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An approximate POD algorithm provides an empirical Galerkin approximation with
guaranteed a priori lower bound on the required resolution. The snapshot ensemble is
partitioned into several sub-ensembles. Cross correlations between these sub-ensembles
are approximated in terms of a far smaller correlation matrix. Computational speedup
is nearly linear in the number of partitions, up to a saturation that can be estimated a
priori. The algorithm is particularly suitable for analyzing long transient trajectories of
high dimensional simulations, but can be applied also for spatial partitioning and parallel
processing of very high spatial dimension data. The algorithm is demonstrated using
transient data from two simulations. First, a two dimensional simulation of the flow over
a flat plate, as it transitions from AOA = 30o to a horizontal position and back. Second, a
three dimensional simulation of a flat plate with aspect ratio two as it transitions from a
horizontal position to AOA = 30o.

I. Introduction

The Proper Orthogonal Decomposition (POD) approximation algorithm1–3 is known under a variety
of conceptually equivalent titles, including the Karhunen-Loève Decomposition,4–6 Empirical Orthogonal
Functions7–9 and Principal Component Aanalysis,10 all tracing back, at least, to the early 20th century.11

POD provides a statistically optimal low dimensional subspace approximation of an ensemble variation, in the
sense that the mean variance resolution is maximized, given the allowed subspace dimension. Technically, the
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algorithm reduces to a singular value decomposition (SVD) of a discrete or continuous integral operator,2,3, 9

defined in terms of the ensemble.
In distributed nonlinear dynamic systems, the algorithm aims to extract an optimal low dimensional

subspace for a Galerkin projection of the original system. Examples of direct interest to the current authors
include shear flows,12 wake flows13–15 and cavity flows.16–18 The computational complexity of the algorithm
scales as O(min{M ·N2, M2 ·N}), where N is the number of snapshots and M is the spatial dimension. In
typical fluid flow applications, N � M ; with N ∝ O(101 − 102), the method of snapshots1 alleviates some
of the computational burden, since it is focused on a correlation matrix whose size is the length of the data
trajectory or trajectories.

Model based feedback control design for fluid flows requires models covering both attractors and transient
trajectories over a wide range of operating conditions and system parameters.19–22 This requires longer
data trajectories leading to a growing computational challenge and motivates a search for faster suboptimal
algorithms. Approximate SVD algorithms abound, in a variety of domains,23–30 including flow control.21,22,31

Here we discuss a variant of the domain decomposition method, with options for partitioning both the domain
and the data ensemble (i.e., along the time axis). Like the original POD algorithm, the algorithm provides
a provable error bound and does not involve an iterative convergence. The key idea is to partition the data
ensemble into a number of sub-ensembles, and to approximate the cross-sub-ensemble correlations in term of
a synthesized, much smaller global ensemble. The computational complexity thus reduces at a nearly linear
ratio with the number of partitions, up to a saturation limit.

The need to analyze long data trajectories is associated with the issue of variations in temporally local
dominant coherent structures. As noted, that issue has been addressed by several authors, e.g., in.19–22

In particular,19 we note that such changes may often entail continuous deformation of a fixed (and low)
number of modes, rather than a change in the topological structure of the modes, or the number of modes
used. Thus, the number of modes extracted by POD - or approximate POD - analysis of a long transient
trajectory is expected to far exceed the number of modes needed for a similar resolution, over each short
subinterval. Following the interpolatory approach of,32 we suggest to construct the few temporally local
modes as an operating point dependent linear combination of the global mode set, obtained by applying the
fast POD algorithm described in this paper. A computationally inexpensive way to achieve that goal is to
apply a moving window POD to the compressed dynamics of the time coefficients of a high resolution, low
dimensional Galerkin approximation.

To illustrate the advantages and computational savings provided by the algorithm, the method is applied
to transient data trajectories of two and three dimensional flat plate simulations. The simulations capture
transients through the bifurcation point, as the angle of attack transitions between a horizontal position,
with a fully attached flow, and a high angle of attack, with separated flow and vortex shedding.

II. POD: A Brief Overview

Here we set the language and nomenclature used in the paper. An ensemble of snapshots takes values in
a Hilbert space H:

Φ = {Φt : t ∈ T} ⊂ H, Φ0 = mean(Φ), Φ̃ =
{

Φ̃t
.= Φt − Φ0, : t ∈ T

}
where the index set T is interpreted as a time interval (or union of intervals). An example would be the
velocity vector fields with H = L2(Ω), where Ω ⊂ R2 or ⊂ R3 is the computational domain. The inner
product and norm are then

(Φ, Ψ) .=
∫

Ω

dV Φ ·Ψ, ‖Φ‖ .=
√

(Φ, Ψ)

We denote T .= L2(T ), and by a dual use of notations, identify ensembles, such as Φ̃, with integral operators

Φ̃ : T 7→ H, Φ̃ξ =
∫

T

dt ξtΦ̃t

In a computational context we shall refer to the discrete version where both Ω T are assumed discrete
domains, and Φ̃ is identified with (appropriately weighted) matrix multiplication.
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A resolution level λ ∈ (0, 1) is prescribed and the POD approximation identifies a lowest dimension
subspace Hr ⊂ H for which

〈‖πrΦ̃t‖2〉
〈‖Φ̃t‖2〉

≥ λ (1)

where πr is the orthogonal projection over Hr and where 〈 〉 stands for the ensemble average. Using matrix
notations, this can be written as

tr πrΦ̃Φ̃′πr

tr Φ̃Φ̃′
≥ λ (2)

where “tr” indicates a matrix trace and a prime indicates the adjoint operator.
The solution is formally given in terms of the singular value decomposition (SVD)

Φ̃ = USV′ =
∑

i

σiUiV
′
i

whereby Hr is

Hr
.= span{Ui}Li=1, L

.= min

{
L̃ :

∑L̃
i=1 σ

2
i∑N

i=1 σ
2
i

≥ λ

}
, πr =

L∑
i=1

UiU
′
i

The indirect method of snapshots1 addresses the generic situation where N � M . Then the right singular
vectors Vi are computed first as eigenvectors of the N ×N correlation matrix Φ̃′Φ̃.

As noted earlier, the computational complexity of the POD algorithm is O(min{M ·N2, M2 ·N}). The
algorithms discussed in this note alleviates this complexity through a two step procedure, whereby POD is
first applied to sub-ensembles, through either temporal or spatial partitioning of the original ensemble.

III. Time Partition: A Shared Mean Algorithm

The technical part of the paper will be presented for computational acceleration by a partition of the
ensemble index, T = ∪K

k=1Tk, and a preliminary POD dimension reduction in each of the subsets

Φk = {Φt : t ∈ Tk} ⊂ H, k = 1 : K

For simplicity, the sub-sets will be of the same size: N0
.= size(Tk) = N/K. The method presented here

readily extend to spatial partitioning. The full paper will provide the detail. An example of a recent
discussion of an iterative method based on spatial partitioning is31 .

The procedure outlined here is practical when available RAM suffices to store the entire ensemble, Φ,
whereby the global average can be computed without multiple data loading from a hard disk. A lower bound
0 < λ < 1 is specified for the requisite resolution, as defined in (2).
Step 0: Compute the global mean, Φ0 and the perturbation samples, Φ̃t, t ∈ T .
Step 1: Compute the SVD for each of the operators corresponding to the sub-ensembles Φ̃k

Φ̃k = UkSkV′k =
N0∑
i=1

σk,iUk,iV
′
k,i (3)

Step 2: Truncate the SVD at Nk ≤ N0, substituting Φ̃k by

Φ̄k
.= ŪkS̄kV̄′k

.=
Nk∑
i=1

σk,iUk,iV
′
k,i

where

Nk
.= min

Ñ :

∑Ñ
i=1 σ

2
k,i∑N0

i=1 σ
2
k,i

≥
√
λ

 , πr, k
.=

Nk∑
i=1

Uk,iU
′
k,i

Note that Φ̄k = πr, kΦ̃k.
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Step 3: Define the alternative sub-ensembles and associated operators

Ψk
.= {σk,iUk,i}Nk

i=1 ⇔ Ψkξ = ŪkS̄kξ =
Nk∑
i=1

σk,iξiUk,i

Using operator notations, the selection of Nk provides for

trΨkΨ′k = tr ŪkS̄2
kŪ′k = tr ŪkS̄kV̄′kV̄kS̄kŪ′k

= tr Φ̄kΦ̄′k = tr πr, kΦ̃kΦ̃′kπr, k ≥
√
λ tr Φ̃kΦ̃′k

The advantage of Ψk is that it holds only Nk sample vectors, compared with N0 >> Nk vectors in Φ̄k.
Step 4: Define the truncated global set whose size is N̄ .=

∑K
k=1Nk ≤ N, M

Ψ .= ∪K
k=1Ψk = ∪K

k=1 {σk,iUk,i}Nk

i=1

and apply the POD procedure to Ψ with the resolution bound
√
λ

Ψ = ŪS̄V̄′ .=
L∑

i=1

σ̄iŪiV̄
′
i

where

L
.= min

{
L̃ :

∑L̃
i=1 σ̄

2
i∑N̄

i=1 σ̄
2
i

≥
√
λ

}
, Hr

.= span{Ūi}Li=1, πr
.=

L∑
i=1

ŪiŪ
′
i

Denote Ψ̄ .= πrΨ. The associated Galerkin approximation of the original ensemble is then

Φ̄ .= πrΦ̃ =

Φ̄i
.=

N∑
j=1

fi, jŪj : fi
.= Ū ′iΦ̃ ∈ RN


L

i=1

Observation III.1 The projected ensemble satisfies the resolution bound λ:

tr πrΦ̃Φ̃′πr

tr Φ̃Φ̃′
≥ λ

Proof. The following follows from the constructions in Steps 1 – 4s

tr πrΦ̃Φ̃′πr = tr πr

(∑K
k=1 Φ̃kΦ̃′k

)
πr ≥ tr πr

(∑K
k=1 πr, kΦ̃kΦ̃′kπr, k

)
πr

= tr πr

(∑K
k=1 ΨkΨ′k

)
πr = tr πrΨΨ′πr = tr Ψ̄Ψ̄′ ≥

√
λ trΨΨ′

=
√
λ tr

∑K
k=1 ΨkΨ′k =

√
λ tr

∑K
k=1 Φ̄kΦ̄′k ≥ λ tr

∑K
k=1 Φ̃kΦ̃′k = λ tr Φ̃Φ̃′ �

(4)

Concluding comments on computational savings. The algorithm trades a single POD procedure of a set of
N samples, by K POD computations for sub-ensembles of size N0 = N/K, and a final POD computation
for an ensemble of size N̄ =

∑K
k=1 N̄k. Assuming the generic case N �M , the computational complexity is

then proportional to

K ·MN2

K2
+M · N̄2 = M

(
N2

K
+ N̄2

)
An increase in K would thus reduce the computational complexity of POD of each of the sub-ensembles,
but this advantage would eventually be offset by the growth in N̄ =

∑
k Nk. The values of Nk, hence of N̄ ,

can often be estimated a priori, from familiarity with the system. For example, in a periodically dominated
system, a lower bound N∗ on Nk can be estimated when each sub-ensemble reduces to a single or few periods.
An estimated lower bound on N̄ would then be K · N∗. It is easy to see that an a priori estimate of the
optimal value of K, to minimize the overall computational complexity, would then be

K∗ ≈
1

(2R2)
1
3

where R
.=
N∗
N
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leading to an overall computational complexity of

3
4

1
3
R

4
3MN2

a plot of the a priori estimated of the ratio of computational savings, as a function of R = N∗/N , is given
in Figure 1. As an example a reference length of 100 periods with 60 sampled per period and an a priori
estimate of achieving the desired resolution by 10 modes over short (single or few periods), translates to
R = 0.017 and a reduction of the computational burden to about 3.73% of that required by a standard POD
algorithm.
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Relative computatational complexity as a function of R

Figure 1. The a priori estimated relative computational complexity of the the algorithm in Section III,
compared with the computational complexity of standard POD, as a function of R

.
= N∗/N .

IV. Time Partition: A Local Mean Algorithm

This section concerns a variant of the algorithm where the global mean is not computed in a preliminary
procedure. This remove the need to load the entire data set twice. Thus, the local mean is computed first
for each sub-ensemble, and is used in the local POD procedure, instead of the global mean. The global mean
is evaluated and used only in a counterpart of Step 4.

As above, the effect of this added component on the efficiency of the algorithm depends on the quality
of local estimates of the global mean. Pertinent a priori knowledge can thus be exploited in an effective
partitioning of the global ensemble.
Step 1 For each k = 1, . . . ,K, compute the local sub-ensemble mean Φk,0 = mean (Φk), the perturbation
sub-ensemble

Φ̂k =
{

Φ̂k,i
.= Φi − Φk,0 : i ∈ Tk

}
and an SVD of the corresponding perturbation operator

Φ̂k = UkSkV′k =
N0∑
i=1

σk,iUk,iV
′
k,i.

Step 2: Truncate the SVD of Step 1 at Nk ≤ N0, substituting the original sample sub-ensemble Φ̂k by the
columns of the matrix

Φ̆k
.=

Nk∑
i=1

σk,iUk,iV
′
k,i
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where

Nk
.= min

Ñ :

∑Ñ
i=1 σ

2
k,i∑N0

i=1 σ
2
k,i

≥
√
λ

 , πr, k
.=

Nk∑
i=1

Uk,iU
′
k,i

Let Φ0 = mean(Φ) be the yet unknown global mean, let Φ̃k,0
.= Φk,0−Φ0, let Hrk

.= span{Uk,i}Nk
i=1, and

denote η = [1, 1, . . . , 1]′ ∈ RN0 . Given that 0 = mean(Φ̂k) = 1
N0

Φ̂kη, the following is a routine probabilistic
equality

Φ̃kΦ̃′k = (Φ̂k + Φ̃k,0η
′)(Φ̂k + Φ̃k,0η

′)′ = Φ̂kΦ̂′k +N0Φ̃k,0Φ̃′k,0

The truncated version of Φ̃k is denoted
Φ̄k

.= Φ̆k + Φ̃k,0η
′

Since mean(Φ̆k) = mean(πr, kΦ̂k) = 0, hence Φ̆kη = 0, a repetition of the equalities right above, leads to

tr Φ̄kΦ̄′k = tr
(
Φ̆k + Φ̃k,0η

′
)(

Φ̆k + Φ̃k,0η
′
)′

= tr
(
Φ̆kΦ̆′k +N0Φ̃k,0Φ̃′k,0

)
≥
√
λ tr

(
Φ̂kΦ̂′k +N0Φ̃k,0Φ̃′k,0

)
=
√
λ tr Φ̃kΦ̃′k

(5)

Step 3: Let ηk
.= [1, 1, . . . , 1]′ ∈ RNk+1, and let {Wk,i}Nk

i=1 ⊂ RNk+1 be an orthonormal basis for η⊥k (that is,
let it be a maximal orthonormal set of zero-mean vectors in RNk+1). Let Ŭk

.= [Uk,i]Nk
i=1, Σ̆k

.= diag{σk,i}Nk
i=1

and W̆k = [Wk,i]Nk
i=1, and define the alternative truncated sub-ensemble as the columns of the matrix

Ψ̆k
.= ŬkΣ̆kW̆′

k =
Nk∑
i=1

σk,iUk,iW
′
k,i ⇒ Ψ̆kΨ̆′k = Φ̆kΦ̆′k

and its (unknown) counterpart

Ψk = Ψ̆k +
√

N0

Nk + 1
Φk,0η

′
k

In these terms there holds

trΨkΨ′k = tr
(
Ψ̆kΨ̆′k +N0Φk,0Φ′k,0

)
= tr

(
Φ̆kΦ̆′k +N0Φk,0Φ′k,0

)
≥
√
λ tr Φ̃kΦ̃′k

Step 4: The added component, when compared with Step 4 of Section III, is the computation of the
global mean from the previously computed sub-ensemble means (here we explicitly use the fact that the
sub-ensembles are equal in sizea):

Φ0 = mean {Φk,0}Kk=1

Having computed Φ0, the values of the sub-ensembles Ψk becomes explicit. The completion of Step 4, and
thus, of the algorithm, therefore proceed precisely as in Section III, leading to the same conclusion:

Observation IV.1 The projected ensemble satisfies the resolution bound λ:

tr πrΦ̃Φ̃′πr

tr Φ̃Φ̃′
> λ

V. Computational Complexity of Building Covariance

A. Full Covariance

Since the full covariance is calculated using the entire data set Φ, the global mean Φ0 must be calculated at
the outset to produce the zero mean set Φ̃ = Φ−Φ0η

′, where η is the column vector [1 . . . 1]T of dimension
N . This zeroing process requires M(N − 1) additions to produce the global mean

Φ0 =
1
N

N∑
i=1

Φi

aAlternative approaches, based on sub-ensemble partitioning with variable size and weight will lead to obvious counterparts.
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and then another MN subtractions to zero the set, resulting in a total of M(2N − 1) addition operations to
produce Φ̃.

Computation of the complete covariance matrix among N zero mean snapshots Φ̃i ∈ Φ̃ ⊂ RM×N requires
N2 inner product calculations. Since the covariance is the symmetric matrix C =

(
Φ̃, Φ̃

)
, this is immediately

reduced to N(N + 1)/2 inner products needed to produce the upper diagonal matrix used in eigenvalue
routines. Each inner product is the discretized version of (II), approximated by the sum

(Φ,Ψ) =
∫

Ω

Φ ·ΨdV ≈
M∑
i=1

Φi ·Φiwi, (6)

where M is the total number of grid points times the number of spatial dimensions, and each wi
b is the

weight assigned to each grid point used to perform the numeric integration. This implies that each inner
product requires 2M multiplications and M − 1 additions. Thus, in order to calculate the covariance in d
dimensional space

[N(N + 1)/2](M − 1) +M(2N − 1) (7)

additions and
N(N + 1)M (8)

multiplications are performed.

B. Partitioned Covariance

Stage 1: Compare this to the computations performed in the iterative POD algorithm when dividing the
set Φ̃ into K partitionsc, each of size L1. In the first stage, each partition Φk ⊂ RM×L1 is zeroed using
the local mean Φk, 0, and the upper diagonal portion of each covariance matrix need be calculated. Since K
such matrices must be calculated, this results in

K {[L1(L1 + 1)/2](M − 1) +M(2L1 − 1)} (9)

addition operations and
K {L1(L1 + 1)M} (10)

multiplications in the first stage. This partitioning process results in K sets of local modes, resulting in a
total L2 modes that are passed on to stage 2.

Stage 2: The first step in stage 2 of the iterative algorithm requires producing new snapshot sets from
each set of partition modes found in stage 1. This is performed by multiplying each of the mode sets Ψk by
its appropriate zero-mean orthonormal set Wk. This procedure requires

(L2 −K)(L2 +K)M (11)

additions and
ML2(L2 +K) (12)

multiplications. Following this, the new reconstructed snapshots require a correction factor to correct for
the local mean zeroing process used on each partition. To do this, each of the K partition means Φk,0 must
be multiplied by the correction factor

αk =
√

N0

Nk + 1

an additional KM multiplications. The mean correction also requires

M(L2 +K) (13)

bnote that the vector w is actually the d-repetition of the weights of the grid points, one for each of the d-dimensional
components of the velocity.

cThe assumption is made that the set Φ̃ divides evenly into K partitions. In this case the maximum number of computations
is performed. Otherwise, the set Φ̃ is reduced to contain the maximum number of snapshots possible to contain K partitions
of equal size.
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additions. From here, the covariance is built exactly as in stage 1 with matrix of size M×(L2 +K), resulting
in

[(L2 +K)(L2 +K + 1)/2](M − 1) (14)

additions and
(L2 +K)(L2 +K + 1)M (15)

multiplications.
Totals: Taking advantage of the fact that L1 = N/K, the totals for the iterative algorithm are thus

N(N +K)(M − 1)
2K

+ (2N −K)M +
[
(L2 −K + 1)M +

(L2 +K + 1)
2

(M − 1)
]

(L2 +K) (16)

additions, [
N(N +K)

K
+K + (L2 +K)(2L2 +K + 1)

]
M (17)

multiplications. The expression (16) can be simplified by noting that in any fluid simulation the number of
data points M is much larger than 1, and so (M − 1) ≈M this leads to a simplified addition count of[

(2N −K) +
N(N +K)

2K
+

1
2

(3L2 −K + 3)(L2 +K)
]
M. (18)

The ratio of equations
[(18) + (17)]
[(7) + (8)]

(19)

is precisely the arithmetic savings expected when using the iterative algorithm instead of that which requires
calculation of the complete covariance matrix. This is quadratic with respect to the chosen number of parti-
tions K, allowing for optimal partitioning provided some a priori knowledge of the second stage covariance
dimension L2. For our purposes, as described in the following section, the dimension L2 is estimated by
making an assumption as to the average number of modes Nk retained when truncating each partition Φ̂k,
allowing for optimization in K.

VI. Numerical Results

The algorithm is demonstrated in POD analysis of simulation data gathered for a flat plate in both two
and three dimensions.

A. 2-D Simulation Benchmark Case

First considered here is the two dimensional incompressible flow simulation using the fast immersed boundary
method described in33 . This simulation was run at the Reynolds number of Re = 300, where the flow is
non-dimensionalized with respect to the incoming flow velocity U∞ = 1 and the plate’s chord, c = 1. The
computational domain is

Ω2D = {x = (x, y) : −5 ≤ x ≤ 15, − 5 ≤ y ≤ 5} (20)

where the center of the plate center is at the origin. The simulation employs a rectangular 251×251 grid (i.e.,
comprising 63, 001 points) covering the physical domain Ω and is conducted using a time step of dt = .01
convective time units (CTU), with snapshots saved every 10 time steps.

The data trajectory under study begins at the natural attractor, at an angle of attack (AOA) of 30o,
where the flow is fully separated and characterized by periodic, alternating vortex shedding from the leading
and the trailing edges of the plate. The AOA is then ramped down to zero, and after the flow settles, ramped
back to AOA = 30o (Figure 2), thus dynamically crossing the bifurcation into and out of vortex shedding,
both ways. The entire simulation lasted 200 convective time units, captured by 2000 snapshots.

This transient is characterized not only by the transition out of, and then back into, instability, but
also by changes in the dominant temporal and spatial frequencies in the instability regime, as the angle of
attack and the wake diameter change, and by substantial dynamic changes in the mean field, both during
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Figure 2. Angle of attack of the flat plate. The domain 80 ≤ T ≤ 280 is chosen such that motion begins
well after the simulated flow has settled on the attractor.

the changes of the AOA and during the time interval where AOA=0o. As a demonstration of the techniques
proposed in this article we require the POD compression to fully capture this complex behavior at the high
level of λ = 0.99. The number of modes required for this selected λ by a standard POD approximation is 34.
In this two dimensional case, the nature of the modes found by POD approximation can be characterized
as contributing the resolution of either the non-oscillatory mean field correction,14,34 or of harmonics of the
periodic vortex shedding.

The number of partitions used in an application of the accelerated algorithm was chosen by an a priori
estimate that each individual partition will require an average of 12 modes to satisfy the resolution bound√
λ (Figure 4), optimizing the ratio (19) for K by describing L2 as the function

L2(K) = (12 + 1)K.

This assumption is based on analysis of single vortex shedding periods, and produces the estimated optimal
value K = 19 (Figure 3).

Figure 3. Solution for choosing optimal partitioning of the two dimensional benchmark data set using the
assumption mean(Nk)=12, k = 1, . . . , K

The approximate POD algorithm required the clearly suboptimal 42 modes, as compared with the optimal
of 34 modes in the standard POD approximation, to satisfy the resolution bound

trπrΦ̃Φ̃′πr ≥ λtrΦ̃Φ̃′
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as introduced in (4). However, the CPU time dedicated to POD arithmetics was reduced by a factor of
× 15.9, as compared with the POD algorithm, and close to ideal prediction. Furthermore, the first 30 POD
eigenvalues, shown in Figure 5 are nearly identical to those produced by the approximate algorithm, and the
turbulent kinetic energy within the system is well preserved by the approximation (Figures 6,7).

Figure 4. An example of the local singular values found for one of the 19 partitions within the iterative
algorithm, compared to the final result.

B. 3-D Simulation

The three dimensional data set is produced by a simulation of the incompressible flow over a variable pitch
flat plate of chord length c = 1 and aspect ratio AR = 2, at Re = 300. The same non-dimensionalization
conventions as in the two dimensional case are used here. This simulation was carried over the domain

Ω3D = {x = (x, y, z) : −4.0368 ≤ x ≤ 6.1, − 5 ≤ y ≤ 5, − 5 ≤ z ≤ 5 }, (21)

using a rectangular grid of size 126 × 56 × 81, thus producing data snapshots of dimension 1.7 · 106. As
before, the simulation advances in increments of dt = 0.01 CTU, saving every 50 th snapshot, i.e., at 0.5
CTU intervals, and a total of 200 snapshots for the simulation considered here.

Before pitching of the plate begins, the simulation is run for 40 CTU at AOA=0o so that the flow field
has time to overcome the transients present in the impulsive start. This final field is then used as the initial
state for the pitching plate simulation. Once pitching begins, the angle of attack α is described by

α̇(t) = αmax
1√
2πσ

exp
[
− (t− ta)2

2σ2

]
and α(t) = αmax

1
2

[
1 + erf

(
t− ta√

2σ

)]
where αmax = 30o, ta = 3σ, and σ = 3 are chosen. The motion of the plate is considered complete after
t = 18, where the remainder of the simulation allows the flow to settle to the attractor (FIgure 8).

The periodic flow of the attractor is sampled at very low temporal resolution, which places a practical
bound on the choice of K used in the approximate POD algorithm. Specifically, we found that a partition
size of 20 snapshots was the smallest that could be used while still capturing full periods of the dominant
modes of the system (Figure 9, forcing the upper bound K ≤ 10.

Another limitation occurs due to the much higher complexity, inherent in the three dimensional system.
Along with the low temporal sampling rate, this leads to the retention of considerably more modes per
partition than observed in the two dimensional case. Again in the test case of this particular data set, each
partition of 20 snapshots was only reduced to an average of 7-8 modes, even when given a lower resolution
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Figure 5. Singular values as solved by both the actual and the approximate POD algorithms, both
using the resolution bound λ = 0.99

Figure 6. Turbulent Kinetic Energy of the approximated space compared to that of the original
snapshot matrix.
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Figure 7. Percentage of the TKE preserved in the approximation of the two dimensional data set
performed by the iterative POD.

Figure 8. Angle of Attack α(t) used in the three dimensional pitching plate simulation.

Figure 9. Dominant mode coefficients of the three dimensional pitching plate simulation. Note the
long transient as the flow responds to the motion of the plate, finally settling to the attractor at t > 80.
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bound than we specified of λ = 0.8d. This proved to reduce the data to 47 modes after stage 1, finally
resulting in the 8 modes needed to approximate the complete snapshot set, representing the transient.

Figure 10. Singular values of the three dimensional data after the second stage of the accellerated
algorithm. A single shift mode and the dominant pair are clearly present (σi, i = 1, 2, 3), the next four
(i = 4, . . . , 7) appear as a single harmonic group.

As in the two dimensional case, again members of the orthonormal set produced by this algorithm can
be classified as either modes representing mean field correction (termed shift modes), or as harmonically
influenced groups. the relative energetic contributions of these modes is indicated by the relative strength
of the singular values (Figure 10). Examples of the dominant shift mode and the first harmonic pair are
shown in Figures (11,12), respectively. However, in the more complex three dimensional case the grouping
of harmonically influenced modes is much less distinct outside of the dominant shedding frequency. The
purpose of the companion paper35 is to to further process the current compression to obtain harmonically
coherent structures.

Figure 11. Original POD mode, the dominant shift mode, viewed from above at depth y = −0.38021.
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dHigher resolution bounds than λ = 0.8 have not been achieved at this time, primarily due to memory constraints.
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Figure 12. Original POD mode 2, the first of the dominant harmonic pair, viewed from above at depth
y = −0.38021.
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