
Feedback Flow Control in Experiment and
Simulation Using Global Neural Network

Based Models

Stefan Siegel

Department for Aeronautics, 2354 Fairchild Dr. Ste 6H27, United States Air

Force Academy, CO 80840, USA

Abstract For feedback control of complex spatio-temporally evolv-

ing flow fields, it imperative to use a global flow model for both flow

state estimation, as well as controller development. It is important

that this model correctly presents not just the natural, unforced flow

state, but also the interaction of actuators with the flow for both

open and closed loop situations. In order to achieve this, a novel

extension of POD is introduced in this chapter, which we refer to as

Double POD (DPOD). This decomposition allows the construction

of a POD basis that is valid for a variety of flow conditions, which

may be distinguished by changes in actuation, Reynolds number or

other parameters. While traditionally the velocity field has been

used as input for POD, other variables, for example the pressure

or density field, may be used as well. The mode amplitudes of the

DPOD spatial modes are then used as input for a system identifi-

cation process, the nonlinear ANN-ARX method is employed here.

The result is a dynamic model that represents both the unforced,

open loop forced and closed loop flow fields with good accuracy.

1 Introduction

One of the main purposes of flow control is the improvement of aerodynamic
characteristics of air vehicles and munitions enabling augmented mission
performance. An important area of flow control research involves the phe-
nomenon of vortex shedding in the wake behind bluff bodies where the
flow separates from the bluff body’s surface. Shedding of counter-rotating
vortices is observed in the wake of a two-dimensional cylinder above a crit-
ical Reynolds number of Recrit ≈ 47, non-dimensionalized with respect to
freestream velocity and cylinder diameter. This phenomenon is often re-
ferred to as the von Kármán vortex street, shown schematically in Figure 1.
The vortex shedding leads to a sharp rise in drag, noise and fluid-induced
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vibration. The ability to control the wake of a bluff body could be used
to reduce drag, increase mixing and heat transfer, and enhance combus-
tion. The benchmark problem of a circular cylinder wake is studied at a
Reynolds number of ReD ≈ 100, which corresponds to the range in which
the wake is laminar and two-dimensional. When active open-loop forcing
of the wake is employed, the vortices in the wake can be ”locked” to the
forcing signal. This also strengthens the vortices and consequently increases
the drag. As opposed to the open-loop approach, the goal is to control the
unsteady wake using a feedback controller in order to reduce or suppress the
vortex shedding. The feedback control law is designed using a reduced order
model of the unsteady flow. A common method used to substantially reduce
the order of the model is Proper Orthogonal Decomposition (POD). This
method is an optimal approach in that it will capture the largest amount
of the flow energy for fixed amount of modes of any decomposition of the
flow. However, a number of extensions to the POD decomposition are nec-
essary in order to derive a numerical model suitable for feedback controller
development.

Actuation Controller
Sensors

unsteady

Figure 1. Feedback Control Setup

Low dimensional model development based on POD decomposition is
a three step process, as shown in Figure 2. In the first step, data on the
flow field to be modelled is gathered using either numerical or experimental
methods. Selection of suitable data sets is a crucial step in model building
and will be discussed in detail below. In the second step, spatial modes and
their mode amplitudes are derived from the flow field data. The most often
used approach is the method of snapshots developed by Sirovich (1987).
Various methods of deciding how to precondition or cluster the data have
been suggested in literature and are discussed below.

In conjunction with the spatial POD modes, the associated mode ampli-
tudes may be calculated using an inner product or least square fit approach.
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Figure 2. Flow Chart of traditional POD modeling process (see Chapter
by Noack et al.)

To arrive at a low dimensional model, the mode set is truncated, usually
based on an energy criterion (the eigenvalues in the Karhunen-Loève system
represent twice the modal kinetic energy if POD is applied to the velocity
field). The third and final step is the development of a model for the re-
maining mode amplitudes. This is commonly achieved by a Galerkin pro-
jection on the Navier-Stokes equations, which yields a system of equations
that describes the evolution of the mode amplitudes over time. This set
of equations can then be used to develop feedback control algorithms in a
systematic fashion, or to test the performance of control algorithms against
this model. All three steps of model development described above involve
assumptions and potential problems, with many different solution proposed
in literature, which will be discussed in the following.

Figure 3 gives an overview over the newly developed DPOD-ANN-ARX
modeling approach discussed in this Chapter. The overview flow diagram
illustrates the modifications made to the traditional approach shown in
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Figure 3. Flow Chart of DPOD-ANN-ARX modeling process

Figure 2. At the input data level, transient data from both a change in
Reynolds number as well as open loop forced flow states is included. Then,
a modified POD procedure which we refer to as Double Proper Orthogonal
Decomposition (DPOD) is employed. The main benefit of this method
lies in the ability to derive spatial POD modes that cover a large range of
flow conditions with small estimation errors, for details refer to the DPOD
section in the following. Instead of the traditional Galerkin projection,
a nonlinear ARX (Auto Regressive eXternal input) system identification
method based on Artificial Neural Networks (ANN) is used in order to
develop a dynamic model of the flow. For the benchmark problem of the
circular cylinder wake, it is shown that this approach yields a numerically
stable model that is not just valid for the data used in its derivation, but
also for a range of different Reynolds numbers, different open loop forcing
conditions and, most importantly, feedback controlled flow states (Siegel
et al., 2008). Further details on the DPOD-ANN-ARX modeling approach
are included in the following subsections of this chapter, while the modeling
results as well as feedback controlled flow simulations are discussed in the
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later sections of this chaper.

2 Wake stabilization benchmark

The approach to model development discussed in this chapter can be used
with either experimental or numerical data, since it is not dependent on e.g.
solving the Navier Stokes equations inverse in time or similar processes that
cannot be performed in an experiment. However, due to the abundance
of data available from simulations, all results presented here have been ob-
tained from DNS simulations. It is worth while noting that most CFD
solvers, in particular commercially available codes, are not well suited to
time resolved simulations. This is manifest either in excessively slow calcu-
lation times, or the inability to properly resolve the dynamic flow behavior
due to artificial viscosity inherent in code, grid or both leading to nonphys-
ical simulation results. Thus, it is paramount to check the performance of
the candidate CFD solver not just for time averaged quantities like lift or
drag, but more importantly for dynamic quantities like shedding frequencies
(as done below) or even better, transient flow time scales. All numerical
simulations reported here were conducted with Cobalt Solutions COBALT
solver for direct numerical solution of the Navier-Stokes equations with sec-
ond order accuracy in time and space. A structured two-dimensional grid
with 63,700 nodes and 31,752 elements was used Figure 4. The grid ex-
tended from x

D = −16.9 to x
D = 21.1 in the x (streamwise) direction, and

|y|
D ≤ 19.4 cylinder diameters in the y (flow normal) direction. While this
size of a domain is necessary to obtain accurate CFD results, the region of
interest for feedback flow control is much smaller as indicated in Figure 4.
While truncation in the spatial domain would pose major problems for many
other model development approaches due to boundary condition issues, our
approch does not involve boundary conditions as will be described later,
and thus the truncation to a much smaller spatial domain is possible.

For validation of the computations of the unforced cylinder wake at
Re = 100, the resulting value of the mean drag coefficient, cd, was com-
pared to experimental and computational investigations reported in the lit-
erature. Experimental data reported by Oertel (1990) point to cd values
between 1.26 and 1.4. Furthermore, Min and Choi (1999) report on several
numerical studies that obtained drag coefficients between 1.34 and 1.35. The
current simulations yield cd = 1.35, which compares well with the reported
literature. Another important benchmark parameter is the non-dimensional
shedding frequency (Strouhal number, St = fD

U for the unforced cylinder
wake. Experimental results presented by Williamson (1996) point to val-
ues of St ∈ [0.167, 0.168]. The computations used in this effort result in
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Figure 4. Circular Cylinder Grid and POD domain

St = 0.163, which also compares well with the reported literature. Beyond
the unforced flow condition, cylinder displacement normal to the flow direc-
tion was used to investigate the interaction between this type of actuation
and the flow field. A typical transient forcing signal is shown in Figure 5,
where the cylinder displacement is sinusoidal in time with a frequency f
and peak amplitude A. The flow response in Figure 5 shows a lock-in be-
havior which leads to a fixed phase relationship between forcing and the
oscillating lift force after a few shedding cycles. At the beginning and end
of the forcing, the flow exhibits transient behaviour. These dynamic ad-
justment periods are a manifestation of the underlying dynamics of the flow
field, and as such contain important information for the development of a
dynamic model of the flow behavior.

As the aim is to develop an effective numerical model of the fluid dynamic
behavior of the flow when subject to various forcing inputs where lock-in
can be achieved, a number of simulations to cover different frequency and
forcing amplitudes were conducted Figure 6 shows the selected parameter
combinations, along with the boundaries beyond which lock in cannot be
achieved any more. Nine different data sets for the open loop forced cases,
were obtained using forcing amplitudes of 10, 15, 20, 25 and 30% cylinder
displacement. Some of the cases use a 5-10 % lower or higher frequency at
30% displacement, which is still within the lock-in region. Lock-in is defined
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as the flow develping a fixed phase releationship between the actuation and
the vortex shedding. The simulations indicated as squares were used as
design cases for model development, while the cases indicated as stars, are
utilized for model validation. The goal is to develop a model based on the
design cases, that still yields accurate results for the validation cases.

3 Description of transient coherent structure via

DPOD

The POD decomposition has been introduced in earlier chapters in this
book, and is used it here employing the method of snapshots introduced by
Sirovich (1987).

u(x, y, t) =

I∑
i=1

ai(t)φi(x, y). (1)

However, in all data presented in this chapter, the mean flow is never
subtracted from the snapshot set beforehand. Thus, Equation 1 will yield
the mean flow as the first mode of index i=1. This is an important require-
ment for the development of a mode bases that tracks changes in the mean
flow, as will be shown in the following sections.

3.1 Short Time POD - SPOD

In order to gather some intuitive understanding of the effect of the num-
ber of snapshots used in order to derive spatial POD modes, data sets of
a 2D CFD simulation of the circular cylinder wake at a Reynolds number
of 100 were used. The sampling interval was 1/25th or 4% of a shedding
cycle, and a maximum of four shedding cycles was available to calculate
the spatial POD modes. These four shedding cycles were obtained from
the steady state vortex shedding and identical to each other. Proper Or-
thogonal Decomposition was performed on snapshot ensembles with varying
length consisting of 2 to 100 snapshots of the flow field. This corresponds
to 0.05 to 4 shedding cycles. Figure 7 shows the mean difference between
the POD modes obtained from these snapshot ensembles compared to the
POD modes from all 100 snapshots or four shedding cycles. The first mode,
representing the mean flow, is reaching close to zero error for every integer
number of cycles. It can also be seen that the mean flow error reaches a
maximum for snapshot ensembles containing 1.5, 2.5 and further multiples
plus half shedding cycles. These maxima decrease in amplitude with in-
creasing number of shedding cycles. While the Kármán shedding modes
show the same trend of decreasing error maxima with increasing number of
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shedding cycles, they feature a periodicity of twice that of the mean flow
mode. For all modes, using a snapshot ensemble of less than one shed-
ding cycle leads to a large increase in mode error. From the error plots in
Figure 7, we conclude that exactly one shedding cycle is the smallest pos-
sible snapshot ensemble that will yield spatial POD modes comparable to
those obtained from a large number of identical shedding cycles. This can
be compared to Nyqyuists theorem that states that at least two samples
per shedding cycle are needed to avoid aliasing problems. It can also be
observed that the error minima at integer shedding cycles are very small,
demonstrating the importance of selecting the snapshot ensemble to be ex-
actly one shedding cycle in length. Inspecting the spatial distribution of
the mean flow mode, shown in Figure 8, for a very short snapshot ensemble
compared to a snapshot ensemble comprising exactly one shedding cycle, it
can be seen that the short snapshot ensemble results in a mean flow mode
that is not symmetric around the x axis, which is what would be expected
from a large snapshot ensemble (which looks like the one shown in Figure 8
top right). The snapshot ensemble consisting of exactly one shedding cycle,
however, results in a perfectly symmetric mean flow. Inspecting the 1st von
Kármán shedding mode shown in Figure 8, one can observe the same effect
of a small ensemble of a non-integer number of shedding cycles leading to an
asymmetric mode distribution. This investigation into the effect of snapshot
ensemble length demonstrates the possibility of selecting snapshot ensem-
bles of integer number of shedding cycles in length in order to obtain the
same spatial POD modes that would be obtained from snapshot ensembles
that are many shedding cycles in length. For time periodic data sets this
finding can be used to minimize the computational effort by minimizing the
snapshot ensemble size. More importantly, however, for transient data sets
which slowly change on a time scale much larger than a shedding cycle, one
can obtain spatial POD modes for each individual shedding cycle and thus
track the change in spatial modes over time. However, the steep increase
in POD modal error for non-integer numbers of shedding cycle snapshot
ensembles poses a problem for real life application of this short term POD
decomposition. In order to use a snapshot ensemble of exactly one shedding
cycle, a data set relatively finely resolved in time is needed. Additionally,
an effective method of isolating exactly one shedding cycle is required. If
either of these requirements is not met, a steep increase in error of the POD
mode is encountered.

In summary, by applying POD decomposition to snapshot ensembles of
varying length, an integer numbers of shedding cycles is needed in order
to obtain spatial POD modes that are identical to those obtained from
snapshot ensembles that are many cycles in length. Snapshot ensembles
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that are non-integer multiples of shedding cycles lead to distorted POD
modes. No useful POD modes could be obtained for snapshot ensembles
that are less than one shedding cycle in length.

Gillies (1995) and Siegel et al. (2005) have shown that for time periodic
flows, modes identical to those obtained from snapshot ensembles containing
a large number of shedding cycles can be obtained using snapshot ensembles
of small integer number of cycles, down to a minimum of one shedding cycle.
Siegel et al. (2005) demonstrate that the difference between a spatial mode
obtained from integer numbers of shedding cycles is minimal compared to
a POD decomposition obtained from a large number (in the limit infinite)
number of shedding cycles. Similar behaviour is observed in a fast Fourier
transformation (FFT). hile in an FFT the error due to non-integer numbers
of cycles can be alleviated using windowing functions, this approach does
not appear to work for POD decompositions (Siegel et al., 2005). Siegel
et al. (2005) refer to POD of only a single oscillation cycle as short time
POD or SPOD, due to its similarity to procedures like Short Time Fourier
decomposition. SPOD allows for a decomposition of time evolving flow fields
with some approximate periodicity into (k) individual events of exactly one
cycle of the dominant frequency,

u(k)(x, y, t) =

I∑
i=1

a
(k)
i φ

(k)
i (x, y). (2)

The result is a collection of K cycles in individual bins. Note that these
bins may contain a different number of samples in time, or span slightly
varying time intervals as the period of a cycle changes. However, since
SPOD yields K bins of spatial POD modes that are valid for one individual
cycle of a transient flow change, it is not as low dimensional as one would
wish: The result of SPOD is one entire mode set for each period of the flow.
It should also be noted that modes obtained from an individual cycle are
a priori not orthogonal to modes from other cycles. In fact, if the data is
completely periodic, the modes obtained from different bins are identical if
the number of snapshots is constant per cycle.

3.2 Double POD - DPOD

Building on the resulting spatial modes of a SPOD decomposition, one
could conceive the following mode construction procedure: if the modes in
two consecutive cycles vary only slightly, it should be possible to obtain
a representation of the modes of the second cycle as the corresponding
mode of the first cycle plus a small shift. This procedure, borne from the
aforementioned mean flow mode or shift mode idea, can be formalized by
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realizing that mode i of all bins (k) from the SPOD procedure can be viewed
as the input to a second POD (the bins now act similar to time above) as
shown in

u(k)(x, y) =

J∑
j=1

w
(k)
ij Φij(x, y) (3)

This leads again to an optimal representation of all SPOD main modes
i. Equation 4 summarizes the Double POD (DPOD) decomposition of the
velocity vector field u:

u(x, y, t) =

I∑
i=1

J∑
j=1

aij(t)Φij(x, y) (4)

This DPOD formulation takes the concept of the shift mode one step
further: we can now develop a shift mode, even a series of higher order
shift modes, for all main modes i by applying the POD procedure to the
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Figure 10. Transient forced DPOD spatial mode set using one shift mode
for each main mode, the first 3×2 DPOD modes are shown. Iso-contours of
streamwise velocity are shown, solid lines are positive, dashed lines negative.

POD mode sets. The resulting mode ensemble in its untruncated form has
as many main modes I as there were snapshots in the smallest SPOD bin,
and as many shift modes J as there were bins. It can then be truncated in
both i and j, leading to a mode ensemble that is IM × JM in size. We will
thus refer to the size of the truncated DPOD mode sets by indicating the
truncation indices IM × JM in the following. A pictorial representation of
the DPOD procedure is given in Figure 9.

Starting in the top left corner, the data is split into K bins and each bin
is used as an input data set for its individual POD procedure. The resulting
SPOD modes are then collected across the bins and POD is applied again
to obtain the shift modes. The resulting Eigenfunctions can be truncated
in both I and J in the same way as a regular POD decomposition. After
orthonormalization, the decomposition is again optimal in the sense of POD.
In the limit of J = 1, the original POD decomposition is recovered. While
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the different modes distinguished by the index i remain the main modes
described above, the index j identifies the transient changes of these main
modes: For J > 1, the energy optimality of the POD decomposition in
that direction leads to modes that are the optimum decomposition of a
given main mode as it evolves throughout a transient data set. If J = 2,
then modes φ1,1 and φ1,2 are similar to the mean flow and its shift mode
or mean flow mode as described by Noack et al. (2003) and Siegel et al.
(2003), respectively. Thus the modes with indices j > 1 can be referred
to as first, second and higher order shift modes that allow the POD mode
ensemble to adjust for changes in the spatial modes. We will refer to all
of these additional modes obtained by the DPOD decomposition as shift
modes, since they modify a given main mode to match a new flow state
due to either a recirculation zone length or formation length change. This
may be due to effects of forcing, a different Reynolds number, feedback or
open loop control or similar events. Thus, in the truncated DPOD mode
ensemble for each main mode, one or more shift modes may be retained
based on inspection of energy content or spatial structure of the mode.

In Figure 10, a set of DPOD modes is shown that covers both the un-
forced time periodic vortex shedding state of the circular cylinder wake, as
well as the low amplitude forced flow within the lock-in region. This mode
ensemble will thus cover not just the limit cycle, but also the influence of
forcing onto the vortex shedding process. The corresponding mode ampli-
tudes contain the entire dynamics of the flow, and can thus be used to derive
a set of equations describing the global flow dynamics for these flow states.
In the following chapter, this is achieved using a system identification tech-
nique.

4 Artificial neural network system identification to

develop a numerical plant model

With the DPOD spatial mode basis, developed in the previous section,
covering a range of both Reynolds numbers and forcing conditions, the
entire time dependent global dynamic behaviour of the flow is captured in
the corresponding mode amplitudes. Thus, the next goal is to develop a set
of equations describing the dynamic behaviour of these mode amplitudes.
These equations are needed both for development of control algorithms, as
well as for testing of these controllers. Traditionally, Galerkin projections
of various types have been used to project the mode amplitudes onto the
Navier Stokes equations. However, this approach has led to a variety of
problems which are discussed both in the introduction and the following
section, leading to the use of a different modelling approach as described in
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the following sections.
In an alternative approach to assuring model stability, the ARX (Auto

Regressive eXternal input) dynamic model structure, which is very widely
used in the system identification community, is incorporated. A salient fea-
ture of the ARX predictor is that it is inherently stable even if the dynamic
system to be modelled is unstable. This characteristic of ARX models of-
ten lends itself to successful modelling of unstable processes (Nelles, 2001).
While system identification for a circular cylinder wake is demonstrate here,
the nonlinearity of this flow is typical for a wide range of flow fields of tech-
nical interest, and thus this approach is applicable to other fluid dynamic
modeling problems as well. The mathematical decscription of the linear
ARX system indentification is as follows:

a(t) = q−d B(q−1)

D(q−1)
f(t) +

1

D(q−1)
e(t) (5)
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where a(t) is the state vector representing the POD mode amplitudes
ai(t) shown Equation 4. f(t) describes the external input, which in the
current effort is the vertical displacement of the cylinder and e(t) is the
white noise vector. For the above case, B and D are matrix polynomials in
q−1. The time delay operator is defined as

q−da(t) = a(t − d) (6)

where d is a multiple of the sampling period. The parameter matrix, θ,
and the regression vector, φ(t), are respectively defined as

θ = [dijbij ]
T (7)

φ = [a(t − 1), ...a(t − n), f(t − d), ...f(t − d − m)]T (8)

As can be seen in Equation 8, the vector φ(t) is comprised of past states
and past inputs. The ARX predictor (Ljung, 1999) may then be written as

â(t|θ) = q−dB(q−1)f(t) + [1 − D(q−1)]a(t) = φT (t)θ (9)

Equation 9 represents an algebraic relationship between the prediction,
given on the left hand side, and past inputs and states, summarized by φ(t).
The parameter matrix, θ, is determined during the estimation process. The
main advantage of the ARX predictor is that it is always stable, even when
the dynamic plant (the flow field in this case) being estimated is unstable.
This feature is of utmost importance when modelling an unstable system
such as the absolutely unstable cylinder wake flow.

The main drawback of this approach is that it is limited to modelling
of linear systems which, as described above, is insufficient for modelling of
unstable limit cycles. A general representation of nonlinear system iden-
tification, based on a hybrid ANN-ARX approach (Norgaard et al., 2003),
may be written as:

a(t|θ) = g[φ(t), θ] + e(t), (10)

where θ is the matrix containing the weights of the ANN that are esti-
mated by a back propagation algorithm using a training data set (Norgaard
et al., 2003), and g is the nonlinear mapping realized by the feed-forward
structure of the ANN.

The ANN-ARX predictor can then be expressed as

â(t|θ) = g[φ(t), θ], (11)
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The ANN-ARX algorithms used in this effort are a modification of the
toolbox developed by Norgaard et al. (2003). We performed three main
modifications to the toolbox. The first extends the toolbox for use in sim-
ulations, as opposed to one step prediction, of MIMO (multi-input, multi-
output) systems. Secondly, the implementation of the time tapped delay
system allows for the periodic sampling rate of inputs to the network. This
helps to decrease network training times and also extends the time history
of the inputs while keeping the number of inputs low. Thirdly, the network
was decoupled, meaning the modes could be trained separately for individ-
ual mode amplitudes, and compiled to one large network at the end. This
allowed for greater flexibility in training each individual mode. Although
this resulted in much larger, more complex final network, simulation times
are negligible when compared to training times. A schematic representation
of the feed-forward ANN-ARX network topology is presented in Figure 11.
After the DPOD mode amplitudes were obtained from the CFD data as
described in the previous section, a single hidden layer ANN-ARX archi-
tecture is selected. The training set comprised input-output data obtained
from CFD simulations. The model is validated for off-design cases and if
the estimation error is unacceptable, then the ANN architecture is modi-
fied. This cycle was repeated until estimation errors were acceptable for all
off-design cases.

The ANN-ARX predictor is inherently stable because, although the mod-
elling approach is nonlinear, the algebraic relationship between the predic-
tion and past states and inputs is preserved. This is extremely important
when dealing with nonlinear systems represented by PDEs like the Navier
Stokes equations, since the stability problems are more severe than in linear
systems. The ANN-ARX approach is an ideal choice when the system to
be modelled is deterministic and the signal to noise ratio (SNR) of the data
is good (Norgaard et al., 2003).

The choice of the specific artificial neural network (ANN) architecture
was based on three main design criteria. The first concerns the number of
hidden layers. This was selected as one, i.e. a single hidden layer, since it is
the simplest form that allows for a universal approximator (Cybenko, 1989)
and its effectiveness for system identification problems has been shown by
Norgaard et al. (2003). The second decision concerns the number of nodes.
If the number of nodes in the hidden layer is small, the resulting error is
unacceptable. As the number of nodes is increased, the error is reduced
at the cost of computational complexity until a number of nodes is reached
beyond which no further improvement in error is observed. The third design
criterion is the choice of the network inputs time histories and delays. Larger
sampling periods (more data inputs) allow for a more dynamical based
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network. Networks with larger time histories are more accurate because of
their ability to predict future outputs based on a better knowledge of the
past. The trade off is that training time is greatly increased with larger
input vectors. The time tapped delay technique allows for a much broader
sampling period while keeping the number of inputs low, thus improving the
training speed. For example, instead of using every single past delay input
for a certain period of time, the time tapped delay can be set to 2 and the
network will skip every other data point, thus reducing the number of inputs
by 50% while maintaining the same total length of the sampling history. The
time tapped delays for the Reynolds number input (Re), actuator input (Y)
and previous mode amplitudes (A× n) are presented in Table 1. Figure 11
represents a simple example of an ANN-ARX model.

Number of past inputs Delay Total
or outputs between time

Input to neural net inputs history
Reynolds number 1 Rx 10 10
Actuator position 4 Yx 2 8
Mode 1,1 1 Ax1,1 1 1
Mode 2,1 3 Ax2,1 8 24
Mode 3,1 3 Ax3,1 8 24
Mode 1,2 1 Ax1,2 1 1
Mode 2,2 1 Ax2,2 12 12
Mode 3,2 1 Ax3,2 12 12

Table 1. Network topology representing inputs and their time delays of the
3 × 2 DPOD-ANN-ARX model. The number of past inputs per signal and
the delay which is the number of time steps in between sampling periods
(Rx, Yx, Axn) are shown. The product of these two is the total time history.

Initially, neural networks were designed and trained for the 6 mode (3×2
DPOD) model. However, training times were very excessive, leading to the
realization that new techniques needed to be established. The network was
split into smaller sub-networks which could be trained much more efficiently.
These smaller networks can be superimposed and compiled into a larger,
overall network. Thus, many parameters exist in the design of ANN-ARX
models. The resulting ANN has the following features:

4.1 Input Layer

Two network input parameters, the normalized cylinder displacement
and the Reynolds number. In addition to these readings, in order to obtain a



Feedback Flow Control in Experiment and Simulation… 271

strong representation of the dynamics of the system, the input layer includes
past outputs of the 6 modes and past inputs for each of the two inputs
(Reynolds number and cylinder displacement) as described in the toolbox
developed by Norgaard et al. (2003), Table 1 presents the actual input
/ output time delays. The number of time delays for the past outputs
was about one shedding cycle. On the other hand, the number of time
delays for the past inputs was about half of a shedding cycle. The selection
of time delays for past inputs/outputs was based on a sensitivity study
which investigated the trade-off between estimation accuracy and network
complexity. Therefore, the final configuration of the input layer chosen
includes six mode outputs, namely, the first three main DPOD modes i =
1, j = 1; i = 2, j = 1; i = 3, j = 1 and their shift modes with a maximum of
twenty-four time delays; two inputs, the Reynolds number and the actuator
position for a maximum of 10 time delays; and one bias input. The total
number of inputs to the net is therefore 15 (see Table 1).

4.2 Hidden Layer

One hidden layer consisting of 130 neurons. The activation function in
the hidden layer neurons is the tanh function. A single bias input has been
added to the output from the hidden layer.

4.3 Output Layer

6 outputs, namely, the 6 states representing the DPOD mode amplitudes
of the 3 × 2 DPOD spatial mode basis. The output neurons have linear
activation functions.

4.4 Weighing Matrices

The weighing matrix between the input layer and the hidden layer is of
size (130× 16), whereas the weighing matrix between the hidden layer and
the output layer is of size (6× 131). These weighing matrices are initialized
randomly before training.

4.5 Training the ANN

Back propagation, based on the Levenberg-Marquardt algorithm, was
used to train the ANN using the toolbox of Norgaard et al. (2003). The
training data (21,790 time steps) is comprised of output from multiple CFD
simulations. The first portion of the training consists of open loop forced
transient simulations comprising design cases 1, 4, 5, 8, 10. The forcing
of case 10 is repeated four times, with different starting phase angles of
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0, 90, 180 and 270 degrees between the shedding of the vortices in the
wake and the actuation signal at the start of the actuation. This leads to
very different transient adjustment in the wake, which was found to be an
essential feature for network training. During these open loop actuation
simulations, the Reynolds number is fixed at Re = 100. The second portion
of the training data set is comprised of transients in Reynolds number, while
the actuation is kept at zero level. The Reynolds number transient training
data include ramping from Re = 100 to Re = 40, from Re = 100 to Re = 60
and from Re = 100 to Re = 160.

Along with the 3× 2 DPOD mode amplitudes, the Reynolds number as
well as the cylinder displacement were provided as inputs to the network.
The training procedure converged after 50 to 150 iterations depending on
which mode was being trained.

As a measure of the model quality, Figure 12 shows both the mode
amplitudes derived from the CFD simulation data, as well as the output of
the ANN-ARX model. This is one of the open loop forced cases that were
not used for model development, and the fact that there is good agreement
between model and simulation data is an indication that this model is usable
for controller development. In Siegel et al. (2008) more detailed comparison
and error estimates for this model can be found.

5 Feedback control wake stabilization results

The amplitudes of the DPOD modes were used both for feedback, as de-
scribed in the following section, as well as for evaluation of the effectiveness
of the controller. In order to be used for feedback control, the amplitudes of
the modes that were used for feedback were estimated using a least square
fit of the sensor data onto the spatial POD modes. The sensor locations,
developed by Siegel et al. (2005), were chosen to evenly cover the entire
portion of the flow of interest for control, using 35 flow sensors.

The controller development is based on a Proportional and Differential
(PD) controller. As mentioned earlier, active forcing is introduced into the
wake by displacement of the cylinder in the flow normal direction as shown
schematically in Figure 1. The full state estimator provides estimates for
all 15 DPOD amplitudes which may then be used as input to a full state
controller. Since a neural network model of the flow has been developed,
several indirect control designs can be employed. The indirect design is
very flexible and applicable in real-time for the problem at hand. Relevant
concepts include approximate pole placement, minimum variance and pre-
dictive control. The approximation is based on instantaneous linearization,
which is a popular method for control of ANN models. Following the effort
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Figure 12. Mode amplitudes aij of the first 6 DPOD modes for the off-
design case 3, forcing with f/f0 = 1.05 and A/D =0.30. This data was not
used for training of the ANN-ARX network. Lines, mode amplitudes from
the CFD simulation; dot-dash lines, mode amplitude estimation from the
ANN-ARX model.
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by Siegel et al. (2005), a similar PD feedback control strategy is employed
for the single mode feedback control law:

ycyl = Kp21a21 + Kd21
da21

dt
, (12)

Instead of directly specifying the Kp and Kd gains, these can be ex-
pressed in terms of an overall gain K and a phase advance φ for mode
i:

Kpi = Ki cos(φi), (13)

Kdi =
Ki sin(φi)

2πf
. (14)

with f being the natural vortex shedding frequency. Equation 12 refers to
the single-input closed-loop control based on feedback using an estimate of
a21. We will refer to this control law as a Single Input Single Output (SISO)
controller in the following, since only one mode is used for determining the
feedback response. The control law may be modified to enable dual-input
from two modes, and a simple example is adding proportional control of the
shift mode of the von Kármán shedding mode, a22. This control law which
essentially constitutes a multi input single output (MISO) PD controller is:

ycyl = Kp21a21 + Kd21
da21

dt
+ Kp22a22 + Kd22

da22

dt
(15)

where it is possible to substitute the proportional and differential gains in
the same fashion as for the SISO controller, with an overall amplitude gain
K and a phase shift φ for each of the two modes independently.

5.1 Single Mode Feedback - SISO

This section presents the results both of single mode feedback, as well as
multi mode feedback based on the DPOD model. The effectiveness of the
single mode feedback was evaluated by keeping the overall gain K constant
at K = 5 · 10−4, while varying the phase φ of the feedback from 0 to
360 degrees. The controller amplitude was chosen such that the overall
cylinder displacement would remain within the range of validity of model,
i.e. limiting the maximum displacement y/D < 0.3. The resulting closed
loop lift and drag force are shown in Figure 13. It can be seen that for
the range of feedback phases between about 30 and 250 degrees the drag
is increased compared to the unforced flow field, while between 250 and 30
degrees a decrease in drag is observed. The normalized lift and drag forces
for both φ = 90◦ (drag increase) and φ = 330◦ (drag decrease) is shown in
Figure 14. In both cases the wake is stabilized at its new state, with about



Feedback Flow Control in Experiment and Simulation… 275

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

Feedback Phase [deg]

Drag / D
0
 

Lift / L
0

Figure 13. Non-dimensional RMS amplitudes of the stabilized lift and drag
forces using single mode feedback (L0 and D0 are the RMS amplitudes of
the unforced flow’s lift and drag force, respectively).
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Figure 15. DPOD Mode Amplitudes for SISO feedback of a21. K21 =
5 · 10−4, φ21 = 330◦. The controller is activated at t/T = 0.

10% drag decrease for the feedback phase of 330 degrees. The DPOD mode
amplitudes for this case are shown in Figure 15. The amplitude of the mode
used for feedback, a21, is greatly reduced by the effect of feedback control.
However, the amplitude of its first shift mode, a22, is actually increased as
a result of feedback. This observation led to the implementation of multi
mode feedback, where both a21 and a22 are fed back with individual gains
K and phases φ.
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Figure 18. MISO feedback of a21 and a22, with K21 = 5 · 10−4, K22 =
3.75 · 10−4and phases φ21 = 330◦ and φ22 = 20◦.

5.2 Two Mode Feedback - MISO

Figure 16 shows a parameter scan varying the feedback phase of a22,
while keeping all other gains as well as the phase of a21 constant. Again
a range of detrimental phases exists, where the drag is compared to the
new baseline of SISO feedback with 330 degrees phase. However, for a
small range of feedback phases between φ = 310◦ and φ = 50◦, a further
reduction in drag beyond SISO control can be observed. This demonstrates
the benefit of using MISO control over SISO control. However, the detailed
analysis of the MISO control run that led to the largest reduction in drag.
Figure 17 shows that there is a lack of stabilization in this type of feedback
control. While the drag initially is decreased by more than 6% compared to
the SISO level, it is followed by an increase in drag to a stable level about
3% below the baseline. Analyzing the DPOD mode amplitudes for this case
(not shown), it turns out that feedback of a22 actually destabilizes a21 later
in the simulation.

With some fine tuning of the gains applied to a21 and a22, the flow
field can be stabilized using multi mode feedback. Figure 18 and Figures
19 demonstrate this, where the flow is stabilized at a lift fluctuation level
more than one order of magnitude smaller than the unforced flow, and
at a reduction of drag of more than 10%. However, in this situation the
fluctuating amplitude of the shift modes is increased as well not just for the
von Kármán modes, but also for the higher harmonic modes. From a flow
physics perspective, this indicates a shift of the vortex formation further
downstream as the controller becomes effective in stabilizing the near wake.
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Figure 19. DPOD Mode Amplitudes for MISO feedback. K21 = K22 =
5 · 10−4, φ21 = 330◦, φ22 = 20◦. The controller is activated at t/T = 0.
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At the same time, the actuation which remains at the cylinder location
becomes less and less efficient in controlling this remaining vortex shedding
far away from the cylinder. We demonstrate CFD results of feedback control
of the two-dimensional circular cylinder at Re = 100 based on one or two
modes of a DPOD model developed using transient data truncated to 15
Modes. The objective of the control is stabilization of the von Kármán
vortex street. Two different controllers are investigated, a Single Input
Single Output (SISO) feeding back the von Kármán mode amplitude, and a
Multi Input Single Output controller (MISO), feeding back the von Kármán
mode and its shift mode. The SISO control leads to a reduction of the
overall drag force of about 10% for the best combination of proportional and
differential gains. It is worth mentioning that all investigated SISO feedback
gains lead to a stabilized wake, which is not the case for simpler POD models
that do not include transient data. However, while the amplitude of the
von Kármán mode used for feedback is reduced, as a result of feedback, the
amplitude of its shift mode is increased. This observation leads to the use
of the MISO controller, where in addition to PD feedback with the best
combination of gains found in SISO control the shift mode, a21, is used
for feedback as well. The MIMO control is able to further reduce the drag
compared to the best SISO case temporarily by more than 6 percent, in
its stabilized state by more than 3 percent. The investigated MISO gains
so far did lead to some partial destabilization of the flow. The overall
conclusion of this investigation when compared to the results achieved by
Siegel et al. (2005) is that a DPOD model is able to greatly increase the
stability and performance of the feedback controller. This demonstrates the
importance of obtaining a model that covers the entire parameter range
that the feedback controller covers, rather than a point design type of a
model that is only valid for the time periodic uncontrolled flow. While
demonstrated for the benchmark case of a laminar circular cylinder wake,
we expect similar trend for more complex flows which we will investigate in
the future.

6 Key enablers / strategy

The focus of this chapter - as well as of this book in general - is on low dimen-
sional modeling, as opposed to control theory. This already demonstrates
that the main enabling strategy lies in in understanding and properly rep-
resenting the flow field to be controlled, rather than conceiving elaborate
control strategies. In the previous chapter, simple linear controllers were
sufficient to stabilize the flow, while at the same time a nonlinear model
was necessary to properly and accurately represent the flow physics. Thus,
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the first and foremost enabling strategy lies in accurate, global and non-
linear modeling of the flow physics, without which the results shown here
cannot be achieved.

The main idea behind the modeling approach introduced in this chap-
ter is a shift away from the Galerkin projection of data onto the Navier
Stokes equations. While this might seem counter intuitive, it resolves many
physical and mathmatical problems. As any data obtained from either nu-
merical simulations or experiments does not constitute an exact solution of
these equations, the projection process will always be fraught with peril.
For this reason, a more generic approach will have less numerical problems
in that aspect. However, as has been shown above, one can still obtain a
global model of complex flow fields, and in addition, establish fairly accu-
rate input-output type relationships between actuation, Reynolds number or
other parameters governing the flow. These input-output relationships are
very difficult to include in a Galerkin projection due to the limits on bound-
ary conditions that can be implemented. The quality of these relationships
is what ultimately determines the useability of a model for feedback flow
control controller development and testing.

6.1 Integration of Experiments, Modelling and Simulation

Beyond the use of simulation data for the purpose of deriving a numer-
ical model, simulations offer many advantages at the start of a feedback
flow control investigation. Typically, it is faster to develop a numerical grid
for a given flow geometry than for example, to design and build a wind or
water tunnel model with actuation capabilites. This makes simulations a
great tool for development of the actual experiment, for example, to inves-
tigate the performance of an actuation system without having to actually
build it (Siegel et al., 2009). On the other hand, once a physical model for
the flow field of interest is available, performing parameter studies covering
different actuation conditions and Reynolds numbers is done much faster in
an experiment than in a simulation. Especially for high Reynolds number
turbulent flow fields, the computation cost is often in the order of thousands
of CPU hours for investigating a single forcing condition, whereas a param-
eter study of actuation parameters can be achieved in a wind tunnel in a
matter of seconds to minutes. This makes experiments a preferred option
to determine for example the lock-in range for a flow under investigation.
However, experiments will always only yield very limited amounts of flow
data, as even with state of the art PIV measurement techniques at most a
two dimensional slice of the flow can be measured simultaneously. This cir-
cumstance makes experimental data of limited use when a global model of
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the flow field is to be developed. Therefore, a typical work flow would use
the experiment to determine particular flow conditions of interest, which
then can be investigated in greater detail using CFD simulations.

6.2 Applicability to Other Flow Fields

In this chapter, the applicability of the DPOD-ANN-ARX modeling ap-
proach to the benchmark problem of a two dimensional circular cylinder
wake at a Reynolds number of 100 has been shown. In this section, the
applicability of the method to more complex flows is discussed. While the
aim is to avoid unsupported speculation as much as possible, it is beneficial
to share some insight that has been gained into this issue from preliminary
investigations.

The circular cylinder wake at Re = 100 is not an entirely two dimensional
flow, as has been shown in literature for example by Williamson (1996) for
the unforced wake, or by Seidel et al. (2006) for the feedback controlled
wake. The latter investigation demonstrates how feedback control can cause
a spanwise phase shift of the vortex shedding until the two dimensional
control approach is only effective in a narrow vicinity of the two-dimensional
sensing plane that was used in this investigation. This poses the question
if the DPOD-ANN-ARX approach can be extended to three dimensional
flows. The answer is an unequivocal yes, since there is no limitation of the
DPOD decomposition to two dimensions as was pointed out in a previous
section.

As the Reynolds number of the circular cylinder flow is increased be-
yond Re ≈ 180, secondary instabilities lead to the formation of stream-
wise vortices (Williamson, 1996). While modeling these flow features will
lead to additional DPOD modes, there is no apparent obstacle in apply-
ing POD based modeling to flow fields that contain both two and three-
dimensional features, as has been show in the hybrid approach proposed
by Ma and Karniadakis (2002). Extending their work to use the DPOD
procedure introduced here, one could derive dynamic models capturing the
effect of actuation and/or changes in Reynolds number for these types of
flows. This could then be used to develop feedback controllers to suppress
the von Kármán type vortex shedding. Based on results of Cohen et al.
(2003), where feedback of the von Kármán mode only suppressed higher
order harmonic modes, there is hope that suppressing the Kármán vortex
street might eliminate the streamwise vortices as well, since they are the
result of a secondary instability that only exists in the presence of the von
Kármán vortex shedding. If this conjecture is in fact true remains to be
shown.
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At yet higher Reynolds numbers (Re > 3900), the von Kármán vortices
break down into smaller and smaller turbulent structures that ultimately
dissipate their energy into heat. These smaller structures can be quite ener-
getic and thus more and more POD modes will need to be retained in order
to model a given fraction of the overall flow energy content. This behaviour
of POD is due to the energy optimality of the procedure, and DPOD in-
herits this property from POD. As a result, both POD and DPOD models
will become inherently large for flows that break down into turbulence. If
the purpose of model development is feedback control, however, there may
not be a need to model the small turbulent eddies in order to capture the
dynamic behaviour of the large vortical structures. In the case of the circu-
lar cylinder wake, one may only be interested in modeling the von Kármán
type shedding for the reasons outlined in the previous paragraph. Thus,
an approach where the flow data is subjected to either spatial or temporal
filtering may be applied, as has been pursued by the authors with good pre-
liminary results (Siegel et al., 2007). The approach proposed in this work
removes small scale turbulent structures from the data used for POD mode
derivation while retaining the large structures (i.e. von Kármán vortices)
that are of interest for feedback controller development. This approach is
much like the use of spatial filtering in large eddy simulations employed in
state of the art CFD solvers. With this approach, one introduces a choice of
how much or how little of the smaller structures are included in the model.
Thus, one can derive models with relatively few modes that nonetheless
capture the dynamics of the flow that is relevant for feedback control. The
DPOD-ANN-ARX approach is particularly suited to this type of modeling,
since no turbulence model is required: As the entire model development is
data driven and does not include projection onto the Navier Stokes equa-
tions, no closure equations are needed. The approach can thus be used as
introduced here, with the only added step being a filtering process before
the derivation of the DPOD modes. However, more detailed investigations
into filter kernel type, size and cutoff wave length are needed.

Another approach to modeling of turbulent flows, in this case a turbulent
shear layer, has been demonstrated by Seidel et al. (2009). Instead of re-
moving small vortex structures by spatial or temporal filtering, the enabling
approach to modeling of the large vortex structures shown there is based on
using a different flow quantity altogether. By deriving POD spatial modes
from the density field, all small vortical structures are removed from the flow
field while preserving the large shear layer vortices of interest. While the
DPOD-ANN-ARX approach allows for the development of a global dynamic
model based on density, a traditional Galerkin projection is not suitable for
deriving such a model that does not even attempt to describe the velocity
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field.
An important question pertaining to the application of DPOD to flow

fields with multiple equally dominant frequencies is the selection of appro-
priate bin boundaries. In the present investigation, higher frequency content
was small in amplitude compared to the fundamental frequency of the vor-
tex shedding, and thus the lift force with a simple peak detection algorithm
was suitable for bin segmentation. If several dominant frequencies coexist,
there are different possible approaches to segmentation. Using a phase ac-
curate temporal notch filter as a preprocessing step, one may recover the
fundamental frequency and determine bin boundaries in the same fashion
as introduced in this work. Alternatively, it is conceivable to use open loop
forcing to elevate the amplitude of one of the dominant frequencies at a time,
thus allowing for discovery of the spatial flow features related to each fre-
quency using multiple SPOD procedures, one for each of the frequencies of
interest. Having outlined possible pathways of how the DPOD-ANN-ARX
approach may be applied and extended to flow fields at Reynolds number of
technical interest, the question remains how applicable this approach may be
to other flow geometries. We consider the circular cylinder wake a prototype
flow featuring separated free shear layers that develop instabilities leading
to vortex shedding. As such, there are similarities to many other flows of
technical interest that contain free shear layers, featuring both simpler and
more complex flow behavior. Examples that have been investigated by the
authors are the separated flow over a stalled airfoil, free shear layers formed
behind a D shaped cylinder, and the wake of an axisymmetric bluff body.
While we yet have to apply the DPOD-ANN-ARX approach to these flows,
we consider them promising candidates since they all feature large coherent
structures resulting from instabilities. The interaction of these instabilities
and their resulting structures with flow actuators of various kinds is of great
technical interest, both for open and closed loop flow control. DPOD-ANN-
ARX models may be used to investigate this interaction in a structured and
quantitative fashion.

In summary, this approach was developed with the intent to use the re-
sulting models for controller development in order to achieve control of the
formation of large structures caused by flow instabilities. From a technical
perspective, these types of flows are the most promising candidates for feed-
back flow control since instabilities can be influenced with relatively small
amounts of actuation energy. This is important in the context of the power
limitations inherent in state of the art of dynamic flow actuators. Our ap-
proach supports flow fields with many different modes present, and can also
accommodate multiple actuator interaction allowing for MIMO control. We
did not intend it to be used for random turbulent flows, but find that there
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are many technical applications where this limitation is of no importance.
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