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While POD / PCA / KL approximations are statistically energetically optimal, statisti-
cal optimality is indeed the sole consideration these (equivalent) methods invoke. This type
of approximation is neither geared for, nor is it optimized to extract modes based on their
significance to an underlying system dynamics. Furthermore, as computational consider-
ations limit the size of empirical ensembles used for mode extraction, the resulting mode
set is significantly effected by the arbitrariness of the ensemble selection. System theoretic
model reductions methods aim to home on dynamically significant modes by direct inter-
rogation of the underlying equation, such as the linearized Navier-Stokes equations. An
alternative / complimentary approach is to impose a priori knowledge of structural proper-
ties, such as symmetry and periodicity, on the mode-extraction procedure. The idea is that
these conditions will force the selection of physically meaningful modes, and thus enables
an effective appeal to first principles. Here we focus on systems known to be periodically
dominant, and describe a simple method to extract modes associated with temporal har-
monics. The method accommodates time variations in the dominant frequency(ies) and
exploits a preliminary data compression, such as by the standard POD procedure.

I. Overview

The Proper Orthogonal Decomposition (POD) approximation algorithm1–3 is an optimally efficient sub-
space approximation of the fluctuations in a data ensemble, under dimensionality bounds. It is therefore
extremely appealing in the context of mode selection for a Galerkin model reduction of complex, distributed
nonlinear systems, such as those involving fluid flow. It is, however, an intrinsically statistical method that
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does not take into consideration even the temporal order of the data snapshots it uses, let alone any con-
sideration of dynamics. While it is intuitively reasonable to assume that the most energetic modes will play
a dominant dynamic role, evidence of difficulties to reach ample dynamic representation abound when it
comes to very low order models, such as those used for feedback flow control design and implementation.

One common POD pitfall is manifest in the analysis of transient trajectories, traversing changes in the
operating conditions. The benchmark of a flat plate at time varying angle of attack that is used in our
paper is a case in point. As the angle of attack changes the systems mean field changes significantly, as does
the leading shedding harmonic4 , once the flow separates. In such cases it is common that all but the time
dynamics of all but the most dominant mode pair will capture harmonically rich time dynamics, reflecting
a spatial mix of multiple vortical structures and wave lengths. Arguably, when it comes to very low order
models, it is desirable, rather, that modes will represent physically distinct flow structures. A focus on a
globally synchronized instantaneous set of vortical structures that are associated with similar spatial and
temporal frequencies, are example. The use of such modes then allows the model to represent the temporal
dynamics at the characteristic frequencies, associated with the said structures. In contrast, when each mode
represents multiple temporal frequencies, a truncated model will be incapable to properly represent them.

A top-down approach to address such difficulties is the direct appeal to the governing equation, such as
by using balanced truncation model reduction5–8 , applied to the linearized distributed system. Such system
theoretic tools are geared to reveal, e.g., internal and less energetic modes that act as essential dynamic
catalysts but are not conspicuous from a spatially global energy consideration. This approach too may
suffer from some potential shortcomings, chief among which is the reliance on a linearized model. This
may exclude nonlinear interactions, such as the interactions of fluctuations with the mean flow that can be
essential for global dynamic representation9,10 , but which might not be observed by an inherently local,
linearized model. Even in those case where a balanced model reduction is an appropriate approach, a key
feature of the methods cited above5–8 is that time coefficients of dominant empirical modes and a POD or
POD-like approximation make a natural choice of the observable outputs used for the reduction. In that
case two it is advantageous to select those modes in a way that will reflect clear coherent physical structures.

That is the purpose of this note. In this abstract we shall focus on a brief review of the mode extraction
procedure, illustrated by the example of the transient flow over a two dimensional flat plate at a time varying
angle of attack. The full paper will include the analysis of the much more complex three dimensional case,
along with mean-field Galerkin modelin the spirit of9,10 , representing the dynamic interactions of the slowly
time varying mean field and the fast oscillating fluctuations.

II. The Transient Flow Over a Flat Plate

The algorithm is demonstrated in an analysis of simulation data for a flat plate in two and three dimen-
sions. The immersed boundary condition simulation code is described in.11 In this preliminary abstract we
focus on the two dimensional case at the Reynolds number Re = 300, using 62k grid points. The simula-
tion is conducted using a time step of dt = .01 CTU (convective time units), with snapshots saved every
10 time steps. The trajectory analyzed here reflects 200 CTUs, captured by 2000 snapshots. To create a
characteristic change of flow within the simulation, the plate is raised to a horizontal position, held, and
then lowered back to its orginal position of AOA = 30o. The POD analysis must thus handle the complex
dynamics when the plates AOA passes through the bifurcation point at which the flow sheds the vortex
street. Periodic vortex shedding again resumes when the AOA again passes though the bifurcation point as
it returns to its start position. The green recta-linear line in the plots in Figure 1 represents the time depen-
dence of the AOA. The reference trajectory was analyzed by both the standard POD algorithm and a fast,
approximate POD algorithm described in the companion paper,12 with a required average resolution of 99%
of the fluctuation energy. The first 30 of the 34 required POD modes, that are yielded by the two methods
are essentially identical. The POD eigenvalues of the two methods are depicted in Figure 1. That figure also
include an examples comparing the POD / approximate POD analysis of the entire data trajectory, with
analysis of short time segments, along that trajectory. In particular, the figure illustrates the dependence of
the resolution on the number of expansion modes used.

While the dominant POD mode pair is indeed nearly harmonically pure, other POD modes of that
simulation tend to mix the influence of multiple spatial wave lengths and temporal frequencies. Examples
of this phenomenon are depicted in Figure 2.
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Figure 1. Left Singular values of the actual and approximate POD. Right: Comparisons of the TKE
resolution as a function of the number of modes used in a global POD approximation (red stars),
modes from a global approximate POD computations (circles), and the local resolution of a short
time intervals, using POD analysis of these intervals (blue dots). The red segment indicates the
respective interval. The recta-linear green line indicates the AOA as a time function. The horizontal
axis indicates time

III. Extraction of Harmonically Pure Modes

The algorithm is based on a separation of the data trajectory by temporal filtering as the sum of several,
harmonically clean - single frequency trajectories, followed by an independent POD analysis of each of these
trajectories. Two obvious hurdles need to be addressed by this program:

• The time variation in the instantaneous frequency.

• The high computational burden of temporal filtering a very high dimensional trajectory.

The second hurdle was addressed by performing a preliminary high resolution POD (or using the fast
POD approximation of12) as a data compression, rather than a tool for the final mode extraction. As
mentioned above, an averaged 99% TKE resolution is achievable by a compression to a 34 dimensional space.
Following this step, dimensionality and computational complexity cease to be a matter of any significance.
The remainder of this section outlines the other aspects of the algorithm. For later use we denote the
compression by

u(x, t) ≈ u0(x) +
N∑
k=1

ai(t)ui(x) = u0(x) + U(x)a(t) (1)

where x = (x, y) indicates position with the standard Euclidean coordinates, u = (u, v) indicates the velocity
field and its strea-mwise and transverse components, ui are the expansion modes and aa = (a1, . . . , aN ) is
the corresponding vector of time coefficients. Henceforth the vector a(t) ∈ <N isometrically represents the
compressed velocity field.

A. The instantaneous frequency, period and phase

There are a variety of conceivable methods to estimate the instantaneous frequency of a harmonically dom-
inant signal13,14 . Following are some obvious options for the signals with relatively fast variations in the
dominant frequency, all based on an analysis of the signal over a moving time window [t− 0.5T, t+ 0.5T ]:

1. Applying the FFT algorithm to the signal segment over the moving window and selecting the frequency
of the amplitude peek.The disadvantage of this approach is that it requires a relatively high sampling
rate.
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2. Searching for the maximal resolution by a truncated Fourier expansions over a bank of candidate
frequencies. Note that here the fixed interval length of T will generally not be a full period, for the
considered candidate frequencies. This deficiency is addressed by the use of oblique projections.

3. Enriching the harmonic base functions in the previous option with a linear base function, to account
for rapid change in period means.

In any of these options, low pass filtering of either thee frequency or the associated period is likely to be
necessary to smooth out step changes due to quantization of the considered filter-bank or the FFT.

Here we opted for a simpler and fairly robust option that is available in typical periodically dominant
flows. Namely, notwithstanding the blending of multiple frequencies in higher modes, the most dominant
mode pair, say ui, i = 1, 2 typically represents a fairly clean amplitude modulated oscillation frequency. This
is indeed the situation in the two dimensional flow over a stalled flat plate. In that case the time coefficients
will be of the form

a1(t) = A1(t) cos(φ(t)) and a2(t) = A2(t) sin(φ(t))

where both A(t) and ω(t) = φ̇(t) vary at a sufficiently longer time constant than the instantaneous period
T (t) = 2π/ω(t). In that case an instantaneous concept of the phase cane be extracted as

φ(t) = ∠(a1(t) + ı a2(t))

This signal can be low pass-filtered and its time derivative can be well estimated by the slope of a linear
approximation over a moving window. During those time intervals where crossed the bifurcation point into
the stable-attached regime, the frequency is estimated - merely as a matter of completeness - by linear
interpolation between points where it is well defined.

B. Harmonic partition of the data trajectory

The unwrapped phase trajectory φ(t) is generically a monotonous function of time. Substituting time by
this phase signal as the argument of time trajectories, simplifies the definition of frequency which becomes
identically equal to ω ≡ 1. Since the data trajectory is now represented by the compressed signal a(t) ∈ <N ,
it is numerically inexpensive to use an interpolation scheme to resample a at equal phase increments and
redefine it as a function of the phase φ.

Truncated harmonic expansion of the (sampled) a(φ) over a moving window [φ − π, φ + π] are easily
computed, as

a(φ+ ψ) ≈ a0(φ) +
K∑
k=1

ak(φ) cos(kψ) + bk(φ) sin(kψ), ψ ∈ [−π, π]

Mid-interval evaluation, at ψ = 0 then yields

a(φ) ≈ a0(φ) +
K∑
k=1

ak(φ)

Noting that, by definition and the and the postulated existence of a harmonic partition, following a small
phase increment one has

ak(φ+ ∆φ) ≈ ak(φ) cos(k∆φ) + bk(φ) sin(k∆φ)

meaning that ak(φ) represents the oscillatory component of a(φ) at the kth harmonic.
One shortcoming of this procedure - essentially an IIR band filtering of a(φ) - is that the partition comes

with no a priori guarantee of spatial orthogonality. That is we might have ak(φ) 6⊥ a`(φ). Nonetheless,
it is noted that temporal frequencies are generically tightly coupled with spatial wave lengths of vortical
structures and that velocity fields at different wave length are well expected to be nearly orthogonal. In
particular, the correlation matrix of the harmonic partitioning C(t) = [Ck`(φ)] =

[
ak(φ)′a`(φ)

]
is strongly

diagonally dominant as long as the partition is in term of truly dominant frequencies, associated with distinct
coherent spatial structures. That is indeed the case in the flat plate benchmark, when the zero (base flow)
and first harmonic components are used.
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C. Harmonically Clean Mode Extraction

The next step is to apply the POD algorithm separately to each of the “pure harmonic” data trajectories
ak(φ). The modes obtained this way are vectors qki ∈ <N . Each of the corresponds, isometrically to a
fluctuation vector field, or mode, over the original domain, when interpreted as the coefficient vector in the
Galerkin approximation (1). Again, the combined collection of modes obtained this way is not guaranteed
to be orthogonal. Yet as long as the data used is not noise dominated and corresponds to existing coherent
structures, its correlation matrix is expected to be diagonally dominated and close to the identity. This
enables a numerically sound oblique projection in a non-orthogonal Galerkin approximation, akin to (1).
Example of a harmonically clean modes obtained via this procedure, and of its time coefficient, are provided
in Figure 3

Table 1 provides the singular values are of the covariance matrix Ψ̄′
γΨ̄γ , where Ψ̄ represents the truncated

collection of the 0th, 1st and 2nd harmonic sets found by the harmonic partitioning algorithm. The deviation
of the singular values from unity and their condition numbers are indicators of the non-orthogonality of the
obtained basis. Truncation is performed using the resolution bound 0 < γ < 1, in an exactly equivalent
manner to the truncation of the original singular matrices of the POD algorithm performed by the resolution
bound λ. Orthogonality improves as fewer harmonically partitioned modes are retained.

Range of singular values of Ψ̄′
γΨ̄γ

17 modes,γ = 0.95 12 modes,γ = 0.90 9 modes,γ = 0.85 7 modes,γ = 0.80
0.026 ≤ σi ≤ 1.98 0.303 ≤ σi ≤ 1.7 .346 ≤ σi ≤ 1.35 0.958 ≤ σi ≤ 1.65

Table 1. Ranges of singular values for the covariance of the cleaned modes.

IV. What Next

The complete paper will include the following additional components.

A. Mode deformation and local mode sets

The deformation of dominant coherent structures is a well known phenomenon that bars the use of a very
low order model, optimized in one operating condition, in another operating condition. In15 we introduced
the concept of mode interpolation as a means to maintain the low dimensionality of the Galerkin system of
differential equations without losing the quality of the representation. The idea was to use a fix number of
modes and allow these mode to deform, as the system traverses different operating conditions. In certain
cases, such as the change of AOA, it is expected that this will result in a parameterized set of modes
that could be computed as interpolants of few globaly computed modes. The paper16 provide one mode
interpolation scheme. The current discussion leads to an alternative endowed with the added advantage of
using harmonically cleaned structures. Specifically, as described earlier, the kth harmonic trajectory can be
globally approximated as

ak(t) ≈
L(k)∑
`=1

dki (t)qki = Qkdk(t)

Once again, the mapping dk 7→ ak : <L(k) 7→ <N is an isometry. Applying POD analysis of the trajectory
dk(t) over a moving time window whose length may represent few period of the main harmonic may isolate
far fewer modes - ideally, a single mode pair if k ≥ 1 and a single mode if k = 0 - that dominate the flow over
that window. The local mode(s) will be a combination of the original modes qki , with operating-condition-
dependent coefficients. An indicator of the parametreization of the deformable local modes would typically
be extracted from flow measurements.15

B. Mean Field Models

Mean field models have been developed as enablers for very low order flow models9,10 (see also, e.g.17–20).
Conceptually, these models couple an algebraic or slowly varying dynamic version of Reynolds’ equation
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with a pure harmonic counterpart, at the dominant frequency. This coupling is an enabler for modeling the
interactions between the time varying mean field and the fluctuation, and their critical effect on both the
destabilization of the steady solution and the stabilization of natural and controlled attractors. We shall use
develop an interpolated mean field model, governing the dynamics of the local modes obtained as described
above.
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16Morzyński, M., Stankiewicz, W., Noack, B. R., King, R., Thiele, F., and Tadmor, G., “Continuous mode interpolation for
control-oriented models of fluid flow,” Active Flow Control , edited by R. King, Vol. 95 of Notes on Numerical Fluid Mechanics
and Multidisciplinary Design, Springer Verlag, Berlin, Germany, 2007, pp. 260–278.

17Stuart, J., “On the non-linear mechanics of hydrodynamic stability,” J. Fluid Mech., Vol. 4, 1958, pp. 1–21.
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Figure 2. Modes produced by the approximate POD algorithm. In each triad, top and middle: level
curves of the stream-wise and transverse velocity components; bottom: time trace sof the Fourier
coefficient of these modes. The latter clearly illustrates the mixing of multiple temporal harmonics,
reflecting the blending of coherent flow structures at different wave lengths.
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Figure 3. Harmonically cleaned counterparts of the modes in Figure 2. In each triad, top and middle:
level curves of the stream-wise and transverse velocity components, featuring a clear dominance of
a single wave length (top triad) and no periodic structures in a mean field correction mode (bottom
triad); bottom: single frequency and slowly varying time traces of the Fourier coefficients of these
modes.
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