
Computers and Mathematics with Applications 65 (2013) 1558–1574

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A hierarchy of maximum entropy closures for Galerkin
systems of incompressible flows
Bernd R. Noack a,∗, Robert K. Niven b

a Institute PPRIME, CNRS – Université de Poitiers – ENSMA, UPR 3346, Département Fluides, Thermique, Combustion, CEAT, 43 rue de
l’Aérodrome, F-86036 POITIERS Cedex, France
b School of Engineering and Information Technology, The University of New South Wales, Australian Defense Force Academy, Northcott
Drive, Canberra Act 2600, Australia

a r t i c l e i n f o

Keywords:
Nonlinear dynamic system
Ergodic measure
Jaynes maximum entropy principle

a b s t r a c t

We propose a maximum-entropy closure strategy for dissipative dynamical systems
building on and generalizing earlier examples (Noack & Niven (2012) [11]). Focus is
placed on Galerkin systems arising from a projection of the incompressible Navier–Stokes
equation onto orthonormal expansionmodes. Themaximum-entropy closure is motivated
by a simple analytical example and elaborated to a hierarchical framework with sufficient
conditions for the existence of solutions.
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1. Introduction

We generalize a maximum-entropy closure for the ergodic measure of a class of dissipative dynamical systems arising
from fluid mechanics. The derivation of statistical properties of dynamical systems falls in the realm of ergodic theory. Also
the turbulence closure problem, which R. Feynman highlights as ‘the most important unsolved problem of classical physics’,
falls in this category.

A beautiful closure of a dynamical system has been proposed by Maxwell and Boltzmann over 150 years ago [1]. They
derived the Gaussian probability density function (PDF) of the velocities of the molecules of an ideal gas. This implies that
the Newtonian laws with elastic collisions of myriad of molecules do not need to be integrated if one is just interested in the
velocity probability distribution. In hindsight, this result is not surprising. The evolution equation hasmany symmetries. For
instance, there is no reasonwhy onemolecule should have a different PDF from another one. In addition, all space directions
are indistinguishable as well. Finally, the Gaussian PDF arises naturally from the law of large numbers, i.e. by averaging over
myriad of flights between two collisions.

Over 50 years ago, Jaynes [2,3] laid the foundation for an elegant information theoretic derivation for a gas with
hard elastic collisions. This closure is remaining the source of inspiration for statistical turbulence theory. W. Heisenberg
optimistically wrote [4]:

Turbulence is an essentially statistical problem of the same type as one meets in statistical mechanics, since it is the
problem of distribution of energy among a very large number of degrees of freedom. Just as in Maxwell–Boltzmann theory
this problem can be solved without going into any details of the mechanical motion, so it can be solved here by simple
considerations of similarity.
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Since then, there exist numerous entropic investigations of the Navier–Stokes equation or idealizations thereof [5–8]. Yet,
none arrives at the Kolmogorov cascade without invoking similar assumptions.

Entropic closures appear more promising for reduced-order Galerkin models describing coherent structure dynamics of
incompressible flows [9,10]. The authors have recently presented a successful closure for a wake model [11]. In the current
study, this path is pursued and extended by a simple analytical closure example and a general closure strategy for more
complex systems. The focus is placed on a dynamical system closure—not on the associated fluid mechanics aspects.

The manuscript is organized as follows. In Section 2, the MaxEnt closure is exemplified and elaborated for the three-
dimensional mean-fieldmodel. In Section 3, a closure strategy is proposed for general class of Galerkin systems. In Section 4,
the closure strategy is applied to Galerkinmodels of the cylinder wake andmixing layer. Finally (Section 5), themain results
are summarized.

2. MaxEnt closure for a mean-field model—an introductory example

In this section, we elaborate a maximum entropy (MaxEnt) closure for a simple Galerkin system: a mean-field model
which describes a large class of oscillatory flows. This introductory example provides analytical insights and motivates a
more general MaxEnt closure in the following sections. First (Section 2.1), the underlying assumptions for the Galerkin
system are explained. This leads to the formulation of the MaxEnt closure concept in Section 2.2. Then (Section 2.3), the
mean-field system is recapitulated as a first application. In Section 2.4, the firstMaxEnt closure is presented. Amore accurate
closure incorporates stability properties of the mean flow (Section 2.5). Finally (Section 2.6), alternative constraints are
discussed.

2.1. Dynamical properties of Galerkin systems

The goal of our study is an entropic closure formalism for low-order statistical moments of incompressible flows. The
entropy definition for the infinite-dimensional space of such Navier–Stokes solutions poses serious technical challenges.
Hence, we restrict ourselves to flows which can be arbitrarily accurately approximated by a finite-dimensional Galerkin
model. In particular, we assume a stationary domain Ω , time-independent boundary conditions, and that the flow state is
embedded in the Hilbert space of square-integrable vector fields L2(Ω). The corresponding inner product of v,w ∈ L2(Ω)
is defined by

(v,w)Ω :=


Ω

dx v · w, (1)

and the associated norm reads ∥v∥Ω :=
√

(v, v)Ω . The sign ‘:=’ implies that the left-hand side is defined by the right-hand
side.

The resulting Galerkinmodels are based on a steady base flow u0 and amodal expansion for the fluctuationwithN modes
ui, i = 1, . . . ,N , and the corresponding mode amplitudes ai:

u(x, t) = u0(x) +

N
i=1

ai(t) ui(x). (2)

The base flow may be the steady or averaged Navier–Stokes solution. The expansion modes may be a subset of a
complete Hilbert-space basis or physical eigenmodes of a linear Navier–Stokes-related equation or arise from empirical
data compression. The reader is referred to [12,13,9,10] for detailed mathematical, numerical and physical discussions of
the Galerkin method. Without loss of generality, we assume that the modes ui are orthonormal, i.e.

ui, uj

Ω

= δij, i, j = 1, . . . ,N. (3)

Now, the flow state is approximated by an N-dimensional vector a = [a1, . . . , aN ]
Ď

∈ RN . The dagger subscript
‘Ď’ denotes the transpose. Its temporal evolution is described by the propagator a → f = [f1, . . . , fN ]Ď ∈ RN via the
autonomous dynamical system of ordinary equations, defined as Galerkin system,

da
dt

= f (a). (4)

The solutions are described by a flow map a(t + τ) = 8τ (a(t)) for any τ ≥ 0.
This Galerkin system has additional simplifying properties which will be exploited in the MaxEnt closure [11]. First, the

Galerkin projection onto the Navier–Stokes equations leads to a propagator with constant, linear and quadratic terms:

fi = ci +
N
j=1

cij aj +
N

j,k=1

cijk aj ak, i = 1, . . . ,N. (5)
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Secondly, the quadratic is energy preserving for orthonormal bases (3) and for the most common boundary conditions:
cijk + cikj + cjik + cjki + ckij + ckji = 0, i, j, k = 1, . . . ,N. (6)

Thirdly, any realistic Galerkin system is dissipative and has constant negative divergence

∇af :=

N
i=1

∂ fi
∂ai

=

N
i=1

cii < 0. (7)

The lack of quadratic coefficients is a consequence of the energy preservation (6). Physically, (7) implies that the Galerkin
system has enough stable dissipative directions which can absorb the energy produced by the large scales. Dynamically, (7)
implies that the phase volume shrinks exponentially fast and that bounded trajectories converge to one attractor.

And fourthly,most Galerkin systems have a single axiomA attractor [14]. These systems have a single connected bounded
set of point A ⊂ RN to which almost all solutions of (4) – possibly only in a neighbourhood of A – converge. This further
implies that the temporal average of any real or tensor-valued state function F(a),

F(a) := lim
T→∞

1
T

 T

0
dt F (a(t)) , (8)

is independent of the initial condition a(0). This independence is the working assumption of statistical fluidmechanics (see,
e.g. [15,16]).

Moreover, the long-term behaviour of (4) is characterized by an ergodic measure pA(a). This measure is a probability
density function (PDF) of a: pA(a) da, da = da1 da2 · · · daN is the probability that the state is in the parallelepiped
[a1, a1 + da1] × [a2, a2 + da2] × · · · × [aN , aN + daN ]. The probability to find the state anywhere in space is unity,

RN
da pA(a) = 1. (9)

The measure defines an ergodic average – also called ensemble average – of any state function,

⟨F(a)⟩pA
:=


RN

da pA(a) F(a). (10)

For a dynamical system with an axiom A attractor, the ergodicity property holds, i.e. time and ergodic averages are equal,

⟨F(a)⟩pA
= F(a). (11)

2.2. Maximum entropy principle for Galerkin systems

The existence of an ergodic measure pA(a) inspires the search for an entropic approximation p(a). Following Jaynes [3],
let q(a) be our prior PDF. This PDF can be seen as our first choice before any additional knowledge of the constraints. The
improper prior q ≡ 1 is a common choice since it gives no a prior preference to any state space element. The lack of
normalisability does not affect the result as can be shown by a limiting consideration.

The prior will generally not be compatible with additional knowledge, e.g. with constraints of the form
⟨Gk(a)⟩ = gk, k = 1, . . . , K , (12)

where Gk are state functions of a and gk are constant values. Here, and in the following, the angular brackets shall indicate
the ergodic average with respect to the PDF we consider.

Now, we try to be as close to the prior as possible respecting the constraints. Or, equivalently, we try to preserve the
largest set of possibilities. Following the conventional methodology (see, e.g. [17,18,3]), this leads to the maximization of
the Kullback–Leibler entropy defined by

H := −


RN

da p(a) ln

p(a)
q(a)


= −


ln


p(a)
q(a)


. (13)

Here, the joint prior probability density function q is also required for reasons of dimensional consistency, since the logarithm
of a dimension has nomeaning. Evenmore importantly, the prior is required to ensure thatH possesses the property of scale
invariance [19, pp. 72–78].

Summarizing, the MaxEnt closure of the Galerkin system (4) is given by the MaxEnt principle (14), the normalization
condition (9), and the additional constraints (12).

H = −


ln


p(a)
q(a)


= max (14a)

subject to ⟨1⟩ = 1 (14b)
and ⟨Gk(a)⟩ = gk, m = 1, . . . , K . (14c)

A key enabler for accurate predictions are suitable constraints (14c). In the following, the mean-field system is considered
and a corresponding MaxEnt closure derived.
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2.3. Mean-field Galerkin system

A least-order Galerkin model (N = 3) is considered describing transients from an unstable steady solution to stable
periodic oscillations for a large class of oscillatory fluid flows. a1 and a2 define amplitude and phase of an oscillatory
fluctuation, a3 parametrizes the base-flow evolution. For details, the reader is referred to the original publications of Stuart
andWatson summarized in [20] and generalizations of the authors [21,22]. In this study, the numerical values of theminimal
POD Galerkin model [21] for the cylinder wake shedding are taken.

Under mean-field assumptions, the Galerkin system (4) simplifies to

da1/dt = (σ1 − β a3) a1 − (ω1 + γ a3) a2, (15a)

da2/dt = (σ1 − β a3) a2 + (ω1 + γ a3) a1, (15b)

da3/dt = σ0 a3 + α

a21 + a22


. (15c)

Here, the numerical Galerkin system parameters satisfy σ1 > 0, β > 0, σ0 < 0 as necessary prerequisites for a globally
stable periodic solution. Without loss of generality, ω1 > 0 for reasons of convenience. Moreover, γ > 0 by numerical
observation.

The mean-field system (15) has one unstable fixed point a1 = a2 = a3 = 0 representing the unstable steady
Navier–Stokes solution and a periodic solution representing vortex shedding. The periodic solution reads (modulo a phase
shift):

a1 = R cosΩt, a2 = R sinΩt, a3 = B, (16)

where

B =
σ1

β
, R =


−

σ0 σ1

α β
, Ω = ω1 +

σ1 γ

β
.

The negative sign under the square-root guarantees a real amplitude, since σ1, α, β > 0 and σ0 < 0.
The mean-field system encapsulates the mean-field variation as the only amplitude-limiting mechanism. The growth-

rate of the oscillatory fluctuation with amplitude r1 :=


a21 + a22 is given by

σ1 :=
1
r1

dr1
dt

= σ1 − β a3. (17)

If the fluctuation energy is too large r1 > R, the shift-mode amplitude eventually exceeds the asymptotic value a3 > B, and a
negative growth-rateσ1 < 0 dampens the fluctuation. In the case r1 < R, the opposite mechanism increases the fluctuation
energy. In other words, low frequencies stabilize the harmonic fluctuations.

The coefficientsσ1 andω1 of the linear termare taken from theGalerkin projection.σ0 is calibrated fromaDNS simulation
transient [23]. The coefficients of the nonlinear terms α, β and γ need to account for the neglected higher harmonics. We
calibrate them against the DNS solution:

R = R•
=


(a•

1)
2 + (a•

2)
2, B = B•

= a•

3, Ω = Ω•. (18)

The full circle superscript ‘•’ indicates a value of the DNS simulation.

2.4. MaxEnt closure with the improper prior

The starting point is the three-dimensional autonomous system (15). In the first step, we exploit that the solution quickly
approaches the mean-field manifold and the shift mode amplitude a3 can be slaved to a1 and a2 [21]. Then, da3/dt ≡ 0 and
(15c) yields the paraboloidal manifold

a3 = αm 
a21 + a22


, αm

= −α/σ0. (19)

The superscript ‘m’ denotes quantities associated with the mean-field manifold. Substituting (19) in (15a) and (15b) yields

da1/dt =

σ1 − βm 

a21 + a22


a1 −

ω1 + γ m 

a21 + a22


a2 (20a)

da2/dt =

σ1 − βm 

a21 + a22


a2 +

ω1 + γ m 

a21 + a22


a1 (20b)

where βm
= β αm

= −α β/σ0 and γ m
= γ αm

= −α γ /σ0. In polar coordinates (r1, θ1) with a1 + ıa2 = r1 eıθ1 (‘ı’:
imaginary unit), (20) becomes the Landau equation for a supercritical Hopf bifurcation,

dr1/dt = σ1r1 − βmr31 , (21a)

dθ1/dt = ω1 + γ mr21 . (21b)
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Fig. 1. Probability distribution p∗(r1) for the mean-field model (15). The curves marked with the symbols (�) and (�) represent the MaxEnt predictions
with improper prior (26) and marginal stability prior (30), respectively. The latter results are explained in the following section. The vertical line
r1 = R•

= 2.2646 marks the DNS value.

The form of the Landau equation immediately reveals the phase invariance of (20). Already by symmetry, the centre of the
limit-cycle attractor coincides with the origin.

The MaxEnt closure (14) shall be applied to the two-dimensional Landau system (20). The closure is based on improper
prior q ≡ 1, on the PDF p = p(a1, a2)withN = 2, on the Kullback–Leibler entropy (13), and on the normalization constraint
(9). The non-Hamiltonian nature of the underlying evolution equation prohibits a fixed unknown energy as constraint
[24, Section 4.11]. However, on average the total power must vanish, i.e. there cannot be an average net production of
fluctuation energy K =


a21 + a22


/2. The (averaged) total power is defined by

P :=


dK
dt


=


a1

da1
dt

+ a2
da2
dt


. (22)

From (20) and (22), a vanishing total power implies

P = σ1

r21


− βm 

r41

= 0. (23)

Summarizing, the resulting MaxEnt problem reads

H = −


ln


p(a1, a2)
q(a1, a2)


!
= max, q ≡ 1 (24a)

subject to ⟨1⟩ = 1 (24b)

and σ1

r21


− βm 

r41

= 0. (24c)

In the following, the MaxEnt problem (24) is solved. A straight-forward Lagrange formalism (see, e.g., [11]) yields the
PDF

p∗
= exp


1 − λ0 − ζ


σ1r21 − βmr41


(25)

where the superscript ‘∗’ denotes the solution, λ0 the Lagrangemultiplier corresponding to normalization (24b) and ζ is the
Lagrangian multiplier conjugate to the total power balance constraint (24c). Normalization (24b) gives

p∗
=

1
ZA

exp

−ζ


σ1r21 − βmr41


,

ZA = 2π


∞

0
dr1 r1 exp


−ζ


σ1r21 − βmr41


,

(26)

where ZA is the partition function.
The PDF has a maximum at r1 =

√
2R/2, i.e. not too far from the DNS radius. The remaining tasks are the determination

of the partition function ZA and the Lagrangian multiplier ζ .
The total power (23) converges to −∞ as ζ → 0+, is monotonically increasing for ζ > 0 until a maximum at ζmax and

converges to 0 as ζ → ∞. Most importantly, it has a single zero ζ ∗
= k/R2

≈ 5.56 ∈ (0, ζmax) signifying the solution to the
MaxEnt problem. The parameter k is determined numerically with a Newton iteration. The partition function is computed
from (26). We shall not pause to explicate the long and not very illuminating computations.

The resulting predicted PDF (26) is depicted in Fig. 1 (curve marked by ‘�’). This PDF has a local non-vanishing minimum
near the fixed point. The expectation value of the radius ⟨r1⟩ is about 13% too low. The fluctuation energy E = ⟨r21 ⟩/2 is 24%
too low.
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The MaxEnt closure does not include stability properties of the dynamical system. The unstable fixed point at r1 = 0
has an unphysical finite population probability. Hence, better prediction can be expected if the MaxEnt principle ‘is
taught’ the relation between unstable fixed points and vanishing population. The following section addresses this scope
for improvement.

2.5. MaxEnt closure with a marginal stability prior

The unstable fixed point at r1 = 0 has a positive growth-rate σ1 > 0. In contrast, the centre of the limit cycle of (15)
has vanishing growth-rateσ1 = σ1 − β B = 0. In fact, marginal stability has been postulated for all mean flows [25] and is
frequently numerically observed. One example is the considered cylinder wake [26].

We wish to avoid the population of strongly unstable or strongly stable regions, taking the maximum growth rate σ1 as
our reference scale. This condition may be entered in MaxEnt by introducing a weak prior towards marginal stability:σ1 = σ1 − β a3 = σ1 − βm r21 ∈ N(0, σ1). (27)

Here, N(0, σ1) represents a Gaussian distribution with vanishing mean and standard deviation σ1. This yields:

q =
1
Zq

exp


−


r21 − R2

2
2R4


,

Zq = 2 π


∞

0
dr1 r1 exp


−


r21 − R2

2
2R4


=

π3/2R2

√
2


1 + erf


1

√
2


,

(28)

where the partition function Zq is obtained from the standard normalization procedure
∞

−∞

da1


∞

−∞

da2 q = 1.

Note that q(r1 = 0)/q(r1 = R) = 1/
√
e, i.e. the prior probability density at the fixed point is only about 39% smaller than at

the limit cycle.
The resulting MaxEnt problem consists of (24) replacing the improper prior q ≡ 1 with a weak prior towards marginal

stability (28). The resulting PDF reads

p∗
=

1
ZB

q exp

−ζ


σ1r21 − βmr41


,

ZB = 2π


∞

0
dr1 r1 q exp


−ζ


σ1r21 − βmr41


,

(29)

with the partition function ZB. The only difference between (29) and (26) is the prior q. Employing (28), the PDF (29) becomes

p∗
=

1
√
e Zq ZB

exp

−d1 r21 − d2 r41


,

d1 = −
1
R2

+ ζ σ1, d2 =
1

2R4
− ζ βm,

(30)

or, equivalently,

p∗
=

1
Zq ZB

exp

−

(R2
− r21 ) (R2

− r21 + 2 ζ r21 R4 βm)

2R4


. (31)

The Lagrangian multiplier ζ = 87.47 is determined numerically from the power balance (24c).
The corresponding PDF is displayed in Fig. 1 (see curve marked with ‘�’). The PDF displays a pronounced peak near the

true radius and vanishes near the fixed point. The expectation value ⟨r1⟩ deviates less than 1% from the DNS value. The
total fluctuation energy has an error of only 2%. The inclusion of the weak prior in (30) alone does not explain the dramatic
increase in accuracy. In fact, inclusion of the prior increases the numerical value of the Lagrangian multiplier ζ from 5.56
for the improper prior to 87.47. This increase in ζ explains the much sharper peak of the PDF.

The prior is parametrized by q(0)/q(R) = 1/
√
e. Decreasing the ratio does not significantly change the PDF. As this ratio

converges towards unity, (26) is obtained. The fact that a prior with weak preference of a state space region can give rise to
significantly improved accuracy, is a common observation for MaxEnt problems [18,3].

2.6. Discussion

The previousMaxEnt closuresmotivate a general strategy outlined in the following Section 3. As first step, the shift mode
has been slaved to the fluctuation level. The shiftmode belongs to a general class of A-modes describing low-frequency base-
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flowdeformations [27,11]. In general, A-modes canbe considered functions of the coherent structure fluctuation, resolved by
so-called B-modes (see the same sources). Already the first pioneering POD Galerkin model of wall turbulence [28] exploits
this slaving relation. In the second step, the dynamics of the B-modes is incorporated in the MaxEnt closure via their total
power balance. As final polish, stability properties are incorporated via a weak marginal stability prior. This significantly
enhances the accuracy of the closure and reduces the population of the unstable fixed point effectively to zero. The MaxEnt
closure of the mean-field model can easily be generalized to the larger class of Galerkin systems, if each mode can be
classified as A- or B-mode.

It may be noted that the MaxEnt closure is blind to stability properties of the Galerkin system, like the Hopf-
formalism [29], the Millionshtchikov closure [30] and other statistical closure theories. The substitution of t by −t in (15),
i.e. the inversion of the stability properties of the fixed point and the limit cycle, does not change the PDF of the MaxEnt
closure. The MaxEnt closure favours the invariant periodic Galerkin solution because of its largest extent, independently
of its stability properties. This property is fortunate for strange attractors. The accountably many unstable limit cycles are
dense in the attractor [14] but have smaller extent. In other words, the MaxEnt closure favours the attractor as opposed to
unphysical unstable invariant solutions.

3. MaxEnt closure strategy for Galerkin systems

In this section, we develop the building blocks of a MaxEnt closure for general Galerkin systems. In this framework,
the mean-field model closure appears as particular example. First (Section 3.1), the ergodicity assumption for the Galerkin
system is discussed. Second (Section 3.2), the choice of the entropy is motivated. Then, (Sections 3.3 and 3.4), constraints
for the mean flow and for the fluctuations are considered. Higher-order constraints are proposed in the following section
(Section 3.5). Finally (Section 3.6), a closure strategy is presented employing simple to refined sets of constraints and a
guaranteed existence of solution.

3.1. Ergodicity assumption of the Galerkin system

In the entropic closure, we consider dissipative dynamical systems with a single globally stable attractor [14] as
mentioned in Section 2.1. The corresponding attractormay result (1) from (trivial) fixed point dynamics, (2) from oscillatory
dynamics leading to a limit cycle, (3) from multi-frequency dynamics converging to a torus, or (4) from chaotic/turbulent
dynamics leading to a strange attractor with at least one positive Lyapunov exponent. Evidently, a closure is only needed
for unsteady dynamics. The assumed single attractor implies ergodicity, i.e. any time-averaged function of the state F(a) is
equal to the ensemble average. This ergodicity property is fulfilled by most flow configurations, particularly by shear flows.

Ergodicity excludes the existence ofmultiple attractors, i.e. several different flow states. In this case, the selected attractor
of a trajectory depends on the initial condition. Hysteresis with two stable states is a prominent example. The literature
contains examples for such configurations, e.g. the drag crisis of the cylinder wake [31], but they are the exception, not the
rule. For completeness, wemention that the ergodicity assumption excludes energy-preserving dynamics, like Hamiltonian
dynamics.

A statistical closure provides an estimate of the ergodicmeasure p(a). Thismeasure satisfies the steady Liouville equation

∇a · f (a) = 0. (32)

This equation represents a partial differential equation with N independent variables a1, . . . , aN . For N ≫ 3, its numerical
solution is an extreme computational challenge, if possible at all.

Intriguingly, Boltzmann derived the Maxwell distribution of molecular velocities of an ideal gas from such a Liouville
equation of mechanics exploiting the symmetries of the problem [32]. Unfortunately, symmetries of higher-dimensional
Galerkin systems are rare, thus excluding a similar approach.Hence,we follow Jaynes [3] incorporating only select dynamical
and statistical properties for reasons of computational costs and analytical insights. It should be noted that the effective
support of the analytically approximated ergodic measure can at most be a coarse grained finite-volume coverage of the
attractor on a zero set in RN . For instance, the delta peak of the limit-cycle distribution in Fig. 1 is approximated by a
Gaussian bell form.

3.2. State space and entropy

Evidently, the MaxEnt closure is affected by the choice of the state space and entropy. We have restricted the discussion
to Galerkin models with orthonormal modes spanning the dominant flow structures. Arguably, orthonormal modes are the
most natural basis for closures as they harmonize most with key energy considerations: (1) The fluctuation energy can be
decomposed in modal contributions; (2) The power balance has also modal counterparts; (3) The quadratic term is energy-
preserving. Thus, the mode amplitudes can be considered as generalized velocity components of the fluid flow fluctuation.
Non-orthonormal bases, like stability modes of the linearized Navier–Stokes equation, have none of these properties.

Concerning the choice of entropy function, we adopt the Kullback–Leibler or relative entropy form (13). This form arises
from the multinomial probability distribution in the asymptotic or continuum limit of an infinite number of particles. This
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is consistent with the Boltzmann or combinatorial definition of entropy [32,33] – also adopted in large deviations theory
[34,35] – in which we choose the entropy function which, when maximized, yields the most probable state of the system.
It is possible that other entropy functions may be more appropriate in some circumstances (such as for flows of bosons
or fermions [36]). However, in the absence of evidence to the contrary, there are strong arguments for adoption of the
Kullback–Leibler form [3]. This is consistent with the definition used throughout most of statistical physics (see, e.g. [37]).

The improper prior q ≡ 1 is chosen as default. If one of the mode amplitudes ai characterizes a base-flow variation (A-
mode), a small preference of marginally stable regions is incorporated in the prior as elaborated in the mean-field example
(Section 2.5). This change is justified a priori by the generally observed marginal stability of mean flows and a posteriori by
improvedpredictions.Marginal stability ofmean flowshas beenpostulated originally byMalkus [25] andhas been employed
by him and other authors [38] as rigorous constraint for a variational principle. The marginal stability prior incorporates
an important stability property of flows without restraining the state space too much and without causing mathematical
complications. Our closure approach is physically well founded: (1) reduction of the dynamics on the inertial manifold
derived from the Reynolds equations; (2) constraints for the fluctuations from power considerations; and (3) a weak prior
from a stability property. Here, the Reynolds equation is given the highest priority while an empirical observation acts only
as weak prior. In principle, other strategies are perceivable, e.g. the inertial manifold may be incorporated as a prior and the
marginal stability as a constraint. Arguably such a permutation gives too much weight to an empirical observation and too
little weight to a well-justified system reduction.

The employed Reynolds and power balance equations constitute the heart of the closure. They are rigorous deductions
from the Galerkin system. The choice of this information from the Galerkin system may even determine the existence of a
solution, as the following sections will make clear.

3.3. Constraints for the mean flow

First, a closure relation for the centre of the attractor is required. The starting point of this search is the Reynolds
decomposition in Galerkin state space (Section 3.3.1). The most general relation is the Galerkin analogue of the Reynolds
equation (Section 3.3.2). In some cases, a further simplification can be achievedwith the identification of an inertialmanifold
(Section 3.3.3). Occasionally, symmetries of the Galerkin system can be exploited (Section 3.3.4). For any Galerkin system,
we first search for symmetry closures, then for manifolds before the modal Reynolds equations are used.

3.3.1. Reynolds decomposition
The mean-flow closure commences from the Reynolds decomposition of the mode amplitude vector a into a temporal

average a and a fluctuation a′,

a = a + a′. (33)

Throughout this study, ergodicity is assumed, i.e. ⟨F⟩ = F for any state function F(a). The overbar is used when referring
to derivations from the Navier–Stokes equation, while the triangular brackets are adopted for moment constraints in the
MaxEnt method.

The fluctuation is characterized by the modal energy distribution

Ei :=

a′

i

2
/2, i = 1, . . . ,N. (34)

Owing to the orthonormality of the modes, the modal energy sums up to the total fluctuation energy

E := ∥u′∥2/2 =

N
i=1

a2i /2, (35)

neglecting the contribution of the expansion residual.
For a POD decomposition of snapshot data, the first moments of the mode amplitudes vanish and the second moments

diagonalize,

ai = 0, ai aj = a′

i a
′

j = 2Eiδij. (36)

3.3.2. Modal Reynolds equation
The modal analogue of the Reynolds equation can easily be derived from (4) and (33) (see, e.g. [9]):

0 = ci +
N
j=1

cij aj +
N

j,k=1

cijk aj ak +

N
j,k=1

cijk a′

ja
′

k, i = 1, . . . ,N. (37)

For POD modes, (36) simplifies (37) to 0 = ci + 2
N

j=1 cijj Ej, which can be considered a linear algebraic system for
Ej, j = 1, . . . ,N .
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It should be noted that the term aj ak of (37) prevents the modal Reynolds equation to be cast in the form (14c).
This technical complication can easily be cured by averaging the Galerkin system without employing the Reynolds
decomposition. This leads to the equivalent set of equations

0 = ci +
N
j=1

cij aj +
N

j,k=1

cijk aj ak, i = 1, . . . ,N. (38)

3.3.3. Inertial manifolds
Some modes resolve base-flow variations by design, e.g. the shift mode, some by their symmetry properties,

e.g. transverse profiles of a channel flow, and others by their frequency contents, e.g. slowly changing mode amplitudes.
These A-modes are strongly damped and have no or very low frequency ω ≪ ωc , where ωc is the characteristic frequency
of the dominant fluctuation. Their slow variation is driven by the fluctuation level of the other modes.

To simplify the discussion, let us assume that the Nth mode has these properties. Let us further assume that the basic
mode u0 is the steady solution and, thus, ci = 0, i = 1, . . . ,N . In this case, the time derivative of the mode amplitude
aN in (4) can be neglected and aN is effectively an algebraic function of the remaining modes. This slaving approximation
can be rigorously derived in several ways. Near Hopf bifurcation, the centre manifold approximation is a method of choice
(see, e.g., [39]). For oscillatory flows, Krylov–Bogoliubov or other averagingmethodsmay be applied. Synergetics formulates
a rather general slaving principle based on a time-scale argument (see, e.g., [40]). An inertial manifold is one of the most
general concepts (see, e.g., [41]). The slaving can be encrypted by EN = 0, interpreting the average as a short-term time
average. The manifold may be approximated by

aN =

N−1
j=1

cmNj aj +
N−1
j,k=1

cmNjk aj ak, (39)

where the coefficients cmNj, c
m
Njk are derived from (4). Alternatively, the Reynolds equationmay be employed for the derivation,

like in [28,42,22].
The algebraic equation (39) removes one degree of freedom aN from the state space. Correspondingly, the ergodic

measure is only a function of the first N − 1 mode amplitudes, p = p(a1, a2, . . . , aN−1) and the entropy integral (13)
reads

H := −


da1 da2 · · · aN−1 p(a1, a2, . . . , aN−1) ln


p(a1, a2, . . . , aN−1)

q(a1, a2, . . . , aN−1)


(40)

modulo an irrelevant constant. The introductory closure example for themean-field system follows this approach forN = 3.
The generalization for several algebraic equations is straightforward, e.g. for two shift modes at different frequencies, like
in [43].

3.3.4. Exploiting symmetries
Let T å = a describe a coordinate transformation from the original state a to the new coordinates å communicated by

the non-singular matrix T . For oscillatory dynamics, we consider a transformation effecting a rotation in the a1, a2 plane
with angle φ. This transformation is described by

å1
å2


=


cosφ − sinφ
sinφ cosφ

 
a1
a2


(41)

and other coordinates are not affected, åi = ai, i = 3, . . . ,N . If this coordinate transformation does not change the
propagator (4), we conclude that the average is invariant under this transformation, i.e.

⟨a1⟩ = ⟨a2⟩ = 0. (42)

Similar arguments can be made for many other symmetries. In our examples, only this phase-invariance is invoked. The
mean-field model of Section 2 has this property.

3.4. Constraints for the fluctuating energy

In this section, two energetic constraints are discussed: the total power balance for the whole Galerkin system
(Section 3.4.1) and a refined modal power balance for a single mode (Section 3.4.2).

3.4.1. Total power balance
On the attractor, no fluctuation energy E = a′ · a′/2 is created or destroyed on the average. The Galerkin analogue of the

turbulent kinetic energy (TKE) power balance is easily be derived by the same technique. The evolution Eq. (4) is multiplied
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with a′ and averaged (see, e.g. [44,45]). The resulting equation reads:

0 =

N
i,j=1

cij a′

i a
′

j +

N
i,j,k=1

cijk a′

i a
′

j a
′

k, (43)

wherecij := cij +
N

k=1(cijk + cikj) ak. The term with quadratic (internal) interactions vanishes for Galerkin systems with
energy-preserving quadratic terms. In other words, (6) implies

0 =

N
i,j=1

cij a′

ia
′

j. (44)

For POD modes, (36) implies

0 =

N
i=1

cii Ei. (45)

It should be noted that (44) contains product terms like ak a′

ia
′

j . Like for the modal Reynolds equation, the Reynolds
decomposition prevents an expression of the form (14c). Again, several cures are available. The easiest generally applicable
possibility is an analogue derivation for the total energy E = a · a/2. Now, E quantifies the fluctuation energy around the
basic mode u0 which is best taken to be the steady Navier–Stokes solution. In some cases, slaving techniques, like for (23),
can be applied. The total power balance may be cast in the form (14c) by introducing mi := ai as independent variables
and re-inserting the Reynolds decomposition a′

i = ai − mi. In the following, we shall not pause to discuss the curable
complications by the Reynolds decomposition.

3.4.2. Modal power balance
Each mode has its own power balance (see, again, [44,45]):

0 =

N
j=1

cij a′

ia
′

j +

N
j,k=1

cijk a′

ia
′

ja
′

k, i = 1, . . . ,N. (46)

The sum of all modal power balances yields the total balance (44).

3.5. Higher order constraints

In principle constraints of arbitrary order can be derived. Additional higher-order constraints may be desirable to make
the closure more accurate. We discuss two illustrative examples, 4th order constraints derived from the Galerkin system
(Section 3.5.1) and 4th order relations from the quasi-normal assumption (Section 3.5.2).

3.5.1. Higher order constraints from the Galerkin system
In principle, many other relationships can be derived for the Galerkin system. Each relationship incorporates additional

information from the Galerkin system in the MaxEnt closure. For instance, an equation for the third and fourth centred
moments is obtained by averaging the ansatz

d(a′

ia
′

ja
′

k)

dt
=

da′

i

dt
a′

ja
′

k + a′

i

da′

j

dt
a′

k + a′

ia
′

j
da′

k

dt
= fia′

ja
′

k + a′

if
′

j a
′

k + a′

ia
′

jfk.

The left-hand side vanishes upon averaging while the right-hand side contains moments from 2nd to 4th order. In deriving
O(N l) equations for lth order moments, many more unknowns (O(N l+1)) are created. This leads to the well-known closure
problem.

3.5.2. Higher order constraints from the quasi-normal Gaussian approximation
Anoften-used closure approximationhas beenproposed byMillionshtchikov [30]. A normal (Gaussian) PDFhas vanishing

cumulants of third and higher order. The total power balance is not affected by assuming a normal PDF. However, a normal
PDF yields vanishing transfer terms in themodal power balance (46). Thus, it excludes energy transfer between unstable and
dissipativemodes. These deficiencies led to the introduction of amore general ‘quasi-normal’ PDF,with arbitrary third-order
moments but vanishing fourth-order cumulants. This leads to the frequently-employed Millionshtchikov closure relation
which expresses each centred fourth-order moment by second-order moments:

a′

ia
′

ja
′

ka
′

l = a′

ia
′

j a
′

ka
′

l + a′

ia
′

k a
′

ja
′

l + a′

ia
′

l a
′

ja
′

k, i, j, k, l = 1, . . . ,N. (47)

It should be noted that the Millionshtchikov equation is only an approximation which may or may not be applicable to the
considered Galerkin system.
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3.6. MaxEnt closure strategy

In the previous sections, physical constraints for the MaxEnt problem were derived. Here, combinations of these
constraints are discussed. A necessary prerequisite for a successful MaxEnt closure is the existence of its solution. First
(Section 3.6.1), a condition for thewell-posedness of theMaxEnt problem is outlined. In Section 3.6.2, the classical turbulence
closure problem is shown to re-appear in the MaxEnt framework. In the following (Sections 3.6.3–3.6.5), a spectrum from
crucial enablers for MaxEnt closures is presented. This spectrum ranges from exploiting dynamic properties to employing
empirical information.

For reasons of simplicity, an improper prior q ≡ 1 is assumed throughout this section.

3.6.1. Condition for well-posed MaxEnt problem
TheMaxEnt closure (14) consists of themaximum entropy principle (14a), the normalization condition (14b) and K side-

constraints (14c) describing Galerkin system properties, e.g. (37), (44) or (46). The discussed constraints have the general
form ⟨Gk(a1, . . . , aN)⟩ = gk, k = 1, . . . , K , where Gk are polynomials in the mode amplitudes and gk is a real value. The
constraints may be cast in vector form G(a) = g , where G := [G1, . . . ,GK ]Ď and g := [g1, . . . , gK ]Ď. The solution of the
MaxEnt problem (14) has the form

p∗
=

1
Z

exp [−λ · G(a)] , (48)

where λ = [λ1, . . . , λK ]
Ď is a vector comprising the Lagrangian multipliers, λ · G(a) =

K
k=1 λkGk(a1, . . . , aN), and Z

represents the partition function. Integrability of p∗ requires that λ · G(a) increases sufficiently rapidly in all directions, i.e.

λ · G(a) → ∞ as ∥a∥ → ∞. (49)

The existence of a normalizable PDF (48) or, equivalently, (49) is not always guaranteed, as elaborated below.

3.6.2. Closure problem
We consider the discussed constraints derived from the Galerkin system. The modal Reynolds equations (37) leads to

K = N constraints with N(N + 1)/2 independent fluctuation terms ⟨a′

ia
′

j⟩. The leading order terms of λ · G(a) in a′ are
G′

2 :=
N

i,j,k=1 λi cijk a′

i a
′

j . G
′

2 is a quadratic form in a′ with N real eigenvalues. There are N free Lagrange multipliers to
potentially shift all N eigenvalues to the positive side and fulfill (49). However, one can easily construct open parameter
sets of cijk, i, j, k = 1, . . . ,N for which positive definiteness of G′

2 cannot be obtained for arbitrary choices of λ. Consider, for
instance, N = 2, c111 = c222 = 0 from (6), c122 = −c211 = ϵ, c112 = c121 = −c212 = −c221 = 1. As ϵ → 0, the discriminant
criterion for positive definiteness requires λ1 → λ2 which violates the necessity of λ1λ2 < 0 for positive coefficients of
a′

i

2
, i = 1, 2. Hence, (49) cannot be generically satisfied for arbitrary quadratic Galerkin system coefficients.

Similarly, also the total power balance (K = 1 constraint) does not generically lead to the existence of λ satisfying (49).
The same behaviour holds for the modal power balances (K = N constraints).

This is not surprising since the balance equations do not generally exhibit a robust amplitude-limitingmechanismwhich
prevents the divergence of the Galerkin solution and which effectively limits the PDF support in the MaxEnt principle. The
closure-problem re-occurs in another form in the MaxEnt framework.

3.6.3. Closure strategy 1: initial manifolds
Most low-order Galerkin models are stabilized by effective inertial manifolds. Here, the amplitudes of the slowly varying

base flow modes are slaved to the fluctuation levels of the oscillatory modes. Sometimes, POD decompositions contain A-
modes describing slow variations of the base flow. In general, such modes need to be added to the Galerkin model [9]. Let
i = 1, . . . ,M be the indices of oscillatory B-modes and i = M + 1, . . . ,N the indices of A-modes (assuming M < N). Let
us further assume that the A-modes span an inertial manifold in which the dynamics of the Galerkin system are embedded.
Then, the slaving argument yields

0 = ci +
N
j=1

cij aj +
N
j=1

cijk aj ak, i = M + 1, . . . ,N.

Let us further assume that these equations can be solved for ai, i = M + 1, . . . ,N ,

ai = cmi +

M
j=1

cmij aj +
M

j,k=1

cmijk aj ak, i = M + 1, . . . ,N. (50)

Here, the superscript m is a reminder that the coefficients parameterize the manifold and do not coincide with the
corresponding Galerkin system coefficients. These equations may derived from the Galerkin system [21,44] or directly from
the Reynolds equation [28,42,22].
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The resulting Eqs. (4) for i = 1, . . . ,M and (50) for i = M + 1, . . . ,N define a set of differential–algebraic equations
(DAE), also called descriptor system. The DAE can be made a pure system of ordinary equations by substituting (50) in (4)
at the expense of introducing a new cubic term:

dai
dt

= cmi +

M
i,j=1

cmij aj +
M

i,j,k=1

cmijk aj ak +

M
i,j,k,l=1

cmijkl aj ak al, i = 1, . . . ,M. (51)

Here, cmi , . . . , cmijkl are constants derived from the original system. The corresponding total instantaneous total energy
equation for E =

M
i=1 a

2
i /2 reads

dE
dt

=

M
i=1

cmi ai +
M

i,j=1

cmij ai aj +
M

i,j,k=1

cmijk ai aj ak +

M
i,j,k,l=1

cmijkl ai aj ak al, i = 1, . . . ,M. (52)

No averaging is performed, this time. The fluctuation energy remains bounded if the highest-order term is stabilizing in all
directions:

M
i,j,k,l=1

cmijkl ai aj ak al → −∞ as ∥a∥ → ∞. (53)

In the mean-field model, the corresponding term reads −βm
1 r41 .

TheMaxEnt problem subject to the total power balance contains the 4th order term as its highest-order term. Hence, the
stabilization condition for the Galerkin system (53) implies that (49) can be fulfilled with some Lagrangian multipliers. The
construction of stable inertial manifolds satisfying (53) is a general recipe for robust Galerkin systems as well as well-posed
MaxEnt closures.

3.6.4. Closure strategy 2: assumptions for statistical moments
Onemay also follow classical closure approaches. Suppose,we incorporateN modal Reynolds equations (37) andN modal

power balances (46) as K = 2N constraints (14c). This yields N(N + 1)(N + 2)/3! independent cubic terms a′

ia
′

ja
′

k in the
exponent of (48) whichmake the PDF non-normalizable. Let ζi, i = 1, . . . ,N be the Lagrangemultiplier conjugate to the ith
modal power balance. Annihilation of the cubic terms can be achieved via ζ1 = ζ2 = · · · = ζN due to (6). This degeneracy
effectively replaces themodal power balance by its total version (44), i.e. counteracts the goal of satisfying themodal power
balance.

The MaxEnt inferred PDF (48) can be made integrable by incorporating stabilizing 4th order constraints. N equations of
the quasi-normal approximation (47) with i = j = k = l, i = 1, . . . ,N serve this purpose by adding (stabilizing)


a′

i

4 terms
which outweigh any cubic terms at infinity. The underlying hope of this technical regularization is that the quasi-Gaussian
approximation is not strongly incompatible with the true solution. It may be noted that the relations of the quasi-Gaussian
approximation are homogeneous, i.e. rescaling the mode amplitudes by an arbitrary factor does not change their validity.
The approximation only affects the shape of the PDF.

Before engaging in this enterprise, the potential merits are estimated for the mean-field system. We apply the closure to
the corresponding total power balance (23)

σ1r21 − βm
1 r41


= 0.

For the periodic mean-field solution (16), the second moments are
aiaj


=


r21


2

δij =
R2

2
δij, (54)

where R is the radius of the limit cycle. The fourth-order term of (23) reads

r41


=


a21 + a22

2
=


a41 + 2a21 a22 + a42


.

Exploiting (47) and (54) yields

r41


=

7
2R

4. In contrast, the periodic solution r1 ≡ R, implies ⟨r41 ⟩ = R4. The fourth moment
is overpredicted by a factor 3.5! Continuing, the non-trivial solution of (23) becomes

⟨r21 ⟩ =
2
7

σ1

βm
1

,

which is about 28% of the true value. Hence, we cannot expect an accurate MaxEnt closure for the limit cycle using modal
power balances and the Millionshtchikov closure as constraints. The higher-order moments of the limit-cycle solution
deviate significantly from a quasi-normal distribution and (47) is a source of large errors. For Galerkin systems with
broad-band dynamics, the refined MaxEnt closure can be expected to yield better predictions—bearing in mind that the
Millionshtchikov closure is an ad hoc approximation.

W.K. George (private communication, 2011) experimentally observes that velocity fluctuations of turbulent shear flows
satisfy the Millionshtchikov equations with high accuracy. Possibly, a Galerkin projection of these vanishing fourth-order
cumulants in velocity variables provides better stabilizing fourth-order constraints than (47) in Galerkin space.



1570 B.R. Noack, R.K. Niven / Computers and Mathematics with Applications 65 (2013) 1558–1574

Fig. 2. MaxEnt closure strategy. The interface between the MaxEnt principle (top) and the Galerkin system (bottom) is the employed constraints (subset
of the middle). Some constraints are derived from the Galerkin system (left), while some may be obtained from solution data or closure considerations
(right). The fixed energy constraint for microcanonical ensembles foreshadows an application of Section 4. Dashed rectangles indicate approximations. The
moments (top right) are obtained from the ergodic measure inferred from MaxEnt. By definition, the MaxEnt principle depends on the prior assigning an
a priori PDF to the Galerkin state space.

3.6.5. Closure strategy 3: empirical knowledge
An even more imposing closure strategy is the use of solution properties. For instance, the known fluctuation energy E,

1
2

N
i=1


a′

i

2
= E, (55)

may be included in the constraints. This makes the PDF (48) normalizable for constraints containing only first and second
moments, like the modal Reynolds equation or the total power balance.

In general the additional constraintsmust of same or higher order than the constraints derived from the Galerkin system.
Fig. 2 comprises the strategies discussed in the latest three subsections.

4. Results for a wake model

In this section, the MaxEnt closure of a 7-dimensional Galerkin system is considered. The Galerkin system describes
transient and post-transient oscillatory wakes from zeroth to third harmonics (Section 4.1). The MaxEnt closure strategy of
the previous section is applied in Section 4.2.

4.1. Galerkin system for vortex shedding

Werecapitulate aGalerkin systemof oscillatory laminar vortex shedding fromearlier publications [21,27,11]. This system
generalizes themean-fieldmodel of Section 2 by the inclusion of second and third harmonics. In the 7-dimensional Galerkin
expansion (2), a1, a2 aremode amplitudes of the dominant harmonics, a3, a4 of the second and a5, a6 of the third harmonics,
while a7 represents the shift mode (base flow deformation). The resulting Galerkin system represents 3 quadratically
coupled oscillators (ai, i = 1, . . . , 6) and one stable mode (a7) driven by the fluctuation level:

da1
dt

= (σ1 − β a7) a1 − (ω1 + γ a7) a2 +

6
j,k=1

c1jk aj ak, (56a)
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da2
dt

= (σ1 − β a7) a2 + (ω1 + γ a7) a1 +

6
j,k=1

c2jk aj ak, (56b)

da2l−1

dt
= σl a2l−1 − ωl a2l +

6
j,k=1

c(2l−1)jk aj ak, l = 2, 3, (56c)

da2l
dt

= σl a2l + ωl a2l−1 +

6
j,k=1

c(2l)jk aj ak, l = 2, 3, (56d)

da7
dt

= σ0 a7 + α

a21 + a22


. (56e)

Here, σ1 > 0 signifies an unstable oscillator, damped by shift mode amplitude a7, while 0 > σ2 > σ3 are the growth-rates
of the damped oscillators driven by the quadratic term. a7 quickly adjusts to the fluctuation level of the dominant oscillator
with σ0 ≪ −σ1 and α > 0, On the limit cycle, the 3 oscillator frequencies are harmonically related, ωl = l(ω1 + γ7a7) for
l = 2, 3. For details of the model and its derivation, the reader is referred to the original literature.

We emphasize that the dynamical system structure is not tied towake flows. The same or very similar systems of coupled
oscillators are obtained for POD models of 3D boundary layers [46,47], cavity flows [48], mixing layers [44], and actuated
flows over aerofoils [43], just to name a few.

4.2. MaxEnt closure of the vortex shedding model

In this section, the Galerkin system (56) is considered as prototype of a generalized empirical Galerkin model with an
inertial manifold. This system comprises the shift mode and the energy cascade from dominant to higher frequencies. It
should be noted the prediction of the energy content in the three coupled oscillators due to quadratic interactions is a non-
trivial task.

The starting point of the MaxEnt closure is the most accurate closure for mean-field system in Section 2.5 with a weak
marginal-stability prior. This closure can easily be generalized for three harmonics.

First, the shift mode equation is slaved to the fluctuation level leading to (19). On the corresponding manifold, the 6-
dimensional Galerkin system reads

da1
dt

=

σ1 − βm r21


a1 −


ω1 + γ m r21


a2 +

6
j,k=1

c1jk aj ak, (57a)

da2
dt

=

σ1 − βm r21


a2 +


ω1 + γ m r21


a1 +

6
j,k=1

c2jk aj ak, (57b)

da2l−1

dt
= σl a2l−1 − ωl a2l +

6
j,k=1

c(2l−1)jk aj ak, l = 2, 3, (57c)

da2l
dt

= σl a2l + ωl a2l−1 +

6
j,k=1

c(2l)jk aj ak, l = 2, 3, (57d)

where r1 :=


a21 + a22 like in Section 2.

The total power balance of (57) generalizes (23) by two dissipation terms σ2

r22


, r2 :=


a23 + a24 and σ3


r23


, r3 :=

a25 + a26 for the second and third harmonics, respectively.
Next, we maximize the Kullback–Leibler entropy with marginal stability prior

H =


ln

p(a1, a2, . . . , a6)
q(a1, a2)


!
= max (58)

subject to normalization condition and total power balance,

⟨1⟩ = 1, (59a)
σ1r21 − βmr41 + σ2r22 + σ3r23


= 0. (59b)

It may be noted that q as defined by (28) and used in (58) represents a proper prior in a1, a2 and an improper one (q ≡ 1) in
the other directions.
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Fig. 3. Modal energy distributions of the Galerkin system (56) plotted on a logarithmic scale. The solid squares (�) represent the MaxEnt prediction while
the solid circles (•) refer to the Galerkin solution as ground truth.

The resulting final PDF reads

p =
q
ZC

exp

−ζ


σ1r21 − βmr41 + σ2r22 + σ3r23


, (60)

where ZC is the partition function and ζ the Lagrangianmultiplier for the power balance (59b). Thismultiplier is determined
numerically. The analytics are similar to Section 2.5. The resulting PDF for r1 has a very similar shape as MaxEnt closure,
shown in Fig. 1 (curve marked by ‘�’).

The PDF (60) exactly reproduces the vanishing first and off-diagonal second moments of the employed PODmodes (36).
The resulting modal energy distribution

Ei :=

a2i


/2, i = 1, . . . , 6, (61)

is depicted in Fig. 3 as solid squares. The values from the periodic Galerkin solution of (56) are shown as solid circles for
comparison.

The energy levels are predicted with 1.2% accuracy with respect to the total fluctuation energy. It should be noted that
we have formulated a complete closure. No total energy E• obtained by DNS has been incorporated as constraint. The reason
is that the total power constraint on the inertial manifold limits the effective compact support of the PDF.

4.3. Discussion

The total power balance (59b) plays a critical role in restricting the effective support of the PDF. In the following, bounds
for energy levels of the three harmonics are derived. The total power may be decomposed in three contributions from the
three oscillators, respectively:

P = Ph1 + Ph2 + Ph3, (62a)

Ph1 :=

σ1r21 − βmr41


, Eh1 :=


r21


/2, (62b)

Ph2 :=

σ2r22


= 2σ2Eh2, Eh2 :=


r22


/2, (62c)

Ph3 :=

σ3r23


= 2σ3Eh3, Eh3 :=


r23


/2. (62d)

The subscripts h1, h2, h3 shall remind that the quantities represent harmonics, i.e. pairs of modes. Since 0 > σ2 > σ3, the
dissipative oscillators can only act as sinks, Ph2 ≤ 0 and Ph3 ≤ 0. Hence, P = 0 requires a source from the first oscillator
Ph1 ≥ 0. The maximum power Ph1 can easily be estimated. The argument σ1r21 − βmr41 is positive for 0 < r1 < R with
R =

√
σ1/βm. The argument assumes its maximum σ1R2/4 at r1,max = R/

√
2. Hence, the power Ph1 is constrained by

0 ≤ Ph1 ≤ σ1R2/4 =: Pmax. (63)

The second harmonic energy Eh2 is bounded by the maximum energy absorption Pmax + Ph2 = 0,

Eh2 ≤ −
σ1

σ2

R2

8
. (64)

The minus sign takes into account that σ1 > 0 > σ2. Similarly, we obtain

Eh3 ≤ −
σ1

σ3

R2

8
. (65)
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The energy level of the dissipative oscillators is bounded by size of the limit cycle (R) and their decay rates σi, i = 2, 3 in
relation to the growth rate σ1.

A rigorous derivation of the energy bound of Eh1 is rather lengthy, as it involves the shape of PDF. A good estimate of the
upper boundmay be gained by assuming that the PDF describes exactly a limit cycle r1 = R1 in a1, a2-plane, i.e. Eh1 = R2

1/2.
Then, the upper bound is derived from Ph1 = 0 and yields

Eh1 ≤
R2

2
.

An alternative derivation of the energy bounds may be obtained by Lyapunov function-type function V (a) which decays
under the evolution Eq. (57) if ∥a∥ is sufficiently large.

5. Conclusions

We have generalized a maximum-entropy (MaxEnt) closure strategy for Galerkin systems of incompressible flows
building on [11]. These Galerkin systems are a subclass of dissipative dynamical systems with constant-linear-quadratic
propagators and an energy-preserving quadratic term. Hitherto, most MaxEnt closures have been applied to energy-
preserving Hamiltonian systems with fixed energy and with coupled identical subsystems, like in the ideal gas kinetics,
spin-systems, etc.

In the proposed MaxEnt framework, the turbulence closure problem re-occurs with another face: Generally, no well-
conditioned MaxEnt problem can be expected if the statistical constraints are derived from the Galerkin system alone. The
key enabler is distilling an amplitude-limiting mechanism—ideally without imposing any artificial or empirical relations.
Most robust Galerkin models have an inertial manifold on which the trajectory is trapped in a finite domain. This manifold
reduction has been used to arrive at accurate closures for the first and second moments in the two selected Galerkin
systems. One alternative strategy is constraining the PDF, e.g. following Millionshtchikov closure [30] with a quasi-normal
approximation. The price is a large expected inaccuracy for a limit cycle motion and assumingly smaller error for broad-
band dynamics. Another alternative is imposing a known energy level from the solution as ad hoc empirical information. This
might be necessary for purely POD-based Galerkinmodels [11]. In principle, theMaxEnt closure should become increasingly
more accurate as more constraints of the Galerkin system are incorporated.

The question of the generality of the approach arises. The restriction to quadratic terms is no fundamental one, since
arbitrary high-order terms can be obtained by slaving fast dynamics. The cubic term in the presented mean-field model
serves as one example. Also, the energy preservation of the quadratic term only simplifies one particular closure with the
total power balance. It is not necessary, if the refined modal power balance is used. In all cases, the key enabler is the
identification of an amplitude-limiting constraint. Conditions for their existence have been proposed in this study.

A number of dissipative dynamical systems will require new enablers for a MaxEnt closure. For instance, the Lorenz
attractor [49] has no manifold which can be exploited, but a rigorously defined attractive basin [50] which might be
incorporated in the prior.

We foresee thatMaxEnt closures for dynamical systemsmay establish a newbranch of non-equilibriumstatistical physics
with important application to fluid mechanics. The closure is, for instance, critical for aerodynamic applications of closed-
loop turbulence control [45], resolving the complex frequency cross-talk between mean force, coherent structures and
actuation. The authors actively pursue these opportunities.
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