
Institut P’

CNRS – Université de Poitiers – ENSMA, UPR 3346

Département Fluides, Thermique, Combustion, CEAT

Technical Report 01/2012

xAMC — a Toolkit for

Analysis, Modeling and Control

of Fluid Flows (Version 3.0)

Bernd R. Noack & Laurent Cordier

1 February 2012

43 rue de l’Aérodrome, F-86036 POITIERS Cedex, France

Abstract

This report describes a software package xAMC for analysis, modeling and control of fluid flows
with steady domains. We discuss standard operating procedures for a fairly large class of control-
oriented Galerkin models — employing snapshots or pre-existing modes. In addition, we outline
the structure and content of a corresponding software package. This package is called xAMC for
eXecute, Analyis, Modeling and Control. It shall enable an interdisciplinary distributed group of
researchers to collaborate on a single reduced-order model. A key goal is to achieve small transfer
times of ROM-related data or programs between different groups —- at most 10 minutes per
partner and transfer. The report suggests a file system and data structure for design parameters,
computational tools and the ROM. The report comes with a basic xAMC package which allows
to reproduce the Galerkin models of ?.

This 2nd edition of the 2010 report includes details about the format of the flow data and
xAMC’s internal representation of that data on different grids.

Keywords: proper orthogonal decomposition, Galerkin model, flow control

Contents

1 Introduction 1

I xAMC capabilities 2

2 Standard operating procedure for a POD Galerkin model 3
2.1 Configuration . 3
2.2 Data from the high-fidelity plant . 4
2.3 Galerkin expansion . 4
2.4 Galerkin projection . 6
2.5 Dynamical system . 6

2.5.1 Dynamical system for the expansion modes 6
2.5.2 Descriptor system for the whole phase space 7

3 An example: a cylinder wake ROM 8
3.1 Configuration . 8
3.2 Galerkin expansion . 9
3.3 Galerkin system . 10
3.4 Dynamical system . 13
3.5 Comment . 14

4 Outline of xAMC 16
4.1 Main directories . 16
4.2 Main shell script . 16
4.3 Nomenclature of files . 18

II xAMC modelling example 20

5 Installation of xAMC 21
5.1 Prerequisites for the Linux system . 21
5.2 Unpacking the xAMC package . 21
5.3 Defining the local variables . 22

5.3.1 FORTRAN compiler . 22
5.3.2 Editors and viewers . 22

6 Execution of xAMC 23
6.1 Main command . 23
6.2 Contents of the run directory . 23
6.3 Modeling steps . 24
6.4 Main results . 26

6.4.1 Galerkin expansion . 26
6.4.2 Galerkin system . 27
6.4.3 Galerkin solution . 27

7 Program descriptions 28
7.1 Plotting the grid . 28
7.2 Plotting the flow . 28
7.3 Computing the correlation matrix . 28
7.4 Solving the eigenvalue problem . 29
7.5 Assembling the POD modes . 29
7.6 Adding the shift mode . 30
7.7 Performing the Galerkin projection . 30
7.8 Creating the dynamical system . 31
7.9 Solving the dynamical system . 31
7.10 Visualizing the Galerkin solution . 32

III xAMC application guide 33

8 Changing the Galerkin model 34
8.1 Changing parameters . 34
8.2 Changing the modeling pipeline . 35
8.3 Changing the source files . 36

9 Setting up a new Galerkin model 37
9.1 Compilation . 37

9.1.1 Compilation of a single program after an xAMC execution 37
9.1.2 Compilation of all programs after xAMC execution 37
9.1.3 Compilation of all programs in a user-created run-directory 37

9.2 Galerkin expansion . 38
9.3 Galerkin projection . 38
9.4 Dynamical system . 39

10 Setting up new flow data 40
10.1 How xAMC processes flow data on various grids 40
10.2 Grid-dependent segments . 41
10.3 Flow data . 41
10.4 Recommendations for flow data formats on different grids 42

10.4.1 2-D unstructured grids . 42
10.4.2 2-D Cartesian grids . 43
10.4.3 3-D Cartesian grids . 43
10.4.4 Other grids . 43

10.5 I/O routines . 43
10.5.1 Grid . 43
10.5.2 Flow data . 44
10.5.3 Programs operating on the whole domain 44

10.6 Setting up the domain decomposition . 44

IV xAMC programming guide 46

11 Desiderata 47
11.1 Software specifications . 47
11.2 Good practices for user friendliness . 48
11.3 Good practices for programmer friendliness . 48

12 File system 50
12.1 The reduced-order modeling pipeline . 50
12.2 Tool-related files (x-files) . 52

12.2.1 Main x-files . 52
12.2.2 Auxiliary x-files . 53

12.3 Data-related files (z-files) . 54
12.3.1 Files for the flow field phase space . 54
12.3.2 Files for Galerkin phase space . 55

12.4 Process-related files (y-files) . 55

13 File contents 57
13.1 Shell scripts . 57
13.2 Parameter files . 58

13.2.1 Files for the grid . 58
13.2.2 Files for the Galerkin expansion . 59
13.2.3 Files for the Galerkin system . 61
13.2.4 Files for the dynamical system . 62

13.3 Data files . 63
13.3.1 Files related to the IBVP . 64
13.3.2 Files with the flow data . 64
13.3.3 Files for the Galerkin expansion . 65
13.3.4 Files for the Galerkin system . 65

V xAMC – future developments 67

14 Summary and outlook 68

15 Future milestones of xAMC development 69

16 Acknowledgements 70

1. Introduction

Dynamic reduced-order models (ROM) for understanding and controlling fluid flows are a rapidly
evolving area. ROM can be considered as a part of theoretical fluid dynamics (TFD). Consider-
ations of TFD determine the structure of models which incorporate data from experimental and
computational fluid dynamics.

Around 1900, vortex models were the most popular choice of ROM for about 5 decades. Vortex
models have been used to explain the geometry of the von Kármán vortex street, the evolution
of shear layers, the motion of vortex ring and many other phenomena [?]. Today, vortex models
are employed as computationally inexpensive plants for the evolution of shear flows and mixing.

Around 1950, increasing successes of stability theory lead one framework for low-order linear and
nonlinear Galerkin models. These models gained increasing popularity [?]. Successes include
explanations for onset of oscillations and various forms of transition to turbulence.

Meanwhile reduced-order modeling is dominated by empirical Galerkin models [?]. These models
post-process the increasing amount of superb experimental and numerical data for understanding
and control. Construction of control-oriented ROM often require an interdisciplinary group of
people from CFD, experiments, theoretical fluid mechanics, control theory and other fields of
mathematics and physics.

This report focuses on empirical ROM and addresses a small yet crucial aspect of numerical tasks
in ROM: the book-keeping and interface problems associated with the collaboration of different
often spatially distributed groups. We follow the UML philosophy and focus on about 80% of
the typical tasks of the pipeline from data to dynamical model. The remaining 20% of the tasks
may be performed by easy plug-ins, auxiliary programs and the like.

The execution of the ROM pipeline shall be doable by different possibly distant groups with their
own tools. The interface time, i.e. passing data from one to another group should require less than
10 minutes for each side. This requires a well documented standard operating procedure (SOP)
with an analytical pipeline, the toolbox and numerical programs the toolkit and a meticulous
order in the file system. Our corresponding endeavor is termed xAMC for ’eXecute Analysis,
Modeling and Control’. xAMC assumes a multi-author, multi-source, multi-data and multi-Linux
platform. In short, we assume a hectic, chaotic research environment of amateur programmers.
The implications of these assumptions on the programs and data will be detailed in the report.

The report has four main parts. Part I explains the toolbox, i.e. the SOP from data to the
dynamical model. This procedure is exemplified with a cylinder wake model [?]. After this part,
the reader may be able to judge if xAMC addresses his/her problem. Part II explains the execution
of this pipeline for the wake model from installation, execution and first explanation of xAMC.
This part gives the reader a hands-on feeling of xAMC. Part III explains how to apply xAMC to
construct new Galerkin models from implemented or new flow data. This gives the user the
information to apply the program to his/her new problem. The final part IV details the xAMC

programming philosophy and file sytem. This part is intendend for collaborators who want to
participate in the development. In Part V, we conclude with the next action items of xAMC

development.

Part I

xAMC capabilities

2

2. Standard operating procedure
for a POD Galerkin model

In this chapter, we outline the path from the flow configuration to a low-order dynamical system.
This path comprises the initial boundary value problem (Sec. 2.1), the required data (Sec. 2.2),
the Galerkin expansion as reduced-order representation (Sec. 2.3), the Galerkin projection as
compression of the Navier-Stokes equation (Sec. 2.4), and the dynamical system as plant for
further investigations (Sec. 2.5).

2.1 Configuration

We assume an incompressible viscous flow in a steady domain Ω. A location in this domain is
denoted by x = (x, y, z) = (x1, x2, x3) or its 2-D pendant. The time is represented by t. The
velocity and pressure fields read u = (u, v, w) = (u1, u2, u3) and p, respectively. The Newtonian
fluid is described by the density ρ and dynamic viscosity µ.

Let D and U be characteristic size and velocity scales of the configuration. Without actuation,
the flow properties are characterized by the Reynolds number Re = UD/ρµ, or, equivalently by
its reciprocal ν = 1/Re. In the sequel, we assume that all quantities are non-dimensionalized
with D, U , ρ and µ.

The flows may be manipulated with volume forces or with boundary-imposed unsteadiness, e.g.
local actuators. The volume force g(x, t) shall be approximated by an expansion of NV fields gl

and their amplitudes bl for x ∈ Ω:

g(x, t) =

NV∑

l=1

bl(t) gl(x). (2.1)

The continuity and Navier-Stokes equation read

∇ · u = 0, (2.2)

∂tu + ∇ · (u ⊗ u) = −∇p + ν△u +

NV∑

l=1

bl gl. (2.3)

The boundary-imposed unsteadiness shall be comprised by NA actuators such that the Dirichlet
boundary conditions reads at walls x ∈ ∂Ω. The resulting time-varying base-flow is approximated
by

uB(x, t) = u0(x) +
−1∑

i=−NA

ai(t) ui(x). (2.4)

The actuators may be spatially disjoint, e.g. in case of two separated acoustic actuators, or may
overlapping, e.g. in case of the superposition of different dynamics.

2.2 Data from the high-fidelity plant

We assume that we have M snapshots at times tm, m = 1, . . . , M as well as the corresponding
forcing:

um(x) := u(x, tm), m = 1, . . . , M ; (2.5)

am
l := al(tm), l = −NA, . . . ,−1, m = 1, . . . , M ; (2.6)

bm
l := bl(tm), l = 1, . . . , NV , m = 1, . . . , M. (2.7)

2.3 Galerkin expansion

Following ??, the Galerkin expansion reads

u(x, t) =

N∑

i=−NA

ai(t) ui(x). (2.8)

The mode amplitudes for the snapshots are am
l := al(tm), m = 1, . . . , M , l = −NA, . . . N .

Negative indices i < 0 correspond to pre-determined actuation modes, a vanishing index i = 0
to the stationary basic mode and positive indices i > 0 to expansion modes.

The computation of the POD modes is performed in following steps:

Snapshots: Starting point are M flow snapshots at times tm, m = 1, . . . , M .

um(x) := u(x, tm), m = 1, . . . , M. (2.9)

Subtraction of boundary-induced unsteadiness: In the next step, the actuation effect is
subtracted so that the resulting snapshots satisfy steady boundary conditions:

vm(x) := um(x) −
−1∑

i=−NA

am
i ui(x), m = 1, . . . , M. (2.10)

Here, the actuation amplitudes are denoted by am
i := ai(tm), m = 1, . . . , M , i.e. share

the same superscripts as the corresponding snapshots.

Computation of the basic mode: The basic mode absorbs the inhomogeneity of the steady
boundary condition:

u0(x) :=
1

M

M∑

m=1

vm(x) (2.11)

This basic mode coincides with the mean flow, u = u0 only if the actuation amplitudes
have vanishing mean values,

ai =
1

M

M∑

m=1

am
i = 0, i = −NA, . . . ,−1.

The resulting fluctuations

wm(x) := vm(x) − u0, m = 1, . . . , M (2.12)

fulfill homogenized boundary conditions.

Computation of the correlation matrix: The M×M correlation matrix R has the elements

Rmn :=
1

M
(wm, wn)Ω , m, n = 1, . . . , M (2.13)

Spectral analysis of the correlation matrix: This gramian matrix R is symmetric and
positive semi-definite. This implies real and non-negative eigenvalues as well as orthogonal
eigenvectors. Let

αi :=






α1
i
...

αM
i






be the ith eigenvector of the correlation matrix, i.e.

R αi = λi αi, i = 1, . . . , M. (2.14)

Without loss of generality, we assume the real eigenvalues sorted in decreasing order

λ1 ≥ λ2 ≥ . . . ≥ λM = 0

and that the eigenvectors are orthonormal

αi · αj =
M∑

m=1

αm
i αm

j = δij , i, j = 1, . . . , M.

Note the M-th eigenvalue must vanish, because M snapshots span a M − 1-dimensional
hyperplane.

Computation of the POD modes: The POD modes are given by

ui(x) :=
1√

M λi

M∑

m=1

αm
i wm(x), i = 1, . . . , N. (2.15)

Here, N ≤ M − 1 is the number of expansion modes. The POD modes are orthonormal
by construction:

(ui, uj)Ω
= δij , i, j = 1, . . . , N.

The mode amplitudes scale — not accidentally — with the corresponding eigenmodes of
the correlation matrix

am
i =

√

λi

M
αM

i

and satisfy

ai =
1

M

M∑

m=1

am
i = 0, i = 1, . . . , N ; (2.16a)

ai aj =
1

M

M∑

m=1

am
i am

j = λi δij , i, j = 1, . . . , N. (2.16b)

2.4 Galerkin projection

Projection of the expansion (2.8) on the Navier-Stokes equation (2.3) along the test functions
vi, i = 1, . . . , N yields

N∑

j=−NA

mij ȧj

︸ ︷︷ ︸

class 0

= ν
N∑

j=−NA

lνij aj +
N∑

j=−NA

l+ijaj

︸ ︷︷ ︸

class 1

+
N∑

j,k=−NA

(
qc
ijk + qp

ijk

)
aj ak

︸ ︷︷ ︸

class 2

, i = 1, . . . , N,

(2.17)
where

mij = (vi, uj)Ω
, (2.18a)

lνij = (vi,△uj)Ω
, (2.18b)

qc
ijk = (vi,∇ · (ujuk))Ω , (2.18c)

qp
ijk = (vi,−∇pjk)Ω

. (2.18d)

In case of a POD model [?], the test functions are generally identical to the POD modes , i.e.

vi = ui, i = 1, . . . , N.

In case of an expansion with stability eigenmodes [??], the test functions are generally the adjoint
eigenmodes with

(ui, vj) = δij , i, j = 1, . . . , N.

Again, the reader is asked to refer to the original literature for the details.

2.5 Dynamical system

The Galerkin system (2.17) preserves the physics, i.e. each Galerkin system term approximates a
Navier-Stokes term. The system contains several constant, linear and quadratic terms in time-
varying amplitudes t 7→ ai(t), i 6= 0. From a dynamical systems or control theory point of view,
the Galerkin system contains a large redundancy of terms, e.g. constant and linear terms of four
different sources. In the following transcriptions, we remove the this redundancy.

2.5.1 Dynamical system for the expansion modes

First, a dynamical system is derived from the Galerkin system. Equation (2.17) can be compressed
in the form:

ȧi =
N∑

j,k=−NA

q+
ijk aj ak +

NV +NA∑

l=−NA

g+
il bl, i = 1, . . . , N (2.19)

where a0 ≡ 1 and bl = ȧl for l < 0. Note that we have N equations for N + NV + 2NA

amplitudes. The control law determines NV + 2NA amplitudes,

bl =







al l ∈ {−NA, . . . ,−1}
bl l ∈ {1, . . . , NV }
ȧl−NV

l ∈ {NV + 1, . . . , NV + NA}

Closed-loop control implies

bl = gl(a1, . . . , aN), for l = −NA, . . . ,−1 or l = 1, . . . , NV + NA. (2.20)

We assume that the control law respects that the actuation mode amplitude al and its derive
ȧl, l ∈ {−NA, . . . ,−1}, are dependent quantities.

2.5.2 Descriptor system for the whole phase space

We comprise dynamics and control laws in a larger dimensional phase space N+ = N+NV +2NA:

ai =







ai i ∈ {1, . . . , N}
aN−i i ∈ {N + 1, . . . , N + NA}
ȧN+NA−i i ∈ {N + NA + 1, . . . , N + 2NA}
bi−N−2NA

i ∈ {N + 2NA + 1, . . . , N + 2NA + NV }

(2.21)

Now, (2.19) can be formulated as a descriptor system, or, equivalently, as differential-algebraic

equations (DAE):

ȧi = f+
i (a1, . . . , aN+) , i = 1, . . . , N (2.22a)

ai = f+
i (a1, . . . , ai−1, ai+1, . . . , aN) i = N + 1, . . . , N+ (2.22b)

where f+
i , i = 1, . . . , N is a polynomial of ai of second order. In many examples, the control

laws ai = f+
i , i = N + 1, . . . , N+ have a similar polynomial structure.

In the following, we drop the ‘+’ superscript. Moreover, we introduce the indicator function
zi = ±1, depending on if i specifies a differential (zi = 1) or an algebraic equation (zi = −1).
Now, (2.22) can be rewritten in the general form:

fi =

N∑

j,k=0

qijkajak =

{

ȧi if zi > 0

ai if zi < 0
. (2.23)

Note that (2.23) allows to code control laws and slaving on inertial manifolds in the same manner.
Numerically, there is no difference between both manifolds.

3. An example: a cylinder wake
ROM

In this chapter, we present an empirical Galerkin model of the cylinder wake. This model will be
computed with xAMC in Chapter 6.

3.1 Configuration

We consider the 2-D cylinder wake at Re = 100. The direct numerical simulation is performed
with a FEM of third-order accuracy in space and time. The computational domain ΩDNS is
bounded by the rectangle −5 < x < 15 and −5 < y < 5, excluding the cylinder Ωcyl =
{(x, y) : x2 + y2 ≤ 1/2}. Details can be inferred from ?. Figures 3.1 and 3.2 provide an
impression of the domain, the grid and the periodic flow. In the ROM analysis, the observation
domain Ω = ΩDNS is identical with the computational domain.

Figure 3.1: Unstructured grid for the FEM direct numerical simulation of cylinder wake.

Min=-04.998
Max= 05.027

Figure 3.2: Streamlines of a snapshot.

3.2 Galerkin expansion

The POD decomposition with 8 modes resolves the periodic DNS solution (see Fig. 3.2),

u = u0 +
8∑

i=1

aiui.

The basic mode u0 is visualized in Fig. 3.3(b), the POD modes ui, i = 1, . . . , 8 in Fig. 3.4, the
amplitude evolutions over one period ai, i = 1, . . . , 8 in Fig. 3.5, and the POD spectrum λi,
i = 1, . . . , 8 in Fig. 3.6.

(a) u1 (b) u2

Figure 3.3: Base flows: steady solution (a) and mean flow (b). The flow is visualized with
streamlines in a subdomain.

i=1

(a) u1

i=2

(b) u2

i=3

(c) u3

i=4

(d) u4

i=5

(e) u5

i=6

(f) u6

i=7

(g) u7

i=8

(h) u8

Figure 3.4: POD modes i = 1, . . . , 8

The steady solution (see Fig. 3.3(a)) is included in the Galerkin expansion via the shift mode [?]
as 9th mode (see Fig. 3.7).

0 1 2 3 4 6t

-2

-1

0

1

a1

(a) a1

0 1 2 3 4 6t

-2

-1

0

1

a2

(b) a2

0 1 2 3 4 6t

-0.4

-0.2

0.0

0.2

a3

(c) a3

0 1 2 3 4 6t

-0.4

-0.2

0.0

0.2

a4

(d) a4

0 1 2 3 4 6t

-0.2

-0.1

0.0

0.1

a5

(e) a5

0 1 2 3 4 6t

-0.2

-0.1

0.0

0.1

a6

(f) a6

0 1 2 3 4 6t

-0.06

-0.04

-0.02

0.0

0.02

0.06

a7

(g) a7

0 1 2 3 4 6t

-0.06

-0.04

-0.02

0.0

0.02

0.06

a8

(h) a8

Figure 3.5: Amplitude evolution ai, i = 1, . . . , 8 corresponding to the POD modes of Fig. 3.4

3.3 Galerkin system

We display numerical values of the Galerkin system for selected indices of the most relevant
expansion modes, namely the first harmonics i = 1, 2 and the shift mode i = 9. These expansions
are needed for a least-order Galerkin model. Table 3.1 displays the mass matrix mij and the
viscous term lνij . The mass matrix is up to numerical resolution the identity matrix. The viscous
matrix is approximately a diagonal matrix with negative values. The dissipation increases with
associated order of the harmonics.

Table 3.2 and 3.3 displays selected values of qc
ijk associated with the convective term. The

0 2 4 6 8 10 12i
-5

-4

-3

-2

-1

1

logλ i

i λi

1 2.586698
2 2.527115
3 0.091202
4 0.090478
5 0.028538
6 0.028444
7 0.001672
8 0.001669

Figure 3.6: POD spectrum. The left figure displays the range i = 1, . . . , 12 and the right table
lists the values of the employed modes.

Figure 3.7: Shift mode u9. The flow is visualized in a subdomain by streamlines.

interactions of POD modes yield values up to order O(0.01), the interaction of POD modes with
the shift mode increases the order to O(0.1) while interactions with the base flow u0 may increase
the order further to O(1). Interpretations and explanations of the coefficients are provided in
mean-field Galerkin models [??]. The pressure term is neglected in agreement with literature
starting with [?].

Table 3.1: Mass matrix (left) and viscous term (middle): numerical values for the most relevant
expansion modes i, j ∈ {1, 2, 9}. The complete list of diagonal terms of the viscous matrix is
shown right.

i j mij

1 1 1.000000
1 2 0.000000
1 9 0.000000
2 1 0.000000
2 2 1.000000
2 9 0.000000
9 1 0.000000
9 2 0.000000
9 9 1.000000

i j lνij
1 1 -2.520396
1 2 0.059919
1 9 0.001294
2 1 0.059919
2 2 -2.635341
2 9 0.001687
9 1 0.001294
9 2 0.001687
9 9 -3.119646

i j lνij
1 1 -2.520396
2 2 -2.635341
3 3 -9.416582
4 4 -9.421484
5 5 -16.123679
6 6 -16.119000
7 7 -31.647050
8 8 -31.612550
9 9 -3.119646

Table 3.2: Convective term: numerical values for the most relevant expansion modes i, j, k ∈
{1, 2, 9}.

i j k qc
ijk

1 1 1 -0.000000
1 1 2 0.000003
1 1 9 -0.018066
1 2 1 0.000003
1 2 2 0.000001
1 2 9 -0.045663
1 9 1 0.000497
1 9 2 0.113913
1 9 9 0.000002

i j k qc
ijk

2 1 1 0.000001
2 1 2 -0.000004
2 1 9 0.045832
2 2 1 -0.000008
2 2 2 0.000001
2 2 9 -0.020797
2 9 1 -0.114078
2 9 2 0.000049
2 9 9 0.000009

i j k qc
ijk

9 1 1 0.017931
9 1 2 -0.045746
9 1 9 -0.000012
9 2 1 0.045376
9 2 2 0.021237
9 2 9 0.000011
9 9 1 -0.000002
9 9 2 -0.000012
9 9 9 0.000085

Table 3.3: Convective term: numerical values for interactions of the most relevant expansion
modes i, j, k ∈ {1, 2, 9} with the base flow j or k = 0.

i j k qc
ijk

1 0 0 -0.000087
1 0 1 -0.027049
1 0 2 1.024398
1 0 9 0.000196
1 1 0 0.057408
1 2 0 0.074766
1 9 0 0.000028

i j k qc
ijk

2 0 0 0.003284
2 0 1 -0.997404
2 0 2 -0.014182
2 0 9 -0.000309
2 1 0 -0.078424
2 2 0 0.048725
2 9 0 0.000350

i j k qc
ijk

9 0 0 -0.115342
9 0 1 -0.000151
9 0 2 0.000312
9 0 9 -0.007247
9 1 0 -0.000044
9 2 0 -0.000267
9 9 0 -0.009784

Table 3.4: Dynamical system: complete list of non-vanishing numerical values of q+
ijk i, j, k ∈

{0, 1, 2, 9} and i 6= 0.

i j k q+
ijk

1 0 0 0.000011
1 1 0 0.005155
1 1 1 -0.000000
1 2 0 1.099763
1 2 1 0.000005
1 2 2 0.000001
1 9 0 0.000236
1 9 1 -0.017570
1 9 2 0.068251
1 9 9 0.000002

i j k q+
ijk

2 0 0 0.003283
2 1 0 -1.075229
2 1 1 0.000001
2 2 0 0.008189
2 2 1 -0.000012
2 2 2 0.000001
2 9 0 0.000058
2 9 1 -0.068246
2 9 2 -0.020749
2 9 9 0.000009

i j k q+
ijk

9 0 0 -0.108340
9 1 0 -0.000181
9 1 1 0.017931
9 2 0 0.000061
9 2 1 -0.000370
9 2 2 0.021237
9 9 0 -0.048227
9 9 1 -0.000015
9 9 2 -0.000000
9 9 9 0.000085

3.4 Dynamical system

Table 3.4 lists the non-vanishing dynamical system coefficients associated with a least-order
Galerkin mode. Figures 3.8, 3.9 and 3.10 display a numerical solution of the dynamic system
derived from the POD wake model. These results will be reproduced in Sec. 6.

-3

-2

-1

 0

 1

 2

 3

 0 50 100 150 200 250

a_
01

time

solution of dynamical system

"gnu_ds_ta0001.dat" using 1:2

Figure 3.8: Evolution of mode amplitude a1 of the first POD mode on t ∈ [0, 250] as predicted
by the dynamical system with N = 9. The initial condition at t = 0 is ai = 0.01δi1, i = 1, . . . , 9.

-3

-2

-1

 0

 1

 2

 3

 0 50 100 150 200 250

a_
02

time

solution of dynamical system

"gnu_ds_ta0002.dat" using 1:2

Figure 3.9: Same as figure 3.8, but for the second amplitude a2.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250

a_
09

time

solution of dynamical system

"gnu_ds_ta0009.dat" using 1:2

Figure 3.10: Same as figure 3.8, but for the shift-mode amplitude a9.

3.5 Comment

In Sec. 6, the post-transient Galerkin solution of this example is reproduced starting with a point
on the limit cycle. In order to reproduce the transients of this chapter, y3 State.dat and

y3 Time.dat should be taken from paragraph 4 and 5 of Sec. 8.1. See this and later sections
for more information.

These results used here are based on the same snapshots as in ?. However, the Galerkin projection
of this reference was based on third-order accurate differentiation and integration. The numerics
of the current xAMC version is of one order lower accuracy.

4. Outline of xAMC

This chapter provides a brief outline of xAMC file system and the processes invoked by the main
shell script xAMC. The outline shall help to understand the execution of an example ROM in
chapter 6.

4.1 Main directories

xAMC separates three categories of files in separate directories (see Fig. 4.1):

xRun is the main directory for program execution. This directory hosts the main shell script
xAMC which constructs a ROM with a single command as discussed below. It copies or
links files from the following directories.

xTools contains different tools for the execution of algorithms. Each group of tools has its own
subdirectory. Examples are listed below:

x0 GM contains programs acting on the raw data, e.g. for grid or snapshot visualization.
Note that different ROMs can be constructed from the same data, e.g. a POD- or
DMD-based Galerkin models may use the same snapshots. Moreover, each ROM will
generally require different tools. Each subdirectory contains one soft link to the flow
data.

x1 GM contains the programs for the computation of POD, DMD, etc.

x2 GM effects the Galerkin projection.

x3 DS computes the solution of the Galerkin system.

yGM contains process-related files, i.e. links the tools with the data for the creation of ROMs.
Each subdirectory contains the files for one particular ROM. One example is listed below:

Noack 2003jfm contains the recipe for creating the 9-dimensional Galerkin model of
Noack et al. ?.

zData contains the flow data, one subdirectory for each configuration. The main ingredients may
be snapshots for a POD-based ROM or stability eigenmodes for a physical ROM. zData
may be a real directory or an imagined directory representing various data locations, e.g.
a RAID server, a PC or a harddisk.

This separation between tools, processes and data is a frequently employed concept in scientific
programming. Relating to the preparation of a meal, one may consider the tools as the kitchen
utensils, the processes as the recipes, and data as the ingredients.

4.2 Main shell script

The ROM is constructed in the xRun directory by a single command, e.g.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

xRun

devKit

xAMC

run

xTools

yTools

z0_Data

yAMC.sh

x*.sh

zData

yGM

xLib

x1_GM

x2_GM

Noack_2003jfm

z0_Data

Noack_2003jfm

z0_Data

xTools

Figure 4.1: Principal (simplified) sketch of the structure of xAMC toolkit. Rounded boxes
correspond to shell scripts. The rectangular boxes correspond to directories. The subdirectories
are connected to upper-level one via lines. Files are represented by rounded rectangles. The
blue line represents a softlink to the directory indicated by the arrow. The red line reminds that
subset of the tools is copied in the run/xTools directory.

> xAMC ../yGM/Noack_2003jfm

This command invokes a number of processes:

1. A new run-directory is created in xRun.

2. The tools, e.g. x1 POD, are copied in the run-directory and saved in the run/xTools-
subdirectory.

3. The corresponding binaries, e.g. Y1 POD, are created and saved in the run/yTools-
subdirectory.

4. The process files from the yGM-subdirectory, e.g. yAMC.sh and y1 GM.dat, are copied in
the run directory (yGM/Noack 2003jfm in the considered example).

5. The flow data is made accessible from the run-directory via a soft link.

6. Now, all ROM-related files are in the run-directory. xAMC executes the master shell script
yAMC.sh copied from the yGM/Noack 2003jfm-subdirectory.

7. This master-shell script executes the necessary tools (shell scripts), e.g. one script x3 solveDS

for the Galerkin system solution.

8. Each tool-related shell script executes the binary.

9. The executable programs read the flow data and processes it corresponding to the contents
of the process files. It produces ROM-related data, e.g. the modes or the Galerkin system.
Or the executable post-processes ROM-data, e.g. the Galerkin solution from the Galerkin
system.

10. All ROM-related data are now in the run-directory. The run directory contains also all
tools (sources and binaries). Only the data is not copied but accessed via a soft-link to
save hard disk space.

4.3 Nomenclature of files

The file names generally obey following rules:

1. The suffixes follow general rules:

• ‘.f’ for a FORTRAN file,

• ‘.include’ for a FORTRAN segment,

• ‘.input’ for a FORTRAN keyboard (input) file,

• ‘.gnuplot’ for a Gnuplot script,

• ‘.sh’ for a shell script,

• ‘.dat’ for a data file, etc.

2. The prefixes of tool-, process- and data-related files start with ‘x’, ‘y’ and ‘z’ respectively.
Binary executables start with ‘Y’.

3. The number behind the first character indicates the level of an important source or data
file, i.e.

• ‘0’ for raw data, e.g. x0 plotGrid.sh;

• ‘1’ for the Galerkin expansion, i.e. kinematic compression of the data,
e.g. x1 GalerkinApproximation.sh;

• ‘2’ for the Galerkin system, i.e. dynamic compression of the Navier-Stokes equation,
e.g. x2 GalerkinProjection.sh;

• ‘3’ for the dynamical system, in which the connection to the Navier-Stokes equations
is lost, e.g. x3 solveDS.sh;

• ‘4’ ... higher levels which are not used in this report.

4. A character behind ‘x’, ‘y’ and ‘z’ indicates an auxiliary file, e.g. ‘s’ for routine segments
and ‘v’ for variable segments.

A detailed description of the nomenclature is postponed to Secs. 12 and 13.

Part II

xAMC modelling example

20

5. Installation of xAMC

This chapter describes the installation of xAMC on a Linux system. The installation is performed
in three steps:

(1) installing the freeware (see Sec. 5.1),

(2) unpacking the package (see Sec. 5.2), and

(3) specifying the FORTRAN compiler, editor and viewers (see Sec. 5.3).

5.1 Prerequisites for the Linux system

The xAMC toolkit requires

1. a text editor (e.g. xemacs, kwrite or gedit);

2. a FORTRAN compiler (e.g. gfortran or ifort);

3. a gnuplot version;

4. a graphics viewer for png-files (e.g. xv, firefox or gimp);

5. and a graphics viewer for PostScript files (e.g. gv or evince).

5.2 Unpacking the xAMC package

This report comes with a tar-file xAMC.tar.gz containing basic components of xAMC. The
command

> tar xvfz xAMC.tar.gz

yields three directories: xRun, xTools, yGM with following contents (see also Fig. 4.1).

xRun is the directory for the exection. It contains:

xAMC: the master shell script for the reproduction of ROMs.

CLEAN: a shell script which removes the changes of xAMC, e.g. deletes the run directory.

devKit: a directory which contains several small auxiliary shell scripts called by xAMC.

docu: a directory containing a documention of xAMC.

xTools provides the computational programs. It contains following directories:

xLib: subroutines for computational and visualization tasks.

x0 GM: programs acting on the raw data.

x1 GM: programs creating the Galerkin expansion.

x2 GM: programs performing the Galerkin projection.

x3 GM: programs analyzing and augmenting the Galerkin model

x3 DS: programs for the dynamical system.

yGM has a sample Galerkin model (see also Fig. 4.1):

Noack 2003jfm: is a directory reproducing the one ROM of ? (see Sec. 3). This directory
also contains the snapshots of the periodic vortex street. The inclusion of DNS data
deviates from the usual zData-link because the amount of data is small and because
the file system shall be kept simple.

5.3 Defining the local variables

5.3.1 FORTRAN compiler

The preferred FORTRAN compiler, can be specified in

xTools/xLib/x defineFortranCompiler.sh

One example is

FortranCompiler="gfortran -O3 -fbounds-check"

export FortranCompiler

This script is executed before any compilation. The provided shell script contains many unessen-
tial comment lines.

5.3.2 Editors and viewers

The preferred text editor, graphics viewer, PostScript viewer can be determined in

xTools/xLib/x defineLocalVariables.sh

For the the editor gedit, the image viewer firefox, and the PostScript viewer evince the
shell script may contain following lines:

TextEditor=gedit; export TextEditor

PSViewer=evince; export PSViewer

PNGViewer=firefox; export PNGViewer

This shell script is executed for running any executable program.

6. Execution of xAMC

This chapter describes a sample execution of xAMC for the construction of the ROM provided
in Sec. 3. This description includes the main command (Sec. 6.1), an overview of the run

directory (Sec. 6.2), and an explanation of the master shell script (Sec. 6.3).

6.1 Main command

After the installation of xAMC (Sec. 5), the construction is performed with single command:

> ./xAMC ../yGM/Noack_2003jfm_cy2u

This command creates the run directory and executes the master shell script for the ROM —
following Sec. 5. On a modern PC, this may take about one minute, mostly for the compilation
of the programs and visualization of the flows. Several result pictures for the flow, the modes,
and the Galerkin solution pop up with the selected viewers.

6.2 Contents of the run directory

The run-directory now contains about 150 files and 4 subdirectories:

xTools with the FORTRAN sources;

yTools with the executable files;

z0 Data with the soft link to the snapshot data in yGM/Noack 2003jfm/z0 Data;
and

z1 Data with the Galerkin expansion.

A detailed description is postponed to Part IV. For the moment, a listing of few items shall
suffice.

yAMC.sh is the master shell-script, executing following shell-scripts in the run directory:

x0_plotGrid.sh

x0_plotFlow.sh

x1_CorrelationMatrix.sh

x1_eigenproblemPOD.sh

x1_POD.sh

x1_GalerkinApproximation.sh

x2_GalerkinProjection.sh

x3_makeDS.sh

x3_solveDS.sh

x3_plotAmplitudes.sh

The parameters of the ROM are contained in following files of the run directory:

y0_Grid.dat

y1_Domains.dat

y0_Flows.dat

y1_Flows.dat

y1_GM.dat

y1_Modes.dat

y2_GM.dat

y2_Modes.dat

6.3 Modeling steps

The construction of the ROM is controlled by the master shell script yAMC.sh. A listing reads:

#***

#***** @task: execute AMC pipeline *******************************

#***** @dependency: has to be executed in the xAMC run directory *******

#***** @author: Bernd R. Noack *************************************

#***** @revised: 2012-01-15 Syracuse (obsolete INIT2u removed) ******

#***** @revised: 2010-08-28 Poitiers ********************************

#***** @created: 2010-04-28 Poitiers ********************************

#***

source x_defineLocalVariables.sh

mkdir z1_Data || echo "z1_Data exists!"

#***** Plot grid and first snapshot **************

./x0_plotGrid.sh

./x0_plotFlow.sh < x0_plotFlow.inputFlow0001

$PSViewer Flow.0001_S.ps

#***** Perform POD *******************************

./x1_CorrelationMatrix.sh

./x1_eigenproblemPOD.sh

./x1_POD.sh

./x0_plotFlow.sh < x0_plotFlow.inputMode0001

$PSViewer Mode.0001_S.ps

#***** Add and plot shift mode *******************

./x1_GalerkinApproximation.sh

./x0_plotFlow.sh < x0_plotFlow.inputMode0009

$PSViewer Mode.0009_S.ps

#***** Perform Galerkin projection ***************

./x2_GalerkinProjection.sh

#***** Make the dynamical system *****************

./x3_makeDS.sh

#***** Solve dynamical system ********************

./x3_solveDS.sh

./x3_plotAmplitudes.sh

In the following, we explain the actions of this shell script.

1. Initialize the local variables, like the chosen PNG viewer.

source x_defineLocalVariables.sh

mkdir z1_Data || echo "z1_Data exists!"

The z1 Data directory is created for the Galerkin expansion modes.

2. Display the grid.

./x0_plotGrid.sh

After this script, the PostScript viewer pops up with a plot of the grid.

3. Visualize one snapshot.

./x0_plotFlow.sh < x0_plotFlow.inputFlow0001

$PSViewer Flow.0001_S.ps

After these tasks, a PostScript file with the streamlines of the first snapshot is shown.
This script lists the main parameters of the Galerkin model to be constructed, e.g. the
snapshots to be used, the modes to be constructed, etc.

4. Compute the POD.

./x1_CorrelationMatrix.sh

./x1_eigenproblemPOD.sh

./x1_POD.sh

./x0_plotFlow.sh < x0_plotFlow.inputMode0001

The first three scripts perform the POD. First, the correlation matrix is computed. Then,
the eigenproblem is solved. And finally, the POD modes are assembled as linear combina-
tions of the snapshot fluctuations. In the last line, yAMC.sh visualizes the first POD mode
like the previous flow fields.

5. Add the non-POD mode(s).

./x1_GalerkinApproximation.sh

./x0_plotFlow.sh < x0_plotFlow.inputMode0009

In these lines, the shift mode is added and visualized.

6. Perform the Galerkin projection.

./x2_GalerkinProjection.sh

Here, the script produces the Galerkin system coefficients lνij and qc
ijk for i = 1, . . . 9 and

j, k = 0, . . . , 9.

7. Compute the dynamical system.

./x3_makeDS.sh

The dynamical system computes the pure constant, linear and quadratic term.

8. Compute and show the Galerkin solution.

./x3_solveDS.sh

./x3_plotSolution.sh

At the end of this process, a PDF file with the temporal evolution of the mode amplitudes
is displayed.

6.4 Main results

The xAMC command produces a Galerkin model for periodic vortex shedding. Apart from the
shown figures, following results may be inspected and compared with the corresponding data of
Sec. 3.

6.4.1 Galerkin expansion

These are contained in z1 Data and may be visualized by executing x0 plotFlow.sh and re-
sponding with the file name.

The spectrum is contained in z1 SpectrumPOD.dat.

1 2.5866981398658608

2 2.5271145550389322

3 9.12016916624641544E-002

4 9.04780322226650668E-002

5 2.85384891708289450E-002

6 2.84441544839046899E-002

7 1.67187672134170803E-003

8 1.66878202850828791E-003

6.4.2 Galerkin system

A listing of the viscous term is provided z2 ViscousTerm.dat.

1 0 9.76931251858641214E-003

1 1 -2.5203958980433834

1 2 5.99194421326098292E-002

1 3 8.13139790514311178E-004

1 4 3.16551336001615058E-003

1 5 4.22156737113055652E-002

1 6 1.85963396942649128E-002

1 7 2.05427084425675172E-003

1 8 1.26754905906375018E-003

1 9 1.29415616415176626E-003

2 0 -1.77924158874104288E-005

...

9 9 -3.1196455199655206

Each line contains i, j and lνij.

Similarly, the convective term is listed in z2 ConvectiveTerm.dat:

1 0 0 -8.70147661623209279E-005

1 0 1 -2.70492265120131983E-002

1 0 2 1.0243975091889415

...

1 0 9 1.95770821520876125E-004

1 1 0 5.74082867526624838E-002

...

1 1 9 -1.80664565670516503E-002

1 2 0 7.47659177997665181E-002

...

9 9 9 8.48331704298415507E-005

Each line contains i, j, k, and qc
ijk.

The coefficients q+
ijk are contained in y3 DS Qijk.dat following the listing format of

z2 ConvectiveTerm.dat.

6.4.3 Galerkin solution

z3 Times.dat contains the sampling times of the Galerkin solution m 7→ tm. Each line contains
m and tm.

z3 Amplitudes.dat contains the amplitude values m 7→ ai(tm). Each line has the format m,
i and ai(tm). For visualization purposes, the amplitude history of the first mode are stored in
gnu ds ta0001.dat. Similarly, ai(t), i = 2, . . . , 9 is saved.

7. Program descriptions

This chapter describes the actions of the programs employed in yAMC.sh (see Sec. 6.2) in
some detail. This includes visualization programs for the grid x0 plotGrid.sh (Sec. 7.1), for
the flow x0 plotFlow.sh (Sec. 7.2), and for the amplitudes x3 plotAmplitudes.sh (Sec.
7.10). The Galerkin expansion is constructed with x1 CorrelationMatrix.sh (Sec. 7.3),
x1 eigenproblemPOD.sh (Sec. 7.4), x1 POD.sh (Sec. 7.5), and x1 GalerkinApproximation.sh

(Sec. 7.6). The dynamical system is derived with x2 GalerkinProjection.sh (Sec. 7.7), and
x3 makeDS.sh (Sec. 7.8) and solved with x3 solveDS.sh (Sec. 7.9).

7.1 Plotting the grid

The program x0 plotGrid reads the grid from y0 Grid.dat. In fact, this file only contains
the name of the file z0 Data/Grid.dat with the nodes and vertices. This link is implied by the
mapping symbol ‘ 7→’ in Tab. 7.1. The grid visualization is shown in Grid.ps and is, or course,
grid-dependent. Tab. 7.1 summarizes the I/O.

Table 7.1: I/O for x0 plotGrid

Input: • y0 Grid.dat 7→ z0 Data/Grid.dat

Output: • Grid.ps

7.2 Plotting the flow

The program x0 plotFlow is illustrated for the first snapshot. The program asks if a snapshot
(option 1) or a mode (option 2) is to be visualized. After choosing option 1, the number m of
the snapshot is requested. m = 1 is inserted. In yAMC.sh, this user input is provided in the
keyboard file x0 plotFlow.inputFlow0001.

Thereafter, the grid is loaded from y0 Grid.dat, like in Tab. 7.1. Similarly, the name of the
mth snapshot z0 Data/Flow.0001 is found in y1 Flows.dat.

This flow is visualized with streamlines in Flow.0001 S.ps, with the x-component of the ve-
locity in Flow.0001 u.ps, and with the y-component of the velocity in Flow.0001 v.ps. The
visualization is grid-dependent. Tab. 7.2 summarizes the I/O.

7.3 Computing the correlation matrix

The tool x1 CorrelationMatrix assumes a domain decomposition in several grids. In y0 Domains.dat,
it finds a single domain z0 Data/Grid.dat, like in the previous sections.

Table 7.2: I/O for x0 plotFlow

User: • Choose between snapshots and modes
• Specify number of snapshot ‘m’ or mode ‘i’

Input: • y0 Grid.dat 7→ z0 Data/Grid.dat

• y1 Flows.dat 7→ z0 Data/Flow.0001

for choosing the first snapshot
Output: • Flow.0001 S.ps . for streamlines

• Flow.0001 u.ps . for iso-contours of u
• Flow.0001 v.ps . for iso-contours of v

First, the correlation matrices are computed on the subdomains (here only z1 CorrelationMatrix.0001)
before they are summed up for the whole domain (here: z1 CorrelationMatrix.dat). Evi-
dently, both matrices must be equal.

Tab. 7.3 summarizes the I/O.

Table 7.3: I/O for x1 CorrelationMatrix

Input: • y0 Domains.dat 7→ z0 Data/Grid.dat

• y1 Flows.dat 7→ z0 Data/Flow.0001..58
Both, M and the snapshot files, are inferred from y1 Flows.dat.

Output: • z1 CorrelationMatrix.dat

• z1 CorrelationMatrix.0001 (for subdomain)

7.4 Solving the eigenvalue problem

The program x1 eigenproblemPOD reads the number of modes N from y1 GM.dat and the
correlation matrix (2.13) from z1 CorrelationMatrix.dat. The dimension M is inferred from
the latter file.

The output is the spectrum λi, i = 1, . . . , N in z1 SpectrumPOD.dat, the snaphot mode
amplitudes ai(t m), i = 1, . . . , N , m = 1, . . . , M in z1 Amplitudes.dat, and the coefficients
of the POD modes in terms of snapshots in z1 TransformationMatrixPOD.dat. Note that
the information is truncated at mode number N < M .

Tab. 7.4 summarizes the I/O.

7.5 Assembling the POD modes

x1 POD assembles the POD modes as linear combinations of the snapshots with the input of
x1 eigenproblemPOD. It works on the whole domain as specified by y0 Grid.dat. The grid is

Table 7.4: I/O for x1 eigenproblemPOD

Input: • y1 GM.dat

• z1 CorrelationMatrix.dat

Output: • z1 SpectrumPOD.dat

• z1 Amplitudes.dat

• z1 TransformationMatrixPOD.dat

needed for the dimensions of the flow field.

Tab. 7.5 summarizes the I/O.

Table 7.5: I/O for x1 POD

Input: • y0 Grid.dat 7→ z0 Data/Grid.dat

• y1 Flows.dat 7→ z0 Data/Flow.0001..58
• y1 Modes.dat . only for the file names
• x1 TransformationMatrixPOD.dat

Output: • z1 Data/Mode.0000..8

7.6 Adding the shift mode

x1 GalerkinApproximation adds non-POD modes (here: the shift mode). It works on the
whole domain. The construction of the shift mode is specified in y1 GM.dat (see Part IV of this
report for details).

Tab. 7.6 summarizes the I/O.

Table 7.6: I/O for x1 GalerkinApproximation

Input: • y1 GM.dat

• y0 Grid.dat 7→ z0 Data/Grid.dat

• y1 Modes.dat 7→ z1 Data/Mode.0000..8
Output: • z1 Data/Mode.0009

7.7 Performing the Galerkin projection

Like x1 CorrelationMatrix, the tool x2 GalerkinProjection assumes a domain decompo-
sition in several grids.

The output consists of the mass matrix mij in z2 MassMatrix.dat1 , the viscous term lνij in
z2 ViscousTerm.dat, and the convective term qc

ijk in z2 ConvectiveTerm.dat. For each
term, analogues for subdomain number 1 with extension 0001 are saved. In this case, these
subdomain and whole domain coefficients are identical.

Tab. 7.7 summarizes the I/O.

Table 7.7: I/O for x2 GalerkinProjection

Input: • y1 GM.dat . for N
• y2 GM.dat . for Re, etc.
• y0 Domains.dat 7→ z0 Data/Grid.dat

• y1 Modes.dat 7→ z0 Data/Mode.0000..9
Output: • z2 MassMatrix.dat . (mij)

• z2 MassMatrix.0001 contribution on subdomain
• z2 ViscousTerm.dat . lνij
• z2 ViscousTerm.0001 contribution on subdomain
• z2 ConvectiveTerm.dat . qc

ijk

• z2 ConvectiveTerm.0001contribution on subdomain
◦ z2 PressureTerm.datqp

ijk, currently not used
◦ z2 PressureTerm.0001 contribution on subdomain, not used

7.8 Creating the dynamical system

The program x3 makeDS reads the number of modes NA, N from y1 GM.dat, the number of
volume forces NV and ν = 1/Re from y2 GM.dat, and the Galerkin system coefficients lνij and
qc
ijk from z2 ViscousTerm.dat and z2 ConvectiveTerm.dat, respectively. The mass-matrix

inversion, pressure-term represenation and volume-force representation is not currently included.

The output is the descriptor system (2.22) with q+
ijk in y3 DS Qijk.dat, zi in y3 Modes.dat, the

initial condition ai(t0) in y3 State.dat, and the integration parameters in y3 Times.dat. Initial
conditions and time interval are chosen to match the full plant as specified in z1 Times.dat

and z1 Amplitudes.dat.

Tab. 7.8 summarizes the I/O.

7.9 Solving the dynamical system

The program x3 solveDS reads the descriptor system of x3 makeDS and writes the solution in
z3 Times.dat and z3 Amplitudes.dat.

Tab. 7.9 summarizes the I/O.

1This should be approximately the identity matrix.

Table 7.8: I/O for x3 makeDS

Input: • y1 GM.dat . for N
• y2 GM.dat . for ν = 1/Re, NV

◦ z2 MassMatrix.dat . mij , currently not used
• z2 ViscousTerm.dat . lνij
• z2 ConvectiveTerm.dat . qc

ijk

◦ z2 PressureTerm.datqp
ijk, currently not used

Output: • y3 DS.dat

• y3 DS Qijk.dat . q+
ijk

• y3 Modes.dat . zi

• y3 State.dat .ai(t0)
• y3 Time.dat . t0, t1, ∆t, . . .

Table 7.9: I/O for x3 solveDS

Input: • y3 DS.dat . N
• y3 DS Qijk.dat . q+

ijk

• y3 Modes.dat . zi

• y3 State.dat .ai(t0)
• y3 Time.dat . t0, t1, ∆t, . . .

Output: • z3 Times.dat . sampling times t ∈ [t0, t1]
• z3 Amplitudes.dat corresponding amplitudes ai(t)

7.10 Visualizing the Galerkin solution

The program x3 plotAmplitudes reads the solution of x3 solveDS and plots the ai(t) in PNG
files and a cumulative PDF. The dimensions of the state space N and of the snapshots M ′ are
inferred from the input files.

Tab. 7.10 summarizes the I/O.

Table 7.10: I/O for x3 plotAmplitudes

Input: • z3 Times.dat] . sampling times t ∈ [t0, t1]
• z3 Amplitudes.dat corresponding amplitudes ai(t)

Output: • gnu ta000[1..9].dat . gnuplot data for ai(t)
• gnu ta000[1..9].png corresponding PNG pictures
• gnu ta.tex . LATEX-file comprising all pictures
• gnu ta.pdf . cumulative PDF with all pictures

Part III

xAMC application guide

33

8. Changing the Galerkin model

We assume that the run directory contains all source files for a ROM. In this chapter, we
describe ways of changing the ROM path without re-compiling all FORTRAN sources. One
option is changing the parameters in the process-related files as described in Sec. 8.1. Another
option is adding or omitting existing tools in the modeling pipeline defined by yAMC.sh (Sec.
8.2). A third option is changing the source files (Sec. 8.3). This chapter provides few examples
and a brief overview of these options. These examples are appetizers for detailed file content
and program descriptions in Part IV.

8.1 Changing parameters

The following list contains examples of changes in the ROM via parameter files

1. The snapshots for POD may be changed in y1 Flows.dat

2. The number of POD modes are controlled in y1 GM.dat. The file corresponding to Sec.
6 reads:

0 [N_A: number of actuation modes]

9 [N: total number of modes]

8 [N_POD: number of POD/DMD/... modes]

1 8 ! identity

9 ! initialize u_D=0

9 0 1.0 ! linear combination u_D = u_0-u_s

9 10 -1.0 ! linear combination u

9 1 8 ! orthonormalize u_D w.r.t. u_1...8

The final lines refer to operations necessary to compute the shift mode as orthonormalized
mean-field correction. For details see Sec. 13.

The parameters for a pure POD model with 8 POD modes reads

0 [N_A: number of actuation modes]

8 [N: total number of modes]

8 [N_POD: number of POD/DMD/... modes]

No instructions for non-POD modes are necessary.

The parameters for a mean-field model with 2 POD modes and one shift mode read, for
instance:

0 [N_A: number of actuation modes]

3 [N: total number of modes]

2 [N_POD: number of POD/DMD/... modes]

1 2 ! identity

3 ! initialize u_D=0

3 0 1.0 ! linear combination u_D = u_0-u_s

3 4 -1.0 ! linear combination u

3 1 2 ! orthonormalize u_D w.r.t. u_1...8

Again, the final lines refer to operations necessary to compute the shift mode as orthonor-
malized mean-field correction.

3. The Reynolds number of the Galerkin system is specified in the first line of y2 GM.dat:

100 [Re: Reynolds number]

0 [N_V: number of volume forces]

4. The initial condition of the dynamical system is specified in y3 State.dat:

1 0.01000 [a_1 = 0.01]

The listing contains only non-vanishing mode amplitudes.

5. The time integration of the dynamical system is controlled in y3 Time.dat:

0.00000 [t_0]

250.00000 [t_1]

0.00100 [dt, 1000 steps per unit]

0.10000 [dt_Show, 10 steps per unit]

0.10000 [dt_Save, 10 steps per unit]

Evidently, the first and final instant are listed in the first 2 lines.

8.2 Changing the modeling pipeline

Examples for performing new tasks in ROM are listed below.

1. The command

> ./x3_FixedPoint.sh

determines the fixed point of the dynamical system. x3 FixedPoint.f. Here, the fixed
point is specified in z3 FixedPoint.dat, like in y3 State.dat. The input and output
are specified in the header of the corresponding FORTRAN file.

2. The command

> ./x3_StabilityAnalysis.sh

effects the stability analysis of the fixed point of the dynamical system. Again, the input
and output are specified in the header of the corresponding FORTRAN file.

3. The DMD may be effected with

> ./x3_eigenproblemDMD.sh

> ./x3_DMD.sh

> ./x3_plotSpectrumDMD.sh

> ./x3_plotModesDMD.sh

4. Full versions of xAMC contain also tools for a FTT prediction [??]. See the directory
xTools/x4 FTT.

5. Future versions of xAMC allow to bypass the Galerkin projection by a model identification
[?].

8.3 Changing the source files

xAMC is designed as simple program package for Galerkin methods described in the literature.
Hence, many new modeling ideas and options require to change the source files. This is best
done in the run directory, or by developing and testing new plugins. Few examples are listed
below:

1. Development of a new subgrid turbulence model accounting for neglected modes.

2. Adding identified forcing terms to the dynamical system.

3. Adding an identified constant and linear term while keeping the quadratic term of the
Galerkin projection [?].

4. Developing the effect of new actuation modes.

5. Testing new sets of projection modes.

All these tasks are minor variations of the standard operating procedure. After convincing tests
they may later be included in the xAMC package.

9. Setting up a new Galerkin model

In this chapter, the file management related to the Galerkin model is discussed. Some changes
require the re-compilation of the sources. Options for this compilation are discussed

9.1 Compilation

In this section, the compilation of the xAMC toolbox is discussed.

9.1.1 Compilation of a single program after an xAMC execution

The script xAMC copies all required source files in the run-directory. The compilation is done in
this directory. After the compilation most source files are moved in the run/xTools-subdirectory.
Let xL Name.f be the name of a single program to be re-compiled. Here, L is a place-holder for
a number from 0 to 4, and Name represents the core program name, e.g. makeDS. Re-compilation
this program can be performed in the run/xTools-subdirectory with

> ./xL_Name_0.sh

The added token ‘ 0’ marks a compilation shell script. The executable has to be manually moved
in the proper directory with

> mv YL_Name ../yTools

9.1.2 Compilation of all programs after xAMC execution

If all programs are to be re-compiled, this is performed with following commands in this subdi-
rectory:

> cp ../z0.dat .

> ./aToolsCompile.sh

> mv Y* ../yTools

The first command makes sure that aToolsCompile finds its only input file z0.dat. Based
on the grid type specified in z0.dat, aToolsCompile decides which shell script of the format
xL Name 0.sh needs to be executed and which not. For instance, a Galerkin model for data
on a 2D unstructured grid, does not require x0 plotGrid3c for visualization of a 3D Cartesian
grid. The last commands moves the binary executables in the proper directory.

9.1.3 Compilation of all programs in a user-created run-directory

Now, we assume that no run-directory has been created. Perform following commands in the
xRun-directory

> mkdir run

> cd run

> cp ../../xTools/xLib/*.* .

> cp ../../xTools/x0_GM/*.* .

> cp ../../xTools/x1_GM/*.* .

> cp ../../xTools/x2_GM/*.* .

> cp ../../xTools/x3_GM/*.* .

> cp ../../xTools/x3_DS/*.* .

> ./aTools.sh

The first lines have obvious implications. aTools.sh creates all FORTRAN and process-related
files for a standard POD Galerkin model by a user dialogue. This implies compilation and creation
of the subdirectories xTools and yTools. Thereafter, changes of the process files or programs
may be effected. Sec. 13 provides more information for such operations.

9.2 Galerkin expansion

The Galerkin expansion is initialized in following steps:

1. Adjust xv.include, i.e. determine the maximum number (physical dimension) of actuation
modes (NAMP) and the maximum number of expansion modes (NEMP).

2. Update the parameter file y1 GM.dat, as explained in Sec. 13.2.

3. Specify the names of the modes in y1 Modes.dat. Note that the list must contain all
expansion modes, i.e. the mapping from i = −NA, . . . , N to file names. But it may also
contain auxiliary files. In the example of Sec. 6, the steady solution has been added as
N + 1th mode for the construction of the shift mode.

9.3 Galerkin projection

The Galerkin projection is initialized in following steps:

1. Adjust xv.include, i.e. determine the maximum number of volume forces NV (NVFP).

2. Update the parameter file y2 GM.dat, as explained in Sec. 13.2.

3. Specify the file names of the test functions in y2 Modes.dat for Petrov-Galerkin method.
Up to now, only the traditional Galerkin method is implemented, i.e. y2 Modes.dat is not
used.

4. Specify the file names for the volume forces in y2 Forces.dat (only if NV > 0).

9.4 Dynamical system

Determine the maximum dimension Na (NAP) of the descriptor system in xv DS.include. Note
that

Na = N + 2NA + NV

defines a lower bound for Na. Some auxiliary models, e.g. for subgrid turbulence, add additional
states to the descriptor system.

x3 makeDS.sh initializes all necessary parameter files:

1. y3 DS.dat (as umbrella),

2. y3 DS Qijk.dat with qijk,

3. y3 Modes.dat with zi,

4. y3 State.dat with ai(t0), i = 1, . . . , Na, and

5. y3 Time.date with t0, t1, ∆t etc.

See Sec. 13.2 for a detailed description.

10. Setting up new flow data

This chapter outlines the required xAMC format of flow data for modelling. The first section
(Sec. 10.1) outlines how xAMC copes with flow data on various grids. Sec. 10.2 lists the grid-
dependent segments. Sec. 10.3 specifies the data files which need to be created. Sec. 10.4
describes implemented data formats for various grids. Sec. 10.5 outlines the format of the I/O
routines for reading the grid and flow data. Sec. 10.6 explains the xAMC setup for domain
decompositions.

10.1 How xAMC processes flow data on various grids

In principle, the flow data to be modelled may be of many kinds:

1. finite-dimensional phase space, e.g. for reading of pressure culites;

2. one-dimensional, e.g. for solutions of the 1-D Ginzburg-Landau equation;

3. two-dimensional, e.g. for 2-D PIV data; and

4. three-dimensional, e.g. for a 3-D Navier-Stokes simulation of turbulence.

In case of fields, the flow may be stored on different grids. The three-dimensional data, for
instance, may be stored on an unstructured grid, a general structured grid, a Cartesian grid, or
even on a Cartesian equidistant grid.

Evidently, some parts of the xAMC toolkit have to be grid-dependent, e.g. the computation of an
inner product depends on the type of grid. The I/O of data also depends on the grid with its
dimensions. However. evidently, it is also desirable to minimize the number of the grid-dependent
variables and elements. xAMC has been designed to minimize grid dependence. Internally, the
flow is represented in a pseudo-3D manner, i.e. Nf dependent flow variables are written in an
Nx×Ny×Nz dimensional array. For 2-D data, Nz = 1. For an unstructured grid, Ny = Nz = 1.
Thus, many elementary operations, e.g. linear combinations of flow fields, are computed in a
grid-independent manner.

Only three tasks are explicitely grid-dependent:

1. I/O of the grid;

2. I/O of a single flow field; and

3. few elementary computational routines associated with the inner product and the Navier-
Stokes terms (viscous, convective and pressure).

Often, the computations are performed on a set of subdomains. Hence, segments for I/O of
subdomain must be included as well.

10.2 Grid-dependent segments

Table 10.1 shows the minimal list of grid-dependent segments. The variable segments define di-
mensions of the flow data. xv3X Index.include, for instance, contains the physical dimensions
for Nx, Ny, Nz and Nf . The token ioGrid and ioFlow refers to I/O routines for the grid and
the flow. The token Sub implies operation on the subdomain. For instance, all Galerkin modelling
operations are performed on the subdomain with the routines provide in xs3X gxCORESub.f.
The following chapters detail the contents.

Table 10.1: List of grid-dependent xAMC segments. Note that xv3X Flow.include and
xv3X FlowSub.include employ the pseudo 3-D format and a grid-independent.

segment whole domain subdomain

for variables xv3X.include Ditto
xv3X Grid.include xv3X GridSub.include

for subroutines xs3X ioGrid.f xs3X ioGridSub.f

xs3X ioFlow.f xs3X ioFlowSub.f

xs3X gxCORESub.f

It should be noted that xAMC is based on extended Fortran 77 and does not make use of dynamic
arrays. This implies that all files of Tab. 10.1 must be adapted for the data to be modelled.
The xLib directory has templates for various grid formats. The tokens 2u, 2c, and 3c indicate
segments for 2-D unstructured grids, 2-D Cartesian grids and 3-D Cartesian grids, respectively.
The shell scripts aTools[2u,2c,3c].sh copy their contents in the corresponding 3X-file.

10.3 Flow data

At minimum, four type of files need to be provided:

z0 Data/Grid.dat: This file contains the grid. The name is a suggestion.

z0 Data/Flow.XXXX: Each flow snapshot is stored in a separate file. XXXX refers to the number
of the snapshot. The nomenclature is a suggestion.

z0 Times.dat: This ASCII file contains the snapshot number and the corresponding time.

y0 Flows.dat: This file contains the complete list of snapshots.

Grid-dependent data is stored in a subdirectory z0 Data. There exist desirable file names and
file contents for that directory, but no mandatory one. More information is provided in Chapter
13.

10.4 Recommendations for flow data formats on dif-

ferent grids

In the following subsections, recommendations for flow data formats are provided for different
grids. This recommendations are obeyed in the templates of the grid-dependent routines in
xTools/xLib. The format is ultimately dictated by the I/O routines.

10.4.1 2-D unstructured grids

A sample listing of z0 Data/Grid.dat for the cylinder wake model (Sec. 3.) reads:

15838 1 1 2 ! NX, NY, NZ, NVarGrid

15. 5.

14.53125 5.

15. 4.375

14.0625 5.

....

31352 3 ! NElements, NPoints

2 4002 4003

4003 4002 4001

4001 4002 1

....

The first line contains the dimensions of the pseudo 3-D grid NX, NY, NZ, and the dimension of
the space NVarGrid=2. This line is followed by NX nodes xn, yn, n = 1, . . . ,NX, one per line.

The fact that an effectively one dimensional array (NY=NZ=1) shall describe a two-dimensional
space implies the need for connectivity information. This mesh is provided is provided thereafter
via NElements=31352 triangles characterized by NPoints=3 vertices. Each line contains the
node indices of the vertex edges. This file describes a standard 2-D unstructured grid (see
Fig. 3.1). Note that more points per triangle may be used for higher-order differentiations and
interpolations.

A typical listing of a snapshot (here: z0 Data/Flow.0001) reads:

15838 1 1 2

1.027 0.02504

1.03 0.02314

1.042 0.0178

The first line contains NX, NY, NZ and NVarFlow=2. The last number determines the number of
dependent flow variables. In the following, the 2-D velocity components un, vn are listed for all
NX grid nodes. If, for instance, the pressure is added, NVarFlow=3. Hence, NVarFlow may be
larger than NVarGrid.

10.4.2 2-D Cartesian grids

A sample listing of a typical grid in z0 Data/Grid.at is similar to the analogue in Sec. 10.4.1:

200 48 1 2 ! NX NY NZ NVarGrid

0.0

0.2

...

After the line with grid dimensions, the x values followed by the y values are listed.

A sample listing of the first snapshot in z0 Data/Flow.0001 is similar to the analogue in Sec.
10.4.1::

200 48 1 2 ! NX NY NZ NVarFlow

0.49999954375000005 0.0000000000000000

0.49971606458333340 0.0000000000000000

0.49940091041666673 0.0000000000000000

....

The velocity component is written out by

do iy=1,NZ

do iy=1,NY

do ix=1,NX

(fFlowG(ix,iy,iz,iDummy),iDummy=1,NVarFlow)

end do

end do

end do

10.4.3 3-D Cartesian grids

The recommendation of the 3-D Cartesian grid is in complete analogy to the 2-D Cartesian grids.
A large data volume may make a binary storage of flow fields desirable. In future versions of the
xAMC-toolkit, an implementation of CGNS is planned.

10.4.4 Other grids

It does not take much imagination to write down the formats for 1D grids, 2D structured grids
or 3D unstructured grids. We shall not pause to explicit these formats.

10.5 I/O routines

10.5.1 Grid

The xAMC grid interface for new data is implemented in two steps:

1. Determine the right physical dimensions in xv3X.include.

2. Write one

subroutine readGrid

in xs3X ioGrid.f which brings z0 Data/Grid.dat into the format specified by xv3X Grid.include.
There exist templates for different grids (see Sec. 10.2).

Note that the grid is stored in a common block. Only variables which change during the program
run may be included in argument lists.

10.5.2 Flow data

The xAMC interface for new flow data requires two subroutines for reading and writing the flow.

subroutine readFlow(fn,fnLength,fFlowG)

subroutine writeFlow(fn,fnLength,fFlowG)

Here fFlowG represents the flow as specified in xv3X Flow.f, fn the character*120 file name,
and fnLength the length of this file name.

10.5.3 Programs operating on the whole domain

Now, x0 plotGrid3X.sh (or grid-dependent variants thereof) will visualize the grid.

x0 plotFlow3X.sh (or grid-dependent variants thereof) will visualize the flow field.

Note that the reduced-order modelling is performed on the subdomain. This subdomain may be
identical to the whole domain, if all snapshots and modes can be stored in the RAM of the PC.

10.6 Setting up the domain decomposition

If the snapshots and modes cannot be stored in the RAM of the PC, a domain decomposition is
necessary. The domain decomposition is implemented in 7 steps:

1. Initialize the dimensions of the subdomain in xv3X.include. All snapshots on that sub-
domain must fit in the RAM.

2. Initialize y1 Domains.dat. The contents of this file is strongly data dependent. One
suggestion is the list

1 z0 Data/Grid.0001

2 z0 Data/Grid.0002

where the specified files contain the complete information. However, the number of lines
is interpreted as the number of domains and used in corresponding loops. As one rule of
thumb,

size of all snapshots/number of domains ≈ 50% of RAM

3. Write y1 Flows.dat in analogy to y0 Flows.dat. The analysis may be performed on a
subset of the original data, e.g. only the post-transient phase or every 5-th snapshot.

4. Adjust z1 Times.dat correspondingly.

5. Write one

subroutine readGridSub(iDomain)

in xv3X ioGridSub.f for reading the grid of the iDomain-th subdomain.

6. Write one

subroutine readFlowSub(iDomain,fn,fnLength,fFlowSubG)

in xv3X ioFlowSub.f for reading the flow of the iDomain-th subdomain — in complete
analogy to the corresponding routine of the whole domain.

7. The computational heart of xAMC is contained in xs3X gxCORESub.f with subroutines for
the inner product and Navier-Stokes related operators, all operating on the subdomain.
There exist grid-related templates, e.g. xs2u gxCORESub.f for the 2-D unstructured grid.
For some operations — not for standard POD Galerkin models — a routine for the inner
product on the whole domain is included. Re-visit this segment in case of necessary
adaptions.

No output routines are necessary for the grid and the flow on the subdomains. The grid does
not change during program execution and any flow (including the expansion modes) is stored on
the original domain.

Part IV

xAMC programming guide

46

11. Desiderata

The current version of the AMC toolkit is the product of many considerations for its intended
use. The side constraints are elaborated for the employed software (Sec. 11.1), for the user
friendliness (Sec. 11.2), and for the programmer friendliness (Sec. 11.3).

11.1 Software specifications

We assume that a single ROM-development is performed by several groups on autonomous Linux
PCs. Following assumptions describe the environment of the authors.

Distributed execution: Different parts of the ROM pipeline are performed by different groups
on their own PCs. Quick exchange of data and tools is key to an efficient execution.

Multi platform: Each group has their own Linux platform, e.g. Ubuntu (in France), SuseLinux
(in Germany) and RedHat (in USA).

Multi source: Each group uses their own programming tools, e.g. Fortran77, Fortran90, C++,
MatLab, an so own.

Multi applications: The same data is subjected to several different modeling strategies.

Multi data: The same tools are applied to different data, e.g. 0-D sensor data, 1-D Ginzburg-
Landau Equation as well as 2-D and 3-D flows. The data may arise from analytical
formulae, experimental sources or heavy-duty CFD simulations requiring O(1) TeraByte.

Multi idea: The platform shall open the possibility to quickly test new ideas outside the
standard operation procedure.

Law of equivalent stupidity:1 A smart solution becomes stupid if it cannot be easily com-
municated to other groups or if it is forgotten by the inventor a few months later.

The described environment practically excludes

• a makefile (each group has their own sources and compilation options);

• libraries for tasks (each group has their own programming language);

• a web-based user interface (conflict with versatility);

• a version management (CVS,...), since each group maintains their own versions.

The described environment suggests a Linux-inspired programming solution: a smart umbrella
for the execution of the whole pipeline, and many simple supporting shell scripts. Moreover,
a meticulous nomenclature and order of the file system is required so that the whole ROM
development from original data to final model can be read by all groups.

1To the best of the first author’s knowledge, the inventor of this law is Andrzej Banaszuk (UTRC).

11.2 Good practices for user friendliness

Simple reproducibility: A user should be able to perform a complete xAMC analysis with a
single command.

Documentation of programs: The programs should be documented — both in the source
files and in a separate documentation (like this report).

Documentation of data: The data should be documented. Such a description may include

1. ID: A short identifier, re-used, e.g. in the directory name Comte 2004 ml;

2. Source: e.g. Comte, 2004, LES (including order of scheme);

3. References: publications most related to the configuration;

4. Configuration: complete description of the configuration, e.g. evolution equations,
order parameters (Re, Ma, ...), domain size;

5. Grid: discretization of the domain;

6. Snapshots: sampling times and stored quantities;

7. Data format: ASCII, big endian, little endian, CGNS, ... This includes a simple
reading routine for a single snapshot.

8. Location: name of raid server, directory, ...

Comprehensibility of the tasks: The whole pipeline should be specified in a single file. The
task of a program should be clear by the file names.

Comprehensibility of the results: The produced data and figures should be easily inter-
pretable.

11.3 Good practices for programmer friendliness

The xAMC toolbox is a compromise between user and programmer friendliness. A large user
friendliness may imply many measures which are difficult to maintain by a programmer, e.g. a
graphical user interface and meticulous checking routines for the input. Programmer friendliness
should imply the following features.

Documented standard operating procedure: This implies a standard path from the data
to the model with a complete description of the analytics and possibly few alternatives.

Data readability: Small amounts of data should be saved in easily readable ASCII format.
Large amounts of data should be stored a readable binary format. Other binary formats fre-
quently lead to trouble. For instance, there exist some binary formats which are accessible
by Intel Fortran, but not by gfortran.

Documentation: The purpose, input, output and algorithms of the file should be comprehen-
sible from the source code alone. Ideally, the comment lines alone should tell the informed
researcher the algorithm.

Linux / Unified Modeling Language (UML) philosophy: The philosophy of Linux and
UML should be appreciated, e.g. an intelligent umbrella but many small stupid shell scripts
and programs.

Separate data, processes, tools and meta-tools: A general programming strategy is to
separate

• data (including raw and processed data),

• tools used for processing the data,

• processes for the execution of several tools on the data,

• and meta-tools for selecting these processes and additional tasks

as good as possible, e.g. by putting them in different main directories.

Let Mr. ASCII sort the files: We adopt the flat-file hierarchy and flat-name philosophy.
Thus, files may be easily found in few directories. A strongly hierarchical file structure is
good for the main program developer but generally bad for comprehensibility by a novice.
On the downside, the lack of a sophisticated directory implies that many files have to be
sorted by Mr. ASCII and must obey a clean nomenclature.

To some extend user and programmer friendliness share the same documentation standards.
The compromise made is the lack of a graphical user interface and other strongly PC dependent
features. The realization of the requirements mentioned in this chapter will be elaborated in
Part III.

12. File system

This chapter describes the file system of xAMC, briefly sketched in Sec. 4. In particular, the
files will be related to their role in the reduced-order modeling pipeline and to their role for the
executables. First, the reduced-order modeling process is partitioned in 5 level (Sec. 12.1) This
consideration leads to a classification of files for tool-related (Sec. 12.2), for data-related (Sec.
12.3) and for processes-related files (Sec. 12.4).

This chapter focuses on the ordering methodology behind the file system, a kind of ’structure
identification’ of the xAMC software. The next chapter discusses the content of important files.

12.1 The reduced-order modeling pipeline

volume force(s) flow data actuation mode(s)

via forces
actuation

pipeline
main

at boundary
actuation

FTT closure

system solver
Dynamical

projection
Galerkin

expansion
Galerkin

Model
identification

level 0

level 1

level 2

level 3

− flow data

− kinematic
compression

− dynamic
compression

− ergodic
level 4

approximations

− reduction to
single operating
condition

Figure 12.1: Reduced-order modeling pipeline

The reduced-order modeling process (see Sec. 2 and Fig. 12.1) consists of following levels:

Level 0 – Flow data: The starting point of the ROM is numerical or experimental flow data.
Generally, this data consists of snapshots. In case of actuation, the employed volume forces
or actuation modes need to be added. The snapshot data may be replaced / augmented
by physical modes.

Level 1 – Galerkin expansion (kinematic compression): On this level, the snapshots
are compressed to a Galerkin expansion. The flow is analyzed in a new phase space (modal
piano).

Level 2 – Galerkin system (dynamic compression): In this level, the modal phase space
is equipped with its physical propagator, the projection of the Navier-Stokes equation. It

Table 12.1: Some information flows for the construction of a POD Galerkin model without
actuation.

Level Parameter Tasks / Tools Data

0 . . . • DNS/experiment {um}
1 M • correlation matrix C = Cmn

N • POD eigenproblem λi, αm
i

i = 1, . . . , N
m = 1, . . . , M

N • POD modes ui , i = 1, . . . , N
2 Re • Galerkin projection lνij , qc

ijk

i = 1, . . . , N ,
j, k = 0, . . . , N

3 • make dynamical system q+
ijk

i = 1, . . . , N ,
j, k = 0, . . . , N

ai(0), t0, t1
i = 1, . . . , N

• solve dynamical system ai(t), t ∈ [t0, t1]
i = 1, . . . , N

should be emphasized that the resulting Galerkin system keeps track of the physical origin
of all its terms. This implies that the Reynolds number and other aspects of the flow can
be varied in the Galerkin system.

Level 3 – Dynamic system: In this level, the propagator is simplified in constant, linear and
quadratic terms for a single Reynolds number. The constant term, for instance, aggregates
the convective, viscous or pressure term. The relation to Navier-Stokes terms is lost.

Level 4 – Ergodic theory: In this level, statistical closures, like FTT [?] are employed.
These closures are not subject of this report.

Figure 12.1 illustrates this pipeline. Boundary actuation effects the Galerkin expansion (level 1)
and volume forces are required in the Galerkin projection (level 2). Model identification (see,
e.g. [??]), bypasses the Galerkin projection and leads directly to the dynamical systems level.
Identified models do not contain information of the Galerkin system level, e.g. the effect of the
Reynolds number, the effect of the pressure term, etc.

On each level, predetermined parameters of the full plant / ROM are required (structure iden-
tification) and data of that model are produced (parameter identification). ROM data of level
L is needed for the construction of level L + 1. These information flows shall be exemplified
for a POD Galerkin model without actuation (see Tab. 12.1). The construction of this model
requires 7 tasks from the production of the full-plant data to the dynamical system solution. For
the POD, M snapshots need to be selected and the order N of the POD has to be chosen. The
Reynolds number Re enters as a parameter for the Galerkin system.

From this consideration, it is natural to separate all information in three types of files:

Table 12.2: Main directories of xAMC. Directories are framed. Some file names are placeholders.

xTools

contains all tools in subdirec-
tories.

yGM

contains all ROM parameters
in subdirectories.

zData

contains all full-plant data in
subdirectories.

Example files for a subdirec-
tory x1 Tool :
• x1 Tool 0.sh

• x1 Tool.sh

• x1 Tool.f

• x1 Tool.gnuplot

Example files for a subdirec-
tory Noack 2003jfm :
• yAMC.sh

• y1 GM.dat,...
• xv[3X].include,
• plug-ins

Example files for a subdirec-
tory CFD data :
• z0 Data with snapshots
• z0 Times.dat

• z0 Amplitudes.dat

Tool-related (x-)files: These files are related to the computational algorithm, can be applied
for many ROM and for many data sources. In xAMC, the names of all tool-related files
start with the letter ’x’.

Process-related (y-)files: These items define the structure of the ROM, independent of the
data source and the details of the computational algorithms. Generally, the parameter
identification is done by the user, e.g. the choice of M snapshots or the selection of the
order N . Hence, process-related files can be considered to define a structure identification

of the ROM. The names of all process-related files start with the letter ’y’. Executable
files start with Y.

Data-related (z-)files: These files contain information about the full plant (e.g. snapshots)
or about the resulting ROM. The names of all data-related files start with the letter ’z’.
Generally, these files contain computer-generated numbers, e.g. the correlation matrix.
Data-related files can be considered to result from a parameter identification of the ROM.

x-, y-, z-files are cleanly separated in three main directories (see Fig. 4.1 and Tab. 12.2). They
are merged by the xAMC script in the run-directory.

12.2 Tool-related files (x-files)

Tools are aggregated in subdirectories, e.g. xL GM, of xTools. In xL ∗, L = 0, . . . , 4 represents
the modeling level (the lowest level in case of several tools) and ’Tool’ is a placeholder for a
descriptive name.

12.2.1 Main x-files

The subdirectory xL Tool should contain at minimum four files:

xL Tool 0.sh, a shell script which compiles xL Tool.f.

xL Tool.sh, a shell script which executes the resulting binary YL Tool, and, possibly, visual-
izes some results via a gnuplot script xL Tool.gnuplot. One example is the shell script
x1 eigenproblemPOD.sh ∈ x1 GM for the spectral analysis of the correlation matrix, the
corresponding FORTRAN program x1 eigenproblemPOD.f, and
x1 eigenproblemPOD.gnuplot for the visualization the POD eigenvalue spectrum.

xL Tool.f, a FORTRAN program. It is compiled with xL Tool 0.sh using the compiler and
compiler options specified during the xAMC installation (Sec. 5). We deliberately do not
use a makefile, because this complicates the multi-user, multi-source side constraints (Sec.
11). Every user has its own favorite FORTRAN, C++ or or other comppiler, and the run

may mix these different sources.

xL Tool.gnuplot, a script for gnuplot. This is executed with xL Tool.sh via the command

> gnuplot ./xTool/xL Tool.gnuplot

Note that the gnuplot script is expected in the subdirectory xTool. The data files for
gnuplot visualizations are generally ROM data files zL ⋆.dat or start with gnu ⋆.dat if
the data is of more temporary nature. The files gnu ⋆.dat can be deleted, since they can
always be re-generated with the appropriate tools.

12.2.2 Auxiliary x-files

The subdirectory xL Tool generally contains a number of auxiliary x-files used in xL Tool.f.
The auxiliary files are not linked to a modeling level, as a variety of variables and routines, e.g.
for input/output, are used in several levels. Following kinds of files are employed:

xv⋆.include are FORTRAN files with variable declarations, which make sure that lists of
parameters and index ranges are the same in all modules. xv ⋆.include host grid-
independent variables. xv3X ⋆.include contain flow fields.

This distinction is important, since the grid-dependent files might(!)1 have to be replaced
as one changes the type grid, e.g. from 2-D unstructured to 3-D equidistant Cartesian
type.

xs⋆.f contain FORTRAN subroutines. The prefix xs marks grid independent routines, while
xs3X the grid-dependent complement.

ns ⋆.f contains FORTRAN subroutines for matrix operations. Most routines are adopted from
? with minor variations.

gs2d PostScript.f contains FORTRAN subroutines for the generation of PostScript files, like
the streamline flow plots.

gv2d ⋆.include represent variable segments used in gs2d PostScript.f.

1This is currently the case. A later version of xAMC attempts to minimize these replacements.

Auxiliary files which are used by several tools are placed in the xLib subdirectory.

The file structure mimics features of object-oriented programming. The variable segments
xv⋆.include represent objects, and the subroutine segments xs⋆.f operators. However, we
avoid object-oriented programming, since it requires expert programmers and the desire to invest
deeply in understanding the xAMC package. In short, object-oriented programming would exclude
too many amateur programmers with valuable contributions to this effort.

12.3 Data-related files (z-files)

Data-related files contain the flow data of the full-state plant (experiment or CFD) on level 0
and parameters or coefficients of the ROM on higher levels.

12.3.1 Files for the flow field phase space

The discretized flow fields may have different characteristics. These are presently coded in two
letters in the x-files, e.g. 2u for 2-D flow on an unstructured grid.

A more general list of options reads:

Dimension: The flow fields may be 1-D, 2-D or 3-D. The dimension refers to the number of
space coordinates, not to the number of independent variables.

Grid type: The grid may be Cartesian equidistant ’e’, Cartesian ’c’, structured ’d’, or unstruc-
tured ’u’. The first three types represent increasing generalizations. For computational
reasons, it is important to discriminate between equidistant, more general Cartesian and
structured grids, because the computational algorithms for the Cartesian equidistant grid
have a much lower workload than for corresponding unstructured grids.

Flow field nodes: The flow fields may be stored in collocated, cell-centered, staggered or
many other formats. The current version of xAMC is restricted to collocated formats, since
this is the standard for experimental data and often used in CFD as well.

Single versus multi-domain: The domain may treated in a single, non-overlapping multi-
domain or overlapping multi-domain. Currently, only the first two options are implemented.

In the long-term, we target one CGNS format for all grid types. Currently, however, all 2-D
flows are stored in ASCII format and all 3-D flows in binary format. The ASCII format has
the advantage of immediate readability on all PCs at the price of 3 times more storage space
after unpacking. These price appears justifiable, since 2-D data are generally not overly storage
intensive. The 3-D data may easily require 100s of MB, i.e. the inflation by a factor 3 is generally
no option. Reading binary files of new sources is generally a pain and may require many days of
testing, installation of a new FORTRAN compiler and the like. In short, transfers of binary files
clearly violates the maximum 10 minutes interface time required in Sec. 11.

12.3.2 Files for Galerkin phase space

All ROM-related data files are saved in ASCII format and as numbered lists. For example, the
matrix (

1.3 0 2.7
0 −3.2 0

)

is saved as

1 1 1.3

1 3 2.7

2 2 -3.2

Missing elements are assumed to be zero. Saving elements in lists

1.3 0 0 -3.2 2.7 0

has severe disadvantages:

1. The order of the elements is not clear apriori. FORTRAN programmers are used to the
first index running first, while C programmers are used to the opposite order. A convention
may or may not be obeyed by the programmer. At minimum, such a convention is source
of potential errors.

2. The zeros have to be saved. This can be particularly space consuming for sparse matrices
or very sparse quadratic terms qijk of spectral Galerkin models.

3. The file cannot easily be interpreted with an ASCII file editor. It is much more pleasing to
the eyes (and the linked brain).

These disadvantages appear to justify the space for the added index numbers.

The ROM-related parameters may be vectors, matrixes or 3-tensors. They are stored in indexed
lists as discussed above.

1. 1-D fields (i, f 1, . . ., f I)

2. 2-D fields (i, j, f 1, . . ., f I)

3. 3-D fields (i, j, k, f 1, . . ., f I)

The number of elements per index I is generally 1.

12.4 Process-related files (y-files)

Each yAMC subdirectory contains 2 kinds of process related files:

yAMC.sh , the master shell script. For a pure POD Galerkin model (see Tab. 12.2), this script
reads

./x1_CorrelationMatrix.sh

./x1_eigenproblemPOD.sh

./x1_POD.sh

./x2_GalerkinProjection.sh

./x3_makeDS.sh

./x3_solveDS.sh

with self-explanative tasks of the listed shell scripts. This shell-script is considered to
belong to category y as opposed x, because the chosen tasks are tied to the target data.

y[0..4] ⋆.dat , the parameter files (left side of Tab. 12.2). The number L = 0, . . . , 4 refers
to the modeling level, at which these parameters are needed. For example, y1 GM.dat

contains the parameter N .

YL Tool are binary executables which are created from the corresponding xL Tool.f program.

13. File contents

In this chapter, we describe important files for running xAMC and for interpreting or changing the
ROM results. This includes subsets of the x-, y- and z-files, namely shell scripts (Sec. 13.1),
parameter files (Sec. 13.2), and data files (Sec. 13.3).

13.1 Shell scripts

Almost all compilation shell scripts xL Tool 0.sh share a very similar procedure:

1. First, the local variables, e.g. the FORTRAN compiler, are imported from
x defineFortanCompiler.sh.

2. The new executable is created from the source files. The shell script terminates in case
the compilation is not successful.

An edited listing of x1 eigenproblemPOD 0.sh shall serve as example:

#***

#***** @author: Bernd Noack ***

#***** @task: see x1_eigenproblemPOD.f ******************************

#***** @revised: 2012-01-14 -> Syracuse (split up of 1 in 2 files) *****

#***** @version: 2006-06-26 Poitiers ***********************************

#***

source x_defineFortranCompiler.sh

echo "Compiling x1_eigenproblemPOD ..."

$FortranCompiler x1_eigenproblemPOD.f xs_ioTERMINAL.f [...] || exit

echo "*** Fini ***"

Almost all execution shell scripts xL Tool.sh share a very similar procedure:

1. First, the local variables, e.g. the PNG viewer, are imported from
x defineLocalVariables.sh.

2. The program is executed.

3. Finally, some data may be visualized with gnuplot or another auxiliary program.

x1 eigenproblemPOD.sh is displayed as one example of such a script.

#***

#***** @author: Bernd Noack ***

#***** @task: see x1_eigenproblemPOD.f ******************************

#***** @revised: 2012-01-14 -> Syracuse (split up of 1 in 2 files) *****

#***** @version: 2006-06-26 Poitiers ***********************************

#***

source x_defineLocalVariables.sh

echo "Executing the program ..."

time ./yTools/Y1_eigenproblemPOD || exit

echo "Visualizing the results ..."

gnuplot ./xTools/x1_eigenproblemPOD.gnuplot || exit

echo "$PNGViewer gnu_SpectrumPOD.png" >> SHOW.sh

echo "*** Fini ***"

echo ">>> See figure in last line of << SHOW.sh >>:"

tail -1 SHOW.sh

13.2 Parameter files

We attempt to list the files in a form, which allows an easy link with the analytics of Sec. 2.

13.2.1 Files for the grid

Whole domain . y0 Grid.dat

This file contains the name of the grid for the whole domain. A sample listing reads:

z0_Data/Grid.dat

This grid is loaded by subroutine readGrid and used by tools operating on the whole
domain or on single snapshots. Examples are:

• x0 plotGrid;

• x0 plotFlow;

• x1 POD;

• x1 GalerkinApproximation.

Subdomain . y1 Domains.dat

This file contains the names of the grids for the subdomains. A sample listing reads:

1 z0_Data/Grid.0001

2 z0_Data/Grid.0002

...

This grid is loaded by subroutine readGridSub and used by tools operating on all snapshots
or all modes simultaneously. Examples are:

• x1 CorrelationMatrixSub;

• x2 GalerkinProjectionSub.

13.2.2 Files for the Galerkin expansion

Eq. (2.8), e.g. NA, N . y1 GM.dat

This file controls the dimensions of the Galerkin expansion and the construction of the
modes. A sample listing for the Galerkin model of ? with 1 actuation mode, 1 shift mode
and 2 POD modes reads:

1 [N_A: number of actuation modes]

3 [N: total number of modes]

2 [N_POD: number of POD/DMD/... modes]

1 2 ! identity

3 ! initialize u_D=0

3 0 1.0 ! linear combination u_D = u_0-u_s

3 4 -1.0 ! linear combination u

3 1 2 ! orthonormalize u_D w.r.t. u_1...2

NA and N are specified in the first and second line, respectively. The third line determines
the number of POD (or DMD) modes NPOD ≤ N .

The following lines contain the recipes according to which non-empirical modes shall be
constructed. Lines with

imin, imax ! identity

describe the range of modes i ∈ [imin, imax] which have been already determined, generally
the empirical POD or DMD modes. These modes are loaded in the program. A line of the
format

i ! initialize

implies that the i-th mode is zero-ed ui ≡ 0.

A line of the format

i j α ! linear combination ...

implies that α times uj is added to the ui.

The line

i j k ! orthonormalize ...

implies that ui is orthonormalized with respect to ul, l = j, . . . , k.

The indices of the modes refer to modes mentioned in y1 Modes.dat. These indices may
be out of the range of Galerkin expansion i ∈ [−NA, N]. For instance, the construction
of the shift mode uses the steady solution a (temporary) N + 1 mode.

y1 GM.dat has to be created by the user. For a standard POD model, aToolsInitGM
creates this file after a short user dialogue. y1 GM.dat is read in subroutine readYGA by
following programs:

• x0 plotFlows: N is needed for the visualization of all modes.

• x1 CorrelationMatrixSub: Na is needed to subtract the contributions of the ac-
tuation modes.

• x1 eigenproblemPOD: N is needed for the output. Only the first N POD eigenvalues
and eigenvectors are written out.

• x1 GalerkinApproximation: In this tool, non-POD modes, like the shift mode, are
added as specified.

• x1 GalerkinProjection: Na and N are needed for computation of the right coef-
ficients and for the output.

A complete listing of these programs can be obtained with

> grep "readYGA" x*.f

M . y1 Flows.dat

This file contains the list of snapshots used to compute the empirical modes,

m 7→ file name of snapshot.

The number of employed snapshots may be a subset of the number of available snapshots.
This file is used to determine M for POD, DMD, etc. A sample listing reads:

1 z0_Data/Flow.0001

2 z0_Data/Flow.0002

...

y1 Flows.dat is typically created by the user. aToolsInitGM also creates this file after
a short user dialogue. From the modelling example in Sec. 6, following tools read this list:

• x0 plotFlow which reads the file name of the selected mth snapshot from this list.

• x1 CorrelationMatrix which reads all snapshots for the correlation matrix.

• x1 POD which composes the POD modes from linear combinations of all snapshots
for the correlation matrix.

A complete listing of these programs can be obtained with

> grep "readFilenameFlow1" x*.f

This subroutine translate m into the filename.

13.2.3 Files for the Galerkin system

Eq. (2.17), e.g. Re, NV . y2 GM.dat

controls the composition of the Galerkin system. A sample listing for the example of Sec.
6 reads:

100 [Re: Reynolds number]

0 [N_V: number of volume forces]

The first line determines the Reynolds number Re and the second number of volume forces
NV . Note that the volume forces enter at level 2 in the Galerkin projection, not earlier. The
volume forces enter the dynamics (level 2), the Navier-Stokes equation, not the kinematics
(level 1).

y2 GM.dat is generally created by the user. For a standard POD model, aToolsInitGM
creates this file after a short user dialogue. y2 GM.dat is read in subroutine readYGP by
following programs:

• x2 GalerkinProject: NV is needed for the Galerkin representation of the volume
force term

• x3 makeDS: ν = 1/Re is needed to construct the dynamical system (2.19) from
(2.17).

A complete listing of these programs can be obtained with

> grep "readYGP" x*.f

vi . y2 Modes.dat

This file maps the index i to the file name of the corresponding projection modes vi in
(2.17),

i 7→ file name of projection mode,

e.g.

1 z2_Data/Test.0001

2 z2_Data/Test.0002

.....

For the traditional Galerkin method, the test functions are the expansion modes, ui = vi,
i = 1, . . . , N . Currently the Petrov-Galerkin method with test functions different from the
expansion modes is not fully implemented.

gl y2 Forces.dat z0 Data/Force.0001 (example)
y2 Forces.dat contains the mapping from l = 1 . NV to the file name. A sample listing
of y2 Forces.dat reads:

1 z0_Data/Force.0001

y2 Forces.dat is generally created by the user. y2 Forces.dat is read in subroutine
readFilenameForce by following program:

• x2 GalerkinProjection[Sub]: The force fields are needed for the Galerkin repre-
sentation of the volume force term.

A more complete listing of these programs can be obtained with

> grep "readFilenameForce" x*.f

> grep "readForcesSub" x*.f

readForcesSub uses readFilenameForce.

13.2.4 Files for the dynamical system

zi, i = 1, . . . , N . y3 Modes.dat

This file contains the mapping

i 7→ zi = ±1, i = 1, . . . , N

for the descriptor system. A sample listing reads:

1 1

2 1

3 1

4 -1

This corresponds to a descriptor system with 3 differential equations and one algebraic
one. In ?, such a system arises by a mean-field Galerkin model (a1, a2, a3) for a cylinder
wake stabilized by a volume force (a4 = b). The volume force amplitude is determined by
a control law b = b(a1, a2), i.e. an algebraic equation.

A simple version of y3 Modes.dat (zi ≡ 1, only differential equations) is created by
x3 makeGS. xAMC provides no tools for setting up algebraic equations from manifolds and
control laws. The set of possibilities is too rich.

y3 Modes.dat is read by subroutines readMode which is used in turn by other subroutines,
like readQijk or initFlow. y3 Modes.dat is used by the tool x3 solveDS.

Eq. (2.23), e.g. q+
ijk, i = 1, . . . , N , j, k = 0, . . . , N . y3 DS Qijk.dat

This file defines the propagator of the descriptor system

i, j, k, q+
ijk for







i = 1, . . . , N
j = 0, . . . , N
k = 0, . . . , N

A sample listing reads:

1 0 0 0.1

1 1 0 -0.3

1 1 9 0.07

1 2 0 +0.4

...

9 9 9 -0.001

y3 DS Qijk.dat is created from the Galerkin system (2.17) by x3 makeGS. The file is read
by the tool x3 solveDS. x3 solveDS loads the descriptor system via calling subroutine
initFlow, which calls readQijk.

t .y3 Time.dat

This file controls the time integration in the interval t0 ≤ t ≤ t1. A sample listing reads:

0.0 ! t_0

100.0 ! t_1

0.001 ! dt

0.1 ! dt_Show

0.1 ! dt_List

The first two numbers denote the integration interval. The last three numbers specify
the integration time step, the frequency of run-time information and the time step for
post-processing.

y3 Time.dat is created by x3 makeGS. If x3 makeGS finds z0 Times.dat, than t0 cor-
responds to time of the first snapshot t1 and t1 corresponds to the time of the last
snapshot tM . The listing frequency (dt List) for z3 Amplitudes.dat is inferred from
z0 Times.dat as well. Thus, z1 Times.dat and z3 Times.dat should be similar. The
other parameters (dt and dt Show) are chosen by experience which may or may not apply
to the considered example. If x3 makeGS does not find z0 Times.dat, default values are
taken.

The file is read by the tool x3 solveDS. x3 solveDS loads the descriptor system via calling
subroutine initFlow, which in turn calls readQijk.

ai(t0), i = 1, . . . , N . y3 State.dat

This file determines the initial condition for the integration. A sample listing for a1(t0) =
0.02, and ai = 0, i > 1 reads:

1 0.02

Only non-zero values are listed.

y3 State.dat is created by x3 makeGS. If x3 makeGS finds
z1 Amplitudes.dat, than ai(t0) corresponds to amplitudes of the first snapshot. Thus,
z1 Amplitudes.dat and z3 Amplitudes.dat should be similar for an accurate Galerkin
model. If x3 makeGS does not find z1 Amplitudes.dat, default values are taken.

The file is read by the tool x3 solveDS via calling subroutine initState.

N is determined as the largest index i from y3 DS Qijk.dat. Note that this N corresponds
to N+ in (2.22) and my be larger than the N of (2.8).

13.3 Data files

The following subsections list important data files. Section 7 has shown how these files are
created or post-processed.

13.3.1 Files related to the IBVP

x, u . z0.dat
This file describes grid discretization. A sample listing reads:

2u

...

for a 2-D unstructured grid. Currently, only aToolCompile reads this file. It executes only
compilation shell scripts x[0..4,X] ⋆ 0.sh which are either grid-independent or contain
the right grid specifier (here: ‘2u’). Future versions of xAMC may provide more information
in z0.dat.

13.3.2 Files with the flow data

um z0 Flows.dat z0 Data/Flow.0001 (example)
maps m = 1, . . . , M to the corresponding name of the data file,

m 7→ file name of snapshot

A sample listing reads:

1 z0_Data/Flow.0001

2 z0_Data/Flow.0002

.....

2 z0_Data/Flow.0058

am
i , bm

l . z0 Times.dat

z0 Times.dat records the sampling instants,

m 7→ tm

e.g.

1 0.00

2 0.10

...

am
i , bm

l . z0 Amplitudes.dat

z0 Amplitudes.dat contains the actuation amplitudes of volume forces and boundary
actuators,

m, l 7→
{

bm
l l > 0

am
l l < 0

for

{
m = 1, . . . , M
l = −NA, . . . ,−1, 1, . . . , NV

e.g.

1 -1 0.47 ! a_-1

1 +1 0.50 ! b_1

2 -1 0.43 ! a_-1

2 +1 0.54 ! b_1

...

The first index identifies the snapshot m and the second index l corresponds to the volume
force amplitude bl if l > 0 and to a boundary actuator amplitude al if l < 0. The amplitude
value is the last entry in each row.

13.3.3 Files for the Galerkin expansion

ui . z1 Modes.dat

This file maps i to the corresponding file name of the mode,

i 7→ file name of expansion mode,

including possibly also auxiliary quantities, like the steady Navier-Stokes solution for the
shift mode.

1 z1_Data/Mode.0001

2 z1_Data/Mode.0002

...

am
i .z1 Amplitudes.dat

This files contains the modal amplitudes for all snapshots,

m, i 7→ am
i , for

{
m = 1, . . . , M
i = NA, . . . , N

e.g.:

1 -1 0.47

1 0 1.0

1 1 1.47

1 2 -0.71

...

1 10 -0.01

2 -1 0.43

...

The first, second, and third number corresponds to m, i and am
i , respectively.

13.3.4 Files for the Galerkin system

mij . z2 MassMatrix.dat

i, j, mij for

{
i = 1, . . . , N
j = −NA, . . . , N

Only non-vanishing mij are listed.

lνij . z2 ViscousTerm.dat

i, j, lνij for

{
i = 1, . . . , N
j = −NA, . . . , N

.

qc
ijk . z2 ConvectiveTerm.dat

i, j, k, qc
ijk for







i = 1, . . . , N
j = −NA, . . . , N
k = −NA, . . . , N

.

qp
ijk .z2 PressureTerm.dat

i, j, k, qp
ijk for







i = 1, . . . , N
j = −NA, . . . , N
k = −NA, . . . , N

.

The pressure term representation is not implemented in this current xAMC release. An
implementation is planned in the near future.

Part V

xAMC – future developments

67

14. Summary and outlook

This report outlines the road-map for xAMC as a unifying modeling platform for control-oriented
Galerkin models [??]. The current version allows to understand existing ROMs which presented
in xAMC format. The version does not include detailed informations for programmers. Nor is the
description complete with respect to current capabilities of xAMC.

Future versions of this report may contain a selection of following so far undocumented capabil-
ities.

Domain decomposition: xAMC can be parallelized via a domain decomposition. This capa-
bility shall be described in a later version of the report.

DMD: a detailed description of DMD [??]. This is included already in xAMC.

Dynamical system solver: a more detailed description of the descriptor system, including
center-manifold models, control design, etc. In addition, the fixed-point solver and stability
solver may be described.

Finite-time thermodynamics solver: an inclusion and description of this package.

A synopsis of many important shell scripts: This list may contain for each shell script:
(1) the task, (2) the input files, (3) the output files, (4) the employed algorithm and (5)
general comments on the execution or performance.

A description of the FORTRAN programs including a listing of the main subroutines
with I/O parameters and their purpose.

An appendix chapter on the development of xAMC: This includes rules for ownership
and version management.

An appendix chapter with a general trouble shooting guide: This may include a list-
ing of physical dimensions and corresponding files.

An appendix chapter on the version history.

15. Future milestones of xAMC devel-
opment

Milestone 1: Include finite-dimensional state spaces and 1-D flow data. Existing xAMC
toolkits for the mentioned state spaces shall be integrated in the new package. The pack-
ages may be validated with

1. Lorenz equation for finite-dimesional state spaces.

2. Ginzburg-Landau solutions for 1-D configurations;

3. The Stuart solution for 2-D shear flow;

4. The ABC solution for 3-D flows;

following partially the report by ?.

Milestone 2: Employ CGNS. The different grids shall be integrated in a CGNS-based xAMC

toolkit. Resulting tasks are related to:

1. a data viewer (ADFviewer),

2. a visualization software (VisIt or ParaView),

3. a routine for reading the grid,

4. a routine for reading the flow, and

5. CGNS analogs for x0 plotGrid and x0 plotFlow.

Milestone 3: Implementation of model identification tools. This implies physics-based
identification tools of 2007 and advanced methods of [?], possibly a combination of both.

Milestone 4: Mixing-layer and jet Galerkin models. Numerous application of xAMC are
perceivable, once the previous milestones are achieved.

Milestones 2 and 4 of § 15 appear the most important and urgent for the team.

16. Acknowledgements

The development of xAMC as new modelling platform started in a visionary meeting at TU Berlin
in January 2004. Since then, numerous collaborators have significantly contributed to the current
version:

• Christoph Airiau tested xAMC in February 2010 and found incompatibilities for his
Linux system, e.g. for file names. This observation has entered many routines and prevented
a lot of future trouble.

• Oliver Lehmann advocated the strict separation in tool, processes and data files. He
shaped the initial structure of xAMC in 2 weeks in Poitiers 2006 and immensely contributed
in all developments.

• Guillaume Lehnasch suggested us in 2010 to include pseudo 3-D data structure,
which reduced the number of grid-dependent routines to a minimum.

• Mark Luchtenburg tested the CGNS data format in 2009 in his alpha version of
xAMC.

• Marek Morzyński generously provided his large CFD wisdom in many decisions re-
garding xAMC. Moreover, he integrated his Navier-Stokes solver UNS3 in a xAMC-based flow
control studies.

• Clarence W. Rowley introduced one of the authors in the world of DMD and thus
helped in the inclusion of another capability.

• Michael Schlegel had the ingenious idea to introduce ASCII lists (with indices) for
all Galerkin model data. This made the xAMC much more readable.

• Gilead Tadmor wholeheartedly supported the xAMC project with many applications and
in many discussions. Most of the applications have his signature.

• Tino Weinkauf shaped the choice of CGNS for future readable binary data formats.

Markus Abel, Guy Ben-Dov, Pierre Comte, Joël Delville, Peter Jordan,
Franck Keherve and others motivated us in developing xAMC by emphasizing the need and
suggesting new applications.

