodic flows:

u = u0 +

N∑
i=1

aiui + δu, where δu =

∞∑
i=N+1

aiui. (59)

The error δu leads to a corresponding propagator residual δfi in the
dynamical system (28)

ȧi = ci +

N∑
j=1

lij aj +

N∑
j,k=1

qijk aj ak + δfi, (60a)

δfi =

∞∑
j=N+1

lij aj +

∞∑
j,k=1

max{j,k}>N

qijk aj ak. (60b)

Model development for δfi is guided by the picture that first N modes
represent low to dominant frequencies ω � ωc. while the residual describes
large frequencies ω � ωc. The linear term of δfi in (60b) contributes with
higher frequencies in (60a) and can loosely be interpreted as noise. The
quadratic term of δfi in (60b) will show the whole frequency spectrum.

First, we estimate the average of the propagator residual from the Galerkin-
Reynolds equation (39)

0 = ci +
N∑

j=1

2qijjKj︸ ︷︷ ︸
resolved

+
∞∑

j=N+1

2qijjKj︸ ︷︷ ︸
from δfi

. (61)

The last term can be considered negligible with respect to the middle term,
assuming that the coherent structures resolved by N modes characterize the
Reynolds-stress tensor.

Secondly, we investigate the energetic effect of the propagator residual
and make the ansatz δfi = diai. From turbulence theory, we expect a
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dissipative effect of the small-scale structures, i.e. a negative growth rate
di. The modal energy equation (45) implies for (60b) following consistency
condition for the modal power aiδfi

2diKi =

∞∑
j,k=1

max{j,k}>N

qijk ai aj ak. (62)

Note that the linear term of the propagator residual does not contribute to
that balance. On the attractor, (62) defines a unique (constant) value d∞i .

Rempfer and Fasel (1994) reason that the propagator residual has a

similar effect than a ’modal eddy viscosity’ νT
i , i.e. δfi = νT

i

∑N
j=0 lνijaj ,

following the very ideas of Boussinesq, Prandtl and Smagorinsky adopted
in computational fluid mechanics. The value νT

i is obtained from the modal
TKE equation. This ansatz yields di = νT

i lνii. In fact, most authors employ a
linear term representing the nonlinear effect of small-scale turbulence. This
ansatz appears to works well for small-bandwidth dynamics, e.g. laminar
and transitional flows, without additional stabilizers.

For broadband turbulence, diverging Galerkin solutions are frequently
observed (yet rarely published). One reason can be attributed to the fact
that the nonlinearities have a stronger damping effect at high fluctuation
levels than the postulated linear term. We estimate the correct scaling by
assuming that the modal energies Ki = κiK have a constant non-negative
share κi ≥ 0 in the total TKE K. Here,

∑N
i=1 κi = 1 and K is considered

as a free parameter. The right-hand side of (62) can be approximated with
the FTT closure equation (47d). Thus, (62) becomes after division by 2κiK

di =
1

2κi

⎡⎢⎣ ∞∑
j,k=1

max{j,k}>N

αχijk
√

κiκjκk

(
1 −

3κi

κi + κj + κk

)⎤⎥⎦ K1/2.

The term in the square brackets is independent of K. Hence, this equation
implies that the growth-rate di scales with K1/2. In other words, the iden-
tified attractor value d∞i should be corrected with a corresponding factor

di = d∞i

√
K

K∞
, (63)

where K∞ is total TKE on the Navier-Stokes attractor. In practice and
without loss of generality, K can be assumed to be the resolved fluctuation
energy. A POD model of a turbulent jet (Schlegel et al., 2009) was found
to be stable when using the new scaling (63) and diverging during some
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corona bursts when assuming a constant value. Similarly, an FTT-based
eddy viscosity (Noack et al., 2010) is derived for periodic flows leading to
di ∼ K scaling. The ad-hoc reasoning leading to (63) may be subject to
numerous concerns and refinements. At minimum, a new potential direction
for future ’subgrid’ turbulence representations δfi is offered.

4.4 Modeling actuation effects

We derive the forcing term in Galerkin system (27) for volume force
actuation §4.4 and for boundary actuation §4.4. Finally (§4.4), a recipe is
given for identifying a forcing term from data.

Volume force actuation The flow may actuated with volume force. Ex-
amples are magnetohydrodynamic (MHD) forces, the buoyancy term in the
Boussinesq approximation, and fictitious forces from choosing a body-fixed
coordinate system of a moving body.

In general, the volume force can be expressed or approximated by a
modal expansion in space-dependent carrier fields gi and time-dependent
actuation amplitudes bi.,

g(x, t) =

NV∑
i=1

bi(t) gi(x). (64)

The Galerkin representation for NV = 1 is derived in §2.4. For larger
number of volume force modes NV , superposition yields

ȧi = fi(a) +

N∑
j=1

gijbj , (65)

where fi is the propagator for the unactuated dynamics and gij := (ui, gj)Ω
are the gains from the volume force modes.

Boundary actuation The flow may be manipulated with suction and
blowing at the boundary ∂Ω. Contrary to the stationary boundary condition
(3), we now impose a time-dependent velocity. A Galerkin-type expansion
with NA modes shall represent this distribution,

uBC(x, t) =

−1∑
i=−NA

ai(t) ui(x), x ∈ ∂Ω. (66)

Here, ui may characterize the exit profile of a local actuator and ai denotes
the amplitude. Straightforward POD Galerkin method will slave actuation
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and flow dynamics, i.e. the actuation is reconstructed from the Galerkin
system. One example is a Galerkin model for the Kelvin-Helmholtz vortices
excited by a stability eigenmode at the inlet (Noack et al., 2005). The
Galerkin model ’sees’ that only one actuation is consistent with the POD
and Navier-Stokes equation. The same observation applies to any Galerkin
model on subdomains with inflow and outflow.

However, a straight-forward Galerkin projection will not reveal the effect
of this forcing as free input, since only a zero-set of the whole domain is
affected. This input can be ’freed’ as follows. (66) is generalized for the
whole domain Ω by introducing incompressible actuation modes ui, i < 0,

u[−NA..−1](x, t) =

−1∑
i=−NA

ai(t) ui(x). (67)

(66) and (67) coincide on the boundary. The choice of the actuation mode
is largely a design parameter. One example is a potential vortex repre-
senting rotations of a circular cylinder (Bergmann et al., 2005). A more
general strategy is offered by Kasnakoglu et al. (2008). Now, POD retain-
ing N modes is performed on the remainder u − u[−NA..−1]. The resulting
expansion reads

u(x, t) =

N∑
i=−NA

ai(t) ui(x). (68)

Note that a0 ≡ 1, ai with i < 0 are predetermined actuation amplitudes
and ai with i > 0 represent POD mode amplitudes. (68) fulfills exactly the
incompressibility condition (GM1) and the new unsteady boundary condi-
tions for any choice of the ai, i > 0 (GM2) of §2.2.

Galerkin projection of (1b) on (68) yields

ȧi = ν

N∑
j=−NA

lνij aj +

N∑
j,k=−NA

(
qc
ijk + qp

ijk

)
aj ak −

−1∑
j=−NA

mij ȧj . (69)

The terms of dynamical system generalize (27) by a larger index set of
modes. The last new term with the mass matrix mij = (ui,uj)Ω, i > 0,
j < 0 arises from the local acceleration term and the non-orthonormality
between actuation and POD modes.

POD Galerkin models with actuation modes have been constructed for
wakes behind rotating (Graham et al., 1999; Bergmann et al., 2005), oscil-
lating circular cylinders (Noack et al., 2004), and local actuation (Weller
et al., 2009).
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Identification of a forcing term In aerodynamic flow control applica-
tions, small actuators may effect large-scale coherent structures. In princi-
ple, such actuation can be derived from a priori consideration. In practice,
a low-order Galerkin model is expressly designed to ignore the kinematics
of small-scale phenomena. For the effect on the large-scale dynamics, a
forcing term needs to be identified. The structure identification of the ana-
lytical form of this term may be based on the Navier-Stokes equation. The
parameter identification utilizes available data.

In the sequel, we outline a simple identification technique which has been
employed in a number of turbulence control studies with periodic forcing
(Luchtenburg et al., 2009a, 2010; John et al., 2010). Let fi be the propagator
of the natural dynamics and b be the amplitude of a local actuator. Then,
we postulate a forced system of the form

ȧi = fi(a) + g1ib + g2iḃ. (70)

This form can be derived from a priori considerations (Luchtenburg et al.,
2009a). The forcing term may be considered as two pseudo volume forces.
The last term with ḃ is often neglected but nevertheless important. This
term allows the actuation b to ’hit’ each mode with the right phase. The
gains can be inferred from the mode amplitudes t �→ a = aa and control
t �→ b of the reference simulation or experiment with actuation. Substituting
this actuated solution in (70), multiplication with b or ḃ, averaging, and

exploiting b ḃ = 0 for long time intervals yields the formula for the gains:

g1i = (ȧa
i − fi(aa)) b/b2, (71a)

g2i = (ȧa
i − fi(aa)) ḃ/ḃ2. (71b)

For periodic actuation b = B cos ωat, this procedure implies dynamical sys-
tem consistency with respect to the first actuated harmonics, i.e. projections
on cos ωat and sinωat.

5 Conclusions and Outlook

We have outlined the mathematical frame-work for reduced-order Galerkin
models, particularly for empirical variants based on POD. In §2, we elab-
orated a standard operating procedure. This should allow an interested
reader to build a corresponding model for his/her data. Important physics
insights for modeling and control are gained from refined statistical analyses
of the Navier-Stokes equation, as outlined in §3. In §4, we have attempted
to give a trouble shooting guide for ROM of turbulent flows and its con-
trol. This guide starts with physical mechanisms which may not be resolved
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for a particular configuration and ends with recipes which have proven to
work for many cases. The next chapter by G. Tadmor et al. will outline
applications for nonlinear laminar wake stabilization.

Reduced-order modeling is under rapidly evolving development in an
increasing number of institutes involving more and more interdisciplinary
research initiatives. Its potential is far from being exploited. The low
dimension of the Galerkin model makes it

• an ultimate testbed of the gained physical understanding,

• a link to nonlinear dynamics analyses,

• a numerically tractable framework for mathematical turbulence the-
ory,

• a necessity for many control designs, and

• an exciting door-opener to many system-reduction methods of theo-
retical physics.

Current turbulence control applications indicate a pressing need for under-
standing the nonlinearities of the turbulence cascade and actuation effects
— transcending the current possibilities of available knowledge. ROM offer
an ideal plant for these investigations (Luchtenburg et al., 2010).

As word of warning, we mention that the Galerkin method is an essen-
tially elliptic approach for often hyperbolic Navier-Stokes dynamics. The
very ansatz, the Galerkin expansion with global modes, assumes a globally
synchronized flow dynamics. This may be a good approximation of inter-
nal flows or of the neighborhood of a recirculation bubble in open flows.
On contrary, the Galerkin model is not well suited for transient shear flows
with nearly uni-directional ’hyperbolic’ convection of vortices (Noack et al.,
2005). A cure may be provided in form of local modes or coupled Galerkin
models. As alternative, vortex methods (Cottet and Koumoutsakos, 2000;
Pastoor et al., 2008) provide more robust reduced-order models. However,
the hybrid nature of vortex models challenges control design methods due
to continuous injection, removal or merging of states (vortices).
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resentation of the the natural and actuated cylinder wake. Phys. Fluids
22 (3), 034102-1. . .22, 2010.

B. Thiria, S. Goujon-Durand, and J. E. Wesfreid. The wake of a cylinder
performing rotary oscillations. J. Fluid Mech., 560:123–147, 2006.

L. Ukeiley, L. Cordier, R. Manceau, J. Delville, J. P. Bonnet, and
M. Glauser. Examination of large-scale structures in a turbulent plane
mixing layer. Part 2. Dynamical systems model. J. Fluid Mech., 441:
61–108, 2001.

M. Wei and C. W. Rowley. Low-dimensional models of a temporally evolving
free shear layer. J. Fluid Mech, 618:113–134, 2009.

J. Weller, E. Lombardi, and A. Iollo. Robust model identification of actuated
vortex wakes. Physica D, 238:416–427, 2009.


	Galerkin Method for Nonlinear Dynamics
	1 Introduction
	2 Galerkin method as foundation
	2.1 Problem formulation
	2.2 Traditional Galerkin method
	2.3 Galerkin expansion
	2.4 Galerkin system
	2.5 Non-orthogonal modes
	2.6 POD models

	3 Statistical fluid mechanics as design tool
	3.1 Principles of balance equations
	3.2 Modal balance equations
	3.3 Finite-time thermodynamics as closure model

	4 Auxiliary models as key enablers
	4.1 Challenges and modeling principles
	4.2 Generalizations of the Galerkin expansion
	Shift mode
	Deformable oscillatory modes
	Modes for different frequencies
	General approaches

	4.3 Modeling natural dynamics
	4.4 Modeling actuation effects
	Volume force actuation
	Boundary actuation
	Identification of a forcing term


	5 Conclusions and Outlook
	Bibliography




