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The necessity to include dynamic mean field representations in low order Galerkin models, and the
role and form of such representations, are explored along natural and forced transients of the
cylinder wake flow. The shift mode was introduced by Noack et al. �J. Fluid Mech. 497, 335 �2003��
as a least-order Galerkin representation of mean flow variations. The need to include the shift mode
was argued in that paper in terms of the dynamic properties of a low order Galerkin model. The
present study revisits and elucidates this issue with a direct focus on the Navier–Stokes equations
�NSEs� and on the bilateral coupling between variations in the fluctuation growth rate and mean
flow variations in the NSE. A detailed transient modal energy flow analysis is introduced as a new
tool to quantitatively demonstrate the indispensable role of mean field variations, as well as the
capacity of the shift mode to represent that contribution. Four variants of local and global shift mode
derivations are examined and compared, including the geometric approach of Noack et al. and shift
modes derived by a direct appeal to the NSE. Combined with the conclusions of the energy flow
analysis, the similarity of the resulting shift modes indicates that the shift mode is no accident:
indeed it is an intrinsic component of transient dynamics. Mean field representations can be found
as implicit components in successful low order Galerkin models. We therefore argue for the benefit
of the simple and robust explicit formulation in terms of added shift modes. © 2010 American
Institute of Physics. �doi:10.1063/1.3298960�

I. INTRODUCTION

Very low order Galerkin models are typically based on
modes representing the dominant instability in the flow. By
this standard practice, models may use empirical Karhunen–
Loève/proper orthogonal decomposition �POD� of an
attractor,1–7 employ linear stability eigenmodes,8–11 or, more
recently, be derived by linear-operator-theoretic model re-
duction methods, such as the balanced POD.12–15 While an
efficient kinematic approximation of dominant coherent
structures may be feasible with very few modes, all too often
the corresponding Galerkin model is incapable to properly
predict the dynamic behavior,16,17 to the point that stability
properties of solutions of the Navier–Stokes equation �NSE�
may be reversed in the reduced order system.18,19 In contrast,
an effective model should capture dynamics not only over
the attractor limit cycle, but also over the corresponding at-
tractive inertial manifold20 that connects the unstable fixed
point with the limit cycle. This paper highlights the absence
of adequate mean field representations, as one cause for such
difficulties, and investigates means to incorporate mean field
dynamics in low order Galerkin models, as a remedy.

Consider laminar two-dimensional �2D� wake flows as
an illustration. Whereas a single POD mode pair provides an

excellent attractor resolution, the associated Galerkin model
is of no dynamic value:17 the marginally stable Galerkin
�oscillator� model is structurally unstable and incapable of
predicting even the attractor’s energy level, let alone growth
rates. An increase in the number of POD modes16 may offer
only a partial improvement.17 Even the balanced POD ap-
proach, with its direct focus on dynamics, fails by predicting
a global instability in systems dominated by an unsteady
attractor.21 This deficiency is detrimental to the use of re-
duced order Galerkin models as efficient encapsulations
of dominant flow physics features, and in some cases, to
their use in feedback control design, where both transient
representation capabilities and very low dimension may be
essential.

As shown in Ref. 17, a key deficiency of both standard
POD models and of linearization-based models is the exclu-
sion of the interaction of oscillatory unsteadiness with the
mean flow. From the perspective elaborated in Ref. 17, what
is missing is a representation of the state-space direction of
the transient mean field correction. That direction is excluded
in attractor-focused POD bases. It eludes linear stability
analysis and �linear� balanced POD constructions, due the
intrinsic nonlinearity of the interactions of unsteady fluctua-
tions with the mean field.

These observations connect with the seminal work ona�Electronic mail: tadmor@coe.neu.edu.
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POD representations of the turbulent boundary layer in Ref.
22 and are at the foundation of mean field theory, introduced
in Refs. 23 and 24 and continued in Refs. 25–28. The shift
mode was introduced in Refs. 17 and 29 as a POD model
augmentation that represents the nonlinear dynamic effects
of mean field corrections and a key enabler for the dynamic
representation of transients. In the cylinder wake flow ex-
ample, augmentation by a single shift mode transforms an
unusable model into a robust representation of the system’s
key dynamic properties. Similar and related observations and
applications to feedback flow control were made by the
present authors and by others in a variety of contexts and
configurations.17,23–25,28–37 Investigation of the dynamic role
of nonlinear mean field corrections in flow control where
carried also by Wesfreid, Protas, and collaborators, e.g., in
Refs. 38–40.

The need for a mean field model was explained in Ref.
17 in terms of the feasible dynamic envelope of a least-order
Galerkin system. In this sense, it provides a global extension
of Landau’s amplitude equation.41–43 The objective of the
current presentation is to explore a complementary perspec-
tive, based on a direct appeal to the NSE: building on the
seminal ideas of Ref. 22, the NSE is partitioned as a system
coupling the Reynolds averaged NSE �RANSE� and a band-
pass filtered variant. The need for a mean field model and its
ideal, local form, are now derived from the dynamically es-
sential bilateral coupling between variations in the fluctua-
tion growth rate and variations in the mean field. Standard
POD models represent only the band-pass filtered NSE and
therefore cannot properly adjust the fluctuation growth rates
along transients. The mean field model remedies this defi-
ciency, serving as a complementary, Galerkin–Reynolds
equation, representing the NSE mechanism to adjust fluctua-
tion growth rates.

Modal energy flow analysis of transient dynamics is in-
troduced as a new tool, quantifying the instantaneous dy-
namic role of individual flow components. Here, it is used to
demonstrate how excluding mean field variation may lead to
dramatic distortions, ranging from global exponential growth
to the elimination of the instability near the steady solution.
In contrast, including a crude representation of mean field
variations by a single shift mode, suffices for a decent dy-
namic approximation of the exact NSE solution, even with
the simplest, least-order approximation of the unsteady fluc-
tuations by a single POD mode pair.

The paper further aims to establish connections between
the dynamic-analytic perspective on mean field models and
easily computed, empirical-kinematic representations. Glo-
bal and local dynamic definitions of the shift mode will thus
be compared with kinematic counterparts, based on the ex-
traction of the orientation of base flow changes from natural
and actuated transient data. These approaches will be exam-
ined and compared using the natural and actuated laminar 2D
wake flow behind a circular cylinder as a benchmark. The
results reveal both a fundamental consistency, and points of
departure, such as due to the contribution of periodic actua-
tion to the Reynolds stress. The similarity of alternative shift
mode definitions and the sufficiency of the simplest defini-
tion, as noted above, therefore complement the dual message

of this paper, that mean field variations can often be amply
resolved by very simple means.

The paper is organized as follows: a brief review of the
cylinder wake benchmark is provided in Sec. II. Mean field
theory is discussed in Sec. III, including motivation and
background, the NSE-based analytic framework, and a quan-
titative demonstration in terms of transient modal energy
flow analysis. Candidate shift mode definitions are stated and
discussed in Sec. IV and compared quantitatively in Sec. V.
Concluding remarks are brought in Sec. VI. The Appendix
elucidates the control aspects of the forced trajectories,
which are secondary to the paper’s focus.

II. THE CYLINDER WAKE BENCHMARK

The cylinder wake flow serves as an illustration and a
test-case for validation of the concepts presented in this pa-
per. The key characteristics are reviewed in Sec. II A, fol-
lowed by Sec. II B with details of the simulations data used.
The concept and computation of a flow representation with a
dynamic base flow are discussed in Sec. II C.

A. The laminar 2D cylinder wake flow

Figure 1 depicts the cylinder wake configuration. The
Cartesian coordinates, x and y, are aligned with the incoming
flow and transverse direction. Boldface is used for an abbre-
viated vector notation �e.g., x= �x ,y��. The cylinder, repre-
sented by the black disk, occupies the area

�D = �x � R2:�x� � 1/2� ,

where we relate to the Euclidean norm � �. The flow is rep-
resented by streamlines over a subset of the computational
domain

� = �x � R2 \ �D:x � �− 5,15�,y � �− 5,5�� .

The velocity field is u= �u ,v�, where the components u and v
are, respectively, aligned with the x and y axes.

Figure 1 also includes a vertical volume force, defined
over the domain indicated by the downstream disk

volume force

x

y

FIG. 1. The actuated cylinder wake: the cylinder is represented by the black
disk. The downstream circle and arrows indicate the location and orientation
of a volume-force actuator. Streamlines represent a snapshot of the natural
flow. Thick �thin� curves correspond to positive �negative� values of the
stream-function—here and in all following flow visualizations.
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f�x,t� = G�t�g�x�, where

g�x� = ��0,1� , x � �G,

�0,0� , otherwise,
	 �1�

�G = �x � R2:�x − �0,2�� � 1� .

The modulating amplitude G�t� is viewed here as a control
command whose purpose is discussed in Sec. II B below.

The flow is characterized by the Reynolds number

Re =
U�D

�
,

where U� is the velocity of the oncoming flow, D is the
diameter of the cylinder, and � is the kinematic viscosity of
the fluid. In the sequel, all quantities are nondimensionalized
with respect to the cylinder diameter D, the flow velocity U�,
and the fluid density �.

The incompressible flow satisfies the continuity equation

� · u = 0, �2a�

and the NSE

�tu + � · �u � u� + �p −
1

Re
�u − f = 0, �2b�

where the control term f represents the actuation volume
force in Fig. 1, as defined in Eq. �1�. The empirical data used
in this paper was produced by direct numerical simulations
�DNS� of the incompressible NSE �2� on a symmetric grid
with 8712 nodes distributed over the specified domain.

The wake flow becomes unstable at Re
47.8,44 The
simulation data used in our presentation were obtained at
Re=100, i.e., far above this onset value and far below the
transition Reynolds number of 180, where three-dimensional
instabilities become important.45–48 At this Reynolds number,
the natural flow converges to a periodic state associated with
von Kármán vortex shedding. This periodic solution is
strongly dominated by the first temporal harmonic at the
shedding frequency. The first POD mode pair reflects this
first shedding harmonic and resolves some 95% of the fluc-
tuation energy.16 Similarly, the early transient, initiated by a
small perturbation of the unstable, steady solution, is domi-
nated by the two eigenmodes, associated with the instability.
Furthermore, fluctuations of each single period of the natural
transient from the time-windowed averages are dominated by
a single pair of coherent flow structures, which continuously
morph from the instability eigenmodes to the dominant at-
tractor POD modes.34,35,49

B. Simulation data

Two simulation trajectories will be used as empirical
data in quantitative analysis. Figures 2 and 3 represent these
trajectories by the respective phase-averaged fluctuation en-
ergy, K, termed hereafter the turbulent kinetic energy, and by
the actuation level. The computation of K is deferred to
Sec. II C.

The natural transient from a small perturbation of the
unstable steady NSE solution to the attractor, depicted in Fig.

2, represent the inertial manifold20 and is a simple but ge-
neric example of unforced flow behavior in systems with an
unsteady attractor. This trajectory will be referred to, thence-
forth, as the natural transient �i.e., suppressing mention of its
beginning and end�. A moderately actuated transient, in Fig.
3, is a generic example of feedback controlled flow tran-
sients. A common flow control objective is to suppress vor-
tex shedding.50–56 We therefore consider transients between
the desirable steady solution and the attractor, including the
descending trajectory, which is slowly driven from the attrac-
tor to the steady solution, and the ascending trajectory, which
is allowed to gradually return to the attractor. In both parts,
the TKE changes at a slower rate than the natural, uncon-
trolled transient.

Details on the control used are deferred to the Appendix.
The role of mean field models in flow control deserves and
received dedicated investigations; examples include systems
actuated by a volume force,29,34 vertical oscillations,32,33,35

and a synthetic jet.36 Studies of the harmonically rotated cyl-
inder, by Wesfreid, Protas, and collaborators,38–40,57 also
stress the dynamic role of mean field corrections. The present
selection of the volume force aims to simplify the analytic
burden of what is a side issue in this study. This selection is
nonetheless generic, in view of the fact that other forms of
�boundary� actuation are commonly represented in low order
Galerkin models by actuation modes that mimic volume
forces,36,55,58–62 as well as the fact that the main impact of
moderate levels of actuation on the mean field, in such mod-
els, is indirectly, through the Reynolds stresses associated
with changes in unsteadiness, in the flow. We also note that,
while very aggressive actuation would typically require
richer mode sets to approximate both fast fluctuations �e.g.,
by additional POD modes� and mean field variations �by
additional shift modes�, the conclusions and tools elaborated
here are applicable in such cases as well.

C. Empirical base flow and fluctuation trajectories

The Reynolds decomposition63 partitions the flow field
as a sum of a mean flow u and an unsteady fluctuation u�.
Fluid dynamics studies and reduced order models of turbu-
lent flows typically focus on an attractor’s unsteadiness, en-

0 10 20 30 40 50 60 70
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t

K

FIG. 2. The time evolution of the fluctuation energy, K, of the natural
transient from the steady solution to the attractor. Circles along the curve
mark the midpoints of 20 single-period �and partially overlapping� time
intervals that are used to obtain local shift modes.

034102-3 Mean field representation of the natural and actuated cylinder wake Phys. Fluids 22, 034102 �2010�

Downloaded 12 Mar 2010 to 195.220.223.244. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



capsulated in u�, whereby u is typically fixed. Our focus on
transient dynamics and on mean field variations motivates
the substitution of the steady mean, u, by a slowly varying
base flow uB. Thus

u = uB + u�. �3�

This formalism agrees with the conventions of statistical
fluid dynamics for statistically nonstationary processes.

Following Ref. 25, the assumed slow variation in the
mean flow and of harmonically dominated fluctuations can
be formalized by introducing a small parameter 1��	0 and
slowly varying amplitude and frequency functions, u0

B�x ,�t�,
uk

a�x ,�t�, uk
b�x ,�t�, and 
��t�, such that

uB�x,t� = u0
B�x,�t� , �4a�

u��x,t� = �
k=1

M

�uk
a�x,�t�cos�k
��t�t�

+ uk
b�x,�t�sin�k
��t�t�� , �4b�

where M is the number of significant temporal harmonics in
the fluctuation. The reciprocal parameter 1 /� is viewed as a
time constant for variations that are slow, relative to the pe-
riod T : =2� /
. Under the ansatz �4�, we shall neglect time
derivatives of order O���.

A preliminary processing need is to extract uB, uk
a, and

uk
b from empirical flow data, using the ansatz �4�:

uB�x,t� =
1

T
�

t−�T/2�

t+�T/2�

d� u�x,�� , �5a�

and

uk
a�x,�t� =

2

T
�

t−�T/2�

t+�T/2�

d� u�x,��cos�k
�� ,

�5b�

uk
b�x,�t� =

2

T
�

t−�T/2�

t+�T/2�

d� u�x,��sin�k
�� ,

yielding also a working definition of the TKE

K��t� = 1
2 �u��· ,�t���

2 = 1
2 �u�· ,�t� − uB�· ,�t���

2 . �5c�

Here the norm � �� corresponds to the inner product in the
Hilbert space of square-integrable functions L2���:

�u,v�� = �
�

dxu · v . �6�

Estimating the period T, which may vary slowly but sub-
stantially along transients, is an implicit challenge in Eq. �5�.
A simple heuristic is applicable to harmonically dominated
flows, where the dominant POD mode pair represents the
first temporal harmonic. Along the natural transient, the cor-
responding POD mode amplitudes evolve as a1=r cos��
and a2=r sin��, with slowly varying r and 
= ̇. Moreover,
away from the steady solution, us, period averages āi

are negligible relative to r. Thus, one can estimate
 : = � �a1+ ıa2�, extract 
��t� as the slope of a straight line
approximation of  over a moving, fixed length time win-
dow �t− �T0 /2� , t+ �T0 /2�� �with T0	max�T��, and define the
instantaneous period as T��t� : =2� /
��t�. Near the steady
solution, denoted as us, the period is known from linear sta-
bility analysis.
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FIG. 3. �a� The time evolution of the fluctuation energy of the forced tran-
sient from the attractor toward the steady solution and back to the attractor.
This transient is longer �and slower� than the natural transient. �b� The time

evolution of the slowly varying amplitude G̃ of the oscillatory actuation

G= G̃ cos��. A higher amplitude is needed to drive the descending trajec-
tory toward the steady solution �—�, than during the relaxation of the as-
cending second half �- -�, as the flow gradually returns to the attractor. �c� To

highlight that difference in the required actuation amplitude, G̃ is plotted as
a function of the instantaneous fluctuation energy in the actuated descending
trajectory �—� and the ascending trajectory �- -�.
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The spatial symmetry of the cylinder wake facilitates the
computations of Eq. �5�, in that configuration: define the
symmetric and antisymmetric fields as

usym�x,y�: = 1
2 �u�x,y� + u�x,− y�� ,

vsym�x,y�: = 1
2 �v�x,y� − v�x,− y�� ,

uasym�x,y�: = 1
2 �u�x,y� − u�x,− y�� ,

vasym�x,y�: = 1
2 �v�x,y� + v�x,− y�� .

In these terms, POD modes representing odd harmonics of
the flow contribute only to uasym, and those representing even
harmonics and the mean field only to usym. Residual errors in
Eq. �5� are therefore reduced when u is substituted accord-
ingly by either usym or uasym. Likewise, the overwhelming
dominance of u� by the first harmonic allows us to approxi-
mate u�=uasym in Eq. �5c�.

III. MEAN FIELD THEORY

This section presents a first principles perspective on the
need to include mean field dynamics in low order Galerkin
models and on the form of such models. The analytic argu-
ments are reviewed in Sec. III B. A novel modal transient
modal energy flow analysis in Sec. III C demonstrates that
the contribution of mean field variations to the dynamic
forces in the NSE is indeed essential. That analysis also
shows that the kinematic shift mode from Ref. 17 �see also
GKSM 1, below�, arguably the crudest mean field model,
provides a good approximation of the dynamic effects of the
DNS-based mean flow. This observation suggests a dynamic
equivalence between the empirical-kinematic and analytic-
dynamic shift mode definitions, and justifies the use of the
former, which is much easier to compute. The discussion
begins in Sec. III A with an examination of a simple, moti-
vating example. It is used to establish ties with our earlier
work,17 where the shift mode and the kinematic approach to
Galerkin mean field models were first introduced, and with
prevalent model reduction methods for fluid flow systems.

A. A simple motivating example

We consider a minimal Galerkin model that approxi-
mates oscillatory instabilities arising from supercritical �soft�
bifurcations17

d

dta1

a2

a3
� = � − �a3 − 
 − �a3 0


 + �a3 � − �a3 0

�a1 �a2 − ��

�a1

a2

a3
� + 1

0

0
�b ,

�7�
s = a1.

Here a= �a1 ,a2 ,a3�T is the state, b is a control command, and
s is an output �e.g., a sensor signal�. �, ��, and 
 represent
parameters characterizing the linear instability, while �, �,
and � parameterize the nonlinearity.

The following are straightforward observations:

• as=0 is an unstable fixed point when b=0.

• Unactuated transients converge to a limit cycle

a1
��t� = ����/��cos�
�t� ,

a2
��t� = ����/��sin�
�t� , �8�

a3
��t� = �/� ,

where 
�=
+�� /� is the post-transient frequency.
• Natural transients are characterized by growing oscil-

lations in a1 and a2, and a slow, nonoscillatory tran-
sient in a3, tracking 2�K /��. Here K : =1 /2�a1

2+a2
2� is

the oscillation energy.
• The nonlinear coupling between the oscillatory and

nonoscillatory states is dynamically essential to repre-
sent both the instability of the origin, the varying
growth rates and the convergence to an attractor.

As shown in Refs. 17 and 29, the state-space dynamics
and the input-output �I/O� behavior described by Eq. �7� are
essentially equivalent to those of a least-order Galerkin rep-
resentation of the postbifurcation cylinder wake benchmark,
as described in Sec. II. Here, b takes the role of the �scaled�
volume-force modulation amplitude G in Eq. �1�, and s is a
high-pass filtered version of a velocity sensor signal. Similar
models represent other flow configurations, including wake
flows and separated flows over airfoils at high angles of
attack,36,64,65 as well as combustion instabilities.66,67

We shall now examine three approaches that are com-
monly employed to derive reduced order Galerkin models
for fluid flow systems, and use this examination to demon-
strate the possible shortcomings of models that do not in-
clude base flow dynamics: models based on linear stability
eigenmodes of the linearized system at the steady solution
�i.e., the origin�, POD approximation of the attractor, and
balanced POD, based on either of these operating points.

We start with approximations based on linearizations
around the fixed point at the origin. There is no trace of the
quadratic term of Eq. �7� in the linearized system

d

dta1�

a2�

a3�
� = � − 
 0


 � 0

0 0 − ��

�a1�

a2�

a3�
� + 1

0

0
�b ,

�9�
s� = a1�.

where we use a prime to represent the modeled �small� state
perturbations from the nominal operating point or orbit. The
number of parameters drop from six to three, indicating a
loss of information. Furthermore, the dynamics of Eq. �9� is
decomposed into two, uncoupled invariant subspaces. The
first is span�e1 ,e2�. �Here we use the standard notation of the
natural basis, where ei�Rn is defined by ei

= �0, . . . ,0 ,1 ,0 , . . . ,0�T, with the entry 1 in the ith place.�
The dynamics of a1� and a2� are captured by the compression
to the invariant subspace span�e1 ,e2�. This subspace is con-
trollable, observable, and open-loop antistable with an expo-
nential growth rate of �. The second invariant subspace is
span�e3�. It represents the exponentially stable dynamics of
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a3� which is neither controlled, nor sensed in the linearized
model.

The span of the unstable eigenmodes is therefore
span�e1 ,e2�. A model based on the Galerkin projection of Eq.
�7� on this subspace, using the origin as a base flow, postu-
lates an approximation of the form

a�t� = a1�t�e1 + a2�t�e2. �10�

It leads to the reduced order model

d

dt
�a1�

a2�
� = �� − 



 �
��a1�

a2�
� + �1

0
�b ,

�11�
s� = a1�.

This model provides a good initial approximation of
transients, near the origin, but wrongly predicts an unlimited
exponential growth, rather than the actual settling on the
attractor.

Next, we consider balanced truncation model reduction.
In its original form, this method is applicable to stable linear
systems. A common way to apply it to unstable systems is to
partition the state space into the invariant exponentially
stable and the unstable subspaces, including so-called mar-
ginally stable modes associated with pure oscillations. Model
reduction is then applied only to the stable component of the
system. Here, the stable subspace in Eq. �9� is neither con-
trollable nor observable, and is invariant under both the lin-
earized system and its adjoint. Model reduction, based on an
I/O perspective, is therefore bound to ignore the stable sub-
space span�e3� and lead once again to the reduced order sys-
tem �11�, with the shortcomings noted above.

A standard POD analysis and POD model will focus on
the hyperplane spanned by the attractor. Here the attractor
mean, a= �� /��e3, serves as an origin. As is easy to see, the
dominant POD modes are, again, e1 and e2. The POD ap-
proximation is therefore of the form

a�t� = ā3e3 + a1�t�e1 + a2�t�e2, �12�

where ā3=� /�. The projection of the original system �7� on
the hyperplane formed by such approximations leads to the
following Galerkin system

d

dt
�a1

a2
� = � 0 − 
�


� 0
��a1

a2
� + �1

0
�b ,

�13�
s = a1.

This ideal oscillator model fails on several accounts. First, it
identifies the unactuated steady solution with the attractor’s
mean, which is not a fixed point of the original flow. Second,
it does not predict the instability of the steady solution.
Third, it does not determine the convergence to a single at-
tractor, characterized by one specific oscillations amplitude,
namely, ���� /��. Finally, the system �13� is structurally
unstable and arbitrarily small numerical perturbations of its
coefficients can render it either exponentially stable or anti-
stable.

Summarizing our observations to this point, each of the
three Galerkin approximation approaches considered above

failed because it leads to a reduced order model in a hyper-
plane spanned by e1 and e2 alone, ignoring the orientation e3

of slow changes in the mean field. Indeed, in both the
first two approaches, this shortfall is an intrinsic property of
the method. The only remedy to this shortcoming is the re-
inclusion of the orientation of the mean field correction
e3�a−as. In a nutshell, that is the message of Ref. 17.

Indeed, the counterpart observation in the context of the
wake flow benchmark would be the inclusion in the expan-
sion set of a shift mode representing the global mean field
correction

u� � u0 − us, �14�

where us is the steady solution and u0 is the attractor’s mean
flow. This geometrical approach, repeated for completeness
in GKSM 1, below, was proposed in Ref. 17 and used in a
succession of flow control studies, cited in Sec. I. While the
considerations leading to the introduction of the shift mode
were clearly rooted in issues of dynamic representation, we
nonetheless term the specific definition �14� a kinematic shift
mode. We do so to contrast this derivation from kinematic
data, with methods based on a direct utilization of the gov-
erning NSE, as discussed in Sec. III B below.

Following Ref. 15, the last approximation we consider
here is the balanced POD approximation, based on the attrac-
tor a��t� as a periodic linearization reference. Using the no-
tations of Eq. �8� for the attractor trajectory, the perturbed
state is defined as a��t� : =a�t�−a��t�. In these terms, the
periodically time varying linearization is

d

dta1�

a2�

a3�
� =  0 − 
� − ��a1

� + �a2
��


� 0 − ��a2
� − �a1

��
2�a1

� 2�a2
� − ��

�a1�

a2�

a3�
�

+ 1

0

0
�b ,

�15�
s� = a1�.

As outlined in Ref. 15 �see also Ref. 68�, the analysis of
this periodic system can be carried, equivalently, in the con-
text of the lifted system. The lifting technique traces back to
work on periodic and delay systems.69 It attained its current
title in the context of studies of robust control of sample data
systems.70,71 The idea is to substitute the periodic, continu-
ous time system with a time invariant discrete time system
with distributed inputs and outputs based on periodic state
sampling. Leaving out technical details, the fact that the dy-
namics over the subspace spanned by e3 is coupled with that
of the other two state components means that this method
does not lead to neglecting span�e3� as an intrinsic property.
The same holds for balancing the linearization about attenu-
ated controlled attractors, e.g., using the counterpart of the
dissipative control described in the Appendix. The failure of
the balanced truncation based on the linearization about the
origin is, in this sense, a singular, nongeneric deviation.
Nonetheless, we note that balanced POD model reduction
does not guarantee the inclusion of the essential mean field
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correction in the expansion set. Various possible remedies
include the use of local reductions and parameterized fami-
lies of local mode sets, as in Refs. 34 and 49, or the inclusion
of the shift mode coefficient in the output equation for the
purpose of balancing. In particular, an a priori awareness and
computation of the shift mode are essential.

B. The NSE perspective

In this section, we explore the need for a Galerkin mean
field model and derive its form. When compared with the
original presentation, in Ref. 17, the contribution, both here
and in Sec. III C, is in the direct appeal to the NSE �2�,
which encapsulates the dynamics’ first principles. A simpli-
fying axiomatic framework, distilled from properties of the
cylinder wake flow and aimed to facilitate the analysis, is
delineated in Sec. III B 1. It is used in Sec. III B 2 to estab-
lish the need to account for mean field variations, and in Sec.
III B 3, to derive an NSE-based definition of a local shift
mode. Closing the discussion in Sec. III B 4, we comment on
the generality of the observations in Secs. III B 2 and III B 3.
A modal energy flow analysis of transient dynamics will be
introduced in Sec. III C and will provide a detailed quantita-
tive demonstration of the arguments made here.

1. An axiomatic framework and filtered partition
of the NSE

We analyze the system under three hypotheses that re-
flect a focus on a distinct temporal frequency in the flow. All
three hypotheses provide a good approximation of the ob-
served phase-averaged behavior of the natural and actuated
cylinder wake flow benchmark, as described in Sec. II and
elaborated in detail in Ref. 17.

a. Assumption NSE 1. The flow is dominated by a slowly
varying base flow uB, and a periodic, zero mean fluctuation
u�, with a slowly varying periodic characteristics, as in Eqs.
�3� and �4� with M =1.

b. Assumption NSE 2. The force field f is of the form
�4b�, with M =1 and the same frequency as u�.

c. Assumption NSE 3. A Krylov–Bogoliubov phase in-
variance hypothesis. The TKE of both the natural and the
actuated flow is slowly varying. In particular, the second
temporal harmonic of K�t� is negligible.

The focus on a single dominant harmonic is done for
simplicity, and we shall comment briefly on the effects of
multiple harmonics along the presentation and summarized
in Sec. III B 4. A discussion of the mean field model for a
system under �boundary� actuation at another, possibly unre-
lated frequency, can be found in Ref. 36.

We shall now consider the temporal partition of the NSE
�2b�, as an interaction of a base flow equation and a domi-
nant harmonic equation.

d. The base flow equation. This is the familiar RANSE.
It describes the dependence of the mean field uB on the fluc-
tuation u�. A computational approximation, valid under NSE
1, NSE 2, and NSE 3, is the average over a single period,
moving time window �5a�, denoted by an overline

� · �uB
� uB� + � · �u� � u�� + �p̄ −

1

Re
�uB = 0. �16a�

The suppression of terms neglected in Eq. �16a� is justi-
fied by the axioms NSE 1, NSE 2, and NSE 3: the sinusoidal
behavior of both u� and f means that the terms � · �uB � u��,
� · �u� � uB�, and f in Eq. �2b� average to zero over each
shedding period. The stipulation �4a� means that the time
derivative, �tu

B, is of order O��� and can be neglected in Eq.
�16a�.

We pay special attention to the Reynolds stress:

� · �u� � u�� =
1

T
� · �

t−�T/2�

t+�T/2�

d� u��x,�� � u��x,��

=
1

2
� · �u1

a
� u1

a + u1
b

� u1
b� . �16b�

The second equality in Eq. �16b� is the result of eliminating
by window averaging the product of temporally orthogonal
trigonometric functions in Eq. �4b�.

e. The fluctuation equation. Window averaging is substi-
tuted here by Eq. �5b� with k=1, i.e., the projection on the
first temporal harmonic

�tu� + � · �u� � uB + uB
� u�� + �p� −

1

Re
�u� − f = 0.

�16c�

The terms � · �uB � uB� and � · �u� � u�� comprise of a slowly
varying and a second harmonic components, and are elimi-
nated by the projection �5b�. Equation �16c� is a variant
Reynolds equation, where a constant weight is substituted by
a sinusoidal weight in the averaging over a moving time
window.

f. TKE evolution. The time evolution of the TKE, K�t�, is
key to understanding the dynamics of the system. The gen-
eral dynamic law, governing K, is of the form:72,73

d

dt
K = P = Pp + Pd + Pc + Pt + Ppr + Pa, �17�

where Pp, Pd, Pc, Pt, Ppr, and Pa are the respective produc-
tion, dissipation, convection, transfer, pressure and actuation
components of the supplied power P:

Pp = − �u�,� · �u� � uB���, �18a�

Pc = − �u�,� · �uB
� u����, �18b�

Pt = − �u�,� · �u� � u����, �18c�

Pd =
1

Re
�u�,�u���, �18d�

Ppr = − �u�,�p���, �18e�

Pa = �u�,f��. �18f�
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This section closes with implications of the axiomatic frame-
work on the various terms of Eq. �18�.

To begin with, note that Pt
0 neglecting first and
higher harmonics in Eq. �18c�. It is also well established
�see, e.g., Refs. 16 and 74� that Ppr
0 in the cylinder wake
flow. �Section III B 4 comments on the cases where Ppr
” 0.�
Phase averaging is the key to simplifying the remaining
terms. In relation to actuation, NSE 2 means that the volume-
force amplitude can be written as

G�t� = G̃��t�cos�
��t�t + ���t��, G̃ � 0. �19�

Invoking NSE 1 for the velocity field, the TKE becomes

K�t� = 1
2 �u��· ,�t���

2

= 1
2 �u1

a�· ,�t�cos�
t� + u1
b�· ,�t�sin�
t���

2 , �20�

where we use the L2��� norm. The phase invariance as-
sumption, NSE 3, means that K�t� is unaffected by phase
shifts, 
t�
t+�, in Eq. �20�. Consequently,

K = 1
2 �u1

a��
2 = 1

2 �u1
b��

2 and �u1
a,u1

b�� = 0. �21�

It will be convenient to normalize u1
a and u1

b, as

ua: =
1

�2K
u1

a and ub: =
1

�2K
u1

b,

�
u1

a = �2Kua and u1
b = �2Kub.

�22�

In particular, up to state-space rotation, ua and ub are the
POD modes of the period �t− �T /2� , t+ �T /2��, making Eq.
�4� equivalent to a temporally local POD approximation.

Using Eqs. �1�, �19�, and �22�, the phase-averaged equa-
tion �18� becomes

Pp = �p�ua,ub,uB� · K ,

Pc = �c�ua,ub,uB� · K ,

Pt = 0,

�23�
Pd = �d�ua,ub� · K ,

Ppr = 0,

Pa = �a�ua,ub,g� · G̃ · �K ,

where �p, �c, �d, and �a are functions of the modes in the
argument list. With constant POD modes, temporal depen-
dence enters due to the evolution of the base flow uB and of
the TKE K.

In summary, the axiomatic framework shapes Eq. �17� as

d

dt
K = �n�ua,ub,uB� · K + �a�ua,ub,g� · G̃ · �K , �24�

where the subscripts “n” and “a” indicate the natural �i.e.,
unactuated� and the actuated components.

2. The need for a mean field representation

Consider the natural transient, where Eq. �24� becomes

d

dt
K = �n�ua,ub,uB� · K . �25�

Equation �25� needs to accommodate the following
properties:

• A linearly unstable fixed point at us, where K=0.
• Growth of K along the natural transient.
• A fixed point with K�	0, on the attractor.
• Decay of perturbations from the attractor.

These requirements are abbreviated as

P = �nK�
=0, K = 0,

	0, K � �0,K�� ,

=0, K = K�,

�0, K 	 K�.
� �26�

An implicit restriction is on the states along the natural
transient/attractor and on the small perturbations thereof,
where our framework is valid. By Eq. �26�, �n must vary
with the operating condition. Specifically,

�n�ua,ub,uB��	0, K � �0,K�� ,

=0, K = K� 	 0,

�0, K 	 K�.
� �27�

In a standard POD Galerkin approximation, however, the
operating-point dependent modes ua and ub are substituted
by the fixed POD modes. Should variations in the base flow
uB be ignored as well, the coefficient �n will become con-
stant and the three conditions in Eq. �27� be mutually exclu-
sive! That is, the suppression of the dependence of �n on the
base flow then leads to precisely the same pitfalls observed
in the analysis of the minimal Galerkin system, in Sec. III A:
the inability to adjust the growth rate �n along a transient
plays the same role as the inability to adjust the growth rate
�−�a3 in Eq. �7�.

Let us recap: the flow is governed by a bilateral coupling
of the Reynolds and fluctuation equations �16a� and �16c�.
Variations in u�, hence in the Reynolds stress �16b�, modify
uB in Eq. �16a�. In turn, adjustments of uB are encoded by
the quadratic term � · �u� � uB+uB � u��, in Eq. �16c�, as
modifications of the linear growth rate and oscillation fre-
quency in u�. A formal analysis of the energy flow equation
demonstrated that a representation of both components of
these bilateral interactions is essential. In contrast, the tradi-
tional approach to POD modeling is focused solely on a
reduced order representation of Eq. �16c� and uses a fixed
base flow. This implies that the traditional POD model is
inherently incapable to adequately represent the flow’s dy-
namics. This conclusion explains pervasive difficulties with
POD models and will be demonstrated quantitatively in Sec.
III C. In Sec. III B 4, we will comment on the reconciliation
of this observation with the apparent existence of many POD
success stories.
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The analysis also highlights the need to account for the
transient deformation of the dominant fluctuation modes, ua

and ub, which is ignored in standard POD models, but is
reflected in changes in the growth rates �n and elsewhere.
While not central in this article, this issue will come to light
and its significance be quantified in the modal energy flow
analysis in Sec. III C. The authors elaborated on the role of
mode deformations in Refs. 34, 49, and 75. Related observa-
tions were made by a number of other authors, e.g., Refs. 35
and 76–78.

3. An NSE-based shift mode definition

Consider a small perturbation �u1
a�x ,�t� and �u1

b�x ,�t� in
the dominant oscillatory modes:

�u��x,t� = �u1
a�x,�t�cos�
t� + �u1

b�x,�t�sin�
t� .

Neglecting terms that are quadratic in perturbations, the ap-
proximate contribution to the Reynolds stress is then

� · ��u� � u� + u� � �u��

= � ·
1

T
�

t−�T/2�

t+�T/2�

�d��u��x,�� � u��x,��

+ u��x,�� � �u��x,���

=
1

2
� · ��u1

a� � u1
a� + u1

a� � �u1
a�

+ �u1
b� � u1

b� + u1
b� � �u1

b�� . �28�

The perturbation of the Reynolds stress is associated with a
perturbation �uB of the base flow, which satisfies the linear-
ized Reynolds equation:

� · ��uB
� uB + uB

� �uB� + � · ��u� � u� + u� � �u��

+ ��p −
1

Re
��uB = 0. �29�

This equation is a first principles definition of a local mean
field correction; i.e., a local shift mode

u� � �uB.

We shall revisit this and related definitions, in Sec. IV.

4. The generality of our conclusions

In closing, we examine the generality of the arguments
and conclusions above when the axiomatic restrictions to a
single dominant frequency is dropped. This is obviously
called for, given the ubiquity of flows displaying far more
complex behavior and, indeed, of successful POD models
that do not explicitly include shift modes.

A generic property of low order Galerkin models is the
restriction to a limited range of length scales and a temporal
bandwidth. Thus, for sufficiently large M and T, the Galerkin
expansion is �approximately� invariant under the truncated
windowed Fourier transform �4�. �The caveat is that longer
time windows, necessary to justify the “slow time variations”
assumption, will filter out short-lived irregular phenomena,
restricting the time-scale over which transients can be re-
solved by a point-wise approximation.� The assumption that

a low order Galerkin model provides a viable dynamic rep-
resentation therefore justifies the partition of the NSE as the
coupled interaction of a low-pass filtered equation �i.e., the
RANSE�, and a multiharmonic, band-pass-filtered fluctuation
equation, generalizing the partition �16�.

A point of departure from the simplicity of the argu-
ments in Sec. III B 2 is the generic presence of multiple har-
monics �i.e., M 	1� in Eq. �4b�. Then, the mere structure of
the NSE transfer term � · �u� � u�� in the generalized equa-
tion �16c� does not necessitate a zero contribution of the
transfer power Pt in Eq. �17�. It is a standard observation,
however, that even when the transfer term does not vanish, it
is generically too small, and insufficient to explain the tran-
sition from positive linear growth, at us, to a marginally
stable attractor’s energetic level.79

Concerning the argument that the linear growth rate
needs to change, we appeal to the conceptual framework of
finite-time thermodynamics in Galerkin flow models.80,81

Here, one notes the complementary roles of the linear and
the quadratic Galerkin terms in the flow’s energy economy:
TKE production and dissipation are the domain of the linear
term. The quadratic Galerkin terms provide the mechanism
for triadic loss-less modal energy exchanges. Nonequilib-
rium modal energy levels are determined as a balance of net
modal production and dissipation rates and triadic redistribu-
tion rates. The generic change in linear production and dis-
sipation rates, between us and the attractor, therefore, leads
to a change in balanced modal energy levels, precluding a
fixed linear term from explaining both the early transient-
and near-attractor dynamics.

Indeed, an examination of POD success stories reveals a
pattern whereby the focus of the model quality evaluation is
commonly on near-attractor dynamics, where linear growth
rates are adjusted by eddy viscosities.22,82–84 Alternatively,
cubic terms are included22,83 to account for changes in the
mean field, albeit in a more complex form than was allowed
by the use of a shift mode. As predicted by the arguments
presented here, the standard affine+quadratic POD model
often fails, or severely distorts dynamic predictions for larger
perturbations. A pertinent example, illustrated in Fig. 4, is the
aforementioned eight-state cylinder wake model, which
grossly underpredicts the natural transient growth rate and
overpredicts the transient duration.16,17 Even to that extent,
the success of the POD model in Ref. 16 may be partially
attributed to the use of extended POD �Ref. 85� modes, ex-
tracted from transients approaching the attractor, and there-
fore including traces of mean field variations.

In contrast, the inclusion of a shift mode in a three-state
model with only two attractor POD modes leads to a drastic
improvement in the predicted convergence time. The three-
state model is of the form �7�, and the improvement is pre-
cisely the result of the ability to dynamically adjust the
growth rate in the oscillatory states a1,2, due to changes in
the shift mode coefficient, a3, along transients. The growth
rate in this case is still underpredicted and the attractor is
overpredicted in the exact Galerkin projection. As will be
demonstrated by the detailed modal energy flow analysis in
Sec. III C, the reasons are precisely those highlighted in Sec.
III B 2: the truncation of the energy cascade and the dynamic
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deformation of coherent structures. As seen in Fig. 4, includ-
ing linear stability modes in the expansion, it is physically
motivated which compensates for mode deformation, recov-
ering the correct growth rate. This issue is discussed in more
details in Refs. 34, 49, and 75. Figure 5 provides a clear view
of the overprediction of the fluctuation level, relative to the
approximate change in the mean field. Calibration of the
three-state model can compensate for both dynamic effects at
the Galerkin system level32 but will not correct the reduced
resolution effects of mode deformation.

In closing, we highlight two specific modifications of the
simple framework discussed here, which may be necessary,
in general. The first concerns the dimension of the mean field
model. The shift mode is derived in Sec. III B 3 as a solution
of the linearized Reynolds equation �29�, and is determined
by the perturbation of the Reynolds stress �16b�, due to
variations in u�. When Eq. �4b� involves M 	1 harmonics,
each harmonic component contributes to a corresponding
Reynolds stress term, �1 /2�� · �ui

a
� ui

a+ui
b

� ui
b�. Unless it is

justifiable to algebraically slave dynamics at higher harmon-
ics to the dominant frequency, this allows up to M degrees of
freedom in the linearized Reynolds stress, leading up to M
independent shift modes.

Another point concerns flows where the pressure power
is not negligible. The pressure force can be approximated by
a linear86 or a mixed linear-quadratic term in u� �Refs. 72
and 73; see also Ref. 87�. This means that the period-
averaged contribution of the pressure power will admit the
same form as the production and convection terms, in 23,
enabling the analysis to continue unaltered.

C. Modal energy flow analysis

The net modal energy supply rates �i.e., modal power�
determine the instantaneous growth rates of unsteadiness in
each mode and in the flow. Energy flow rates also character-
ize the specific roles played by each mode in the mechanisms
that govern flow dynamics, i.e., the extraction of energy from
the mean flow, the dissipation and convection of TKE, the

triadic intermodal energy transfer, and the effects of pressure
work and of actuation on modal contributions to turbulent
behavior. Concepts of energy flow rates are also at the foun-
dation of a finite-time thermodynamic statistical closure
theory, developed recently for Galerkin approximations.80

Modal energy balance equations were derived and studied in
Refs. 72 and 73 generalizing a framework established in
Ref. 82.

The focus of modal energy flow analysis, to date, has
mostly been on the attractor, where the compression of Eq.
�17� to the Galerkin approximation becomes an algebraic,
linear-quadratic equation. For example, time averaging the
Galerkin-compressed equation �17�, using empirical attractor
data, yields a set of linear equations in the Galerkin system
coefficients, which are useful to calibrate these
coefficients.36,73 In a departure from that past focus, we
present here a first detailed energy flow analysis of the natu-
ral transient. This investigation will demonstrate the critical
role of transient mean field variations, and will evaluate the
quality of the approximation of the dynamic effect of mean
field variations by a shift mode. It will also reveal the sig-
nificance of other factors in the quality of Galerkin models,
including dynamic mode deformation and the effects of trun-
cation of low energy, high frequency modes.

Results are summarized in Figs. 6 and 7, presenting the
predicted period-averaged power, P, as a time evolution
�top� and as a function of the TKE, K �bottom�. The exact,
DNS-based value of P is shown as a solid line in both fig-
ures. It is equivalently defined by Eq. �18�, and by the nu-
merical estimate, P : = �d /dt�K. The exact base flow, uB, and
fluctuation field, u�, are defined as in Eqs. �5a�–�5c�.

Starting with Fig. 6, we compare the DNS-based value
of P to values computed when uB is substituted by the steady
solution, us �dash-dotted curve�, the attractor’s mean, u0

�dashed curve�, and by the dynamic estimate us+a�u� �dot-
ted curve�, where u� is the shift mode from the normalized
equation �14�. In order to focus this figure solely on the
dynamic effects of approximating or neglecting mean field
variations, the value of P is computed in all cases with the
exact fluctuation field.

Figure 6 brings the message of this section into sharp
relief: ignoring mean field variations leads to drastic misrep-
resentation of the supplied power, hence the fluctuation
growth rate. When uB is substituted by the constant us, the
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FIG. 5. Complementing Fig. 4, this figure compares transients of a DNS
simulation ��� and of the three-state Galerkin model, based on the two
attractor POD modes and the global kinematic shift mode �—�. The phase
portrait employs the amplitudes a1 and a� of the first POD and shift mode,
respectively.
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FIG. 4. Comparison of natural transient TKE predictions by a DNS simu-
lation �—� and a number of low order POD models: an eight-mode tradi-
tional POD model ���, a least-order mean field model with the first attractor
POD mode pair+1 shift mode �� �, a model including the two attractor POD
modes, two linear stability modes, and a shift mode ���, and an 11-mode
model, using eight POD modes, two stability modes, and one shift mode
���. The dashed straight line indicates the linear stability growth rate at the
steady solution.
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model more than doubles the predicted transient values of P,
and keeping P uniformly positive, precludes the existence of
an attractor. Substituting uB by u0 leads to the other extreme,
where the Galerkin model predicts P�0 over most of the
true transient states, including the wrong prediction of a lin-
ear stability of us. In contrast, a least-order estimate of mean
field variations, employing a single shift mode, suffices to
provide a decent approximation of P throughout the natural
transient.

These results are complemented in Fig. 7, where the
computation of P employs least-order Galerkin expansions
of both uB and u�. The first estimate of P �dashed curve�, is
used to highlight the effect of truncating high harmonics in
the least-order Galerkin approximation of u�. This estimate
therefore uses the exact value of uB and an approximation of
u� by the projection on the local, dominant POD mode pair
of a single period, centered at the probed time instance. The
use of local POD modes provides the best two-state approxi-
mation as it accounts for mode deformation along the tran-
sient. In the remaining three estimates, the base flow is sub-
stituted by the least-order Galerkin approximation us+a�u�,
and the fluctuation field is approximated by its projections on
the local POD modes �dash-dotted curve�, the two stability
modes �dotted curve�, and the dominant POD mode pair of
the attractor �dash-dot-crossed curve�.

In examining Fig. 7, we first note that even the most
accurate two-state Galerkin approximation of u� leads to an
overprediction of P, including P	0 over the attractor. This
validates the attribution of the overpredicted amplitude in
Fig. 5 to the truncation of higher order modes �and harmon-
ics� in the Galerkin model. As elaborated in Ref. 17, this
overprediction is eliminated once higher order modes are in-
cluded in the model. Notably, the substitution of uB by
us+a�u�, in both Figs. 6 and 7, has a smaller effect, whether
the exact u� or its Galerkin approximation by the local POD
modes, are used. The estimation error may increase when a
fixed basis is used to approximate u�, including the predic-
tion of P�0 near and over the attractor, when stability
modes are used, and an underpredicted P, throughout most
of the transient, and P	0 over the attractor, when attractor
POD modes are used. These last distortions are attributed to
mode deformation along transients34,35,49,75,77 and are either
partly offset or compounded with distortions due to the ap-
proximation of the base flow by uB
us+a�u�. Significantly,
while accurate predictions require models to account for dy-
namic mode deformation, quantitative distortions due to
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FIG. 6. First part of an energy flow analysis of the natural transient of the
cylinder wake flow. �a� The total supplied power, P, is plotted as a time
evolution, �b� and as a function of the TKE level K. The DNS value �solid
curve� is compared with cases where the exact mean field uB from Eq. �3� is
substituted by the dynamic estimate us+a�u� �dotted curve�, where u� is the
shift mode from the normalized equation �14�, as well as by us �dash-dotted
curve�, and by u0 �dashed curve�. In all cases P is computed with the same
�exact� fluctuation field, u� : =u−uB. Notice that the TKE overshoot in �b�
corresponds to the overshoot in Fig. 2.
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FIG. 7. Second part of an energy flow analysis of the natural transient of the
cylinder wake flow, now comparing the exact value of P �solid curve� to
estimates including Galerkin approximations of the fluctuation field u�. De-
noting by ua,b, us

a,b, and u0
a,b the respective pairs of local period POD modes,

stability modes, and attractor POD modes, one estimate uses the exact
�period-mean� base flow, uB, whereas u� is approximated by the projection
on the local ua,b �dashed curve�. In the remaining three estimates, the base
flow is substituted by us+a�u� and the fluctuation field is approximated by
its projections on ua,b �dash-dotted curve�, us

a,b �dotted curve�, and u0
a,b

�dash-dot-plussed curve�.
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mode deformation are far smaller than the severe qualitative
distortions that result from ignoring mean field variations.

In summary, the suppression of mean field variations is
identified as the dominant cause of inaccurate predictions of
the instantaneous growth rate during the natural transient in
our benchmark system. A least-order model that employs a
fixed base flow will lead to the dramatic mispredictions sug-
gested by the analysis in Sec. III B. Extreme examples of
wrong predictions include P�0, hence stability near the
steady solution, and P�0, hence strong TKE growth over
the natural attractor. The quantitative evaluation of the sup-
plied power also demonstrates that the simple, global kine-
matic shift mode of Eq. �14� suffices to provide a good esti-
mate of the dynamic contribution of mean field variations.

In the next two sections we shall discuss alternative em-
pirical and analytical definitions of Galerkin approximations
of local and global mean field variations. The similarity of
the exact dynamic contribution of the mean field, with the
estimate obtained with the crudest estimate, will justify the
use of the latter, while the finer, analytic definitions are
useful to tie this estimate with the analytic justification in
Sec. III B.

The results of this section also highlighted, as a second-
ary effect, the impact of both the truncated energy cascade,
and the often ignored effect of transient mode deformation in
the Galerkin approximation of u�. As mentioned earlier, the
latter effect deserves an independent discussion. It was re-
viewed and illustrated in34,49,75 and will be further elaborated
in the context of feedback flow control, in a forthcoming
article.

IV. SHIFT MODE DEFINITIONS

Building on the discussion in Sec. III, we now review
several methods to estimate modes representing the dynamic
mean field correction. In Secs. IV A and IV B, we discuss
kinematic definitions based on empirical data. In Secs. IV C
and IV D, we elaborate concepts based on dynamic consid-
erations. In each case, we discuss both global and local mean
field correction modes. Here, the global versions link the
end-points of the natural or forced transient, i.e., steady and
periodic solution, while the local cousins refer to short-term

changes along that transient. Table I provides a distilled sum-
mary of these definitions. Quantitative comparisons of the
alternative concepts outlined in this section will be presented
in Sec. V. The empirical data used for these definitions and
comparisons comprise the two transient simulation trajecto-
ries described in Sec. II B.

A. Global kinematic shift modes „GKSMs…

Here we list two data driven definitions of a single, glo-
bal mode, aimed to capture the orientation of mean field
corrections throughout, along both natural and controlled
attractors.

1. GKSM 1: Geometric global correction

We start with the original definition, as introduced in
Ref. 17 and reviewed in Sec. III A

u�: = �u0 − us�/�u0 − us��,

where u0 is the mean of the attractor and us is the unstable
steady solution. The title geometric is due to the fact that this
shift mode resolves the missing global direction of the mean
field correction along the entire natural transient. Figure 8
depicts us, u0, and the shift mode u� as the normalized dif-
ference between them. Here and throughout, flow structures
are represented by streamlines.

2. GKSM 2: POD-based global correction

Having extracted the base flow component from the en-
tire data trajectory, as discussed in Sec. II C, POD analysis
yields a Galerkin approximation of the base flow

uB�x,t� = u0
B�x� + �

i=1

NB

ai
B�t�ui

B�x� . �30�

Here u0
B is the simulation mean and �ui

B�i=1
NB is a POD basis

for uB�x , t�−u0
B�x�. The first and dominant of those modes,

u1
B, is a natural candidate for a kinematic global shift mode,

in the sense that it dominates the base flow variations around
u0

B.
This construction is illustrated by Figs. 9 and 10. The

former displays the simulation mean and the leading five

TABLE I. An overview of Sec. IV and the shift mode definitions described in Secs. IV A–IV D.

Kinematic Dynamic

Principles Data driven, using: NSE driven, using:

- POD approximate of base flow trajectory - Increments in RANSE solutions

- Global/local base flow increments - Linearized NSE solutions

Global Sec. IV A Sec. IV C

GKSM 1: global increment of the base flow GDSM 1: global increment of RANSE solution

GKSM 2: the dominant POD mode of the entire base
flow transient

Local Sec. IV B Sec. IV D

LKSM 1: local base flow gradient LDSM 1: linearized NSE field at base flow

LKSM 2: single period base flow POD LDSM 2: local increment of RANSE solution
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POD modes of the natural base flow transient. The latter
displays the eigenvalues of the POD correlation matrix,
which decline at a near exponential rate, as a function of the
mode number, and the time trajectories of the three leading
Fourier coefficients. The joint trajectory of the Fourier coef-
ficients is strongly dominated by a1. Indeed, using the domi-
nant POD mode alone, as a single shift mode, provides an
average resolution of some 94.5% of the base flow fluctua-
tion energy along the natural transient, and the first three
modes provide a near perfect reconstruction with an average
of 99% of the entire transient. Furthermore, the leading POD
mode is nearly identical to the geometrical definition from
Ref. 17, as outlined in GKSM 1. The velocity fields of sub-
sequent eigenmodes �sixth and on, not shown� have the typi-
cal structure of second harmonic POD modes, and are there-
fore attributed primarily to �minor� numerical contamination
of the extracted base flow trajectory.

B. Local kinematic shift modes „LKSMs…

Here we look for modes that resolve the local variations
in the base flow, at instantaneous points along natural or
actuated transients. We list two alternative definitions.

1. LKSM 1: POD base flow gradient approximation

Appealing to a local linear approximation

uB�x,t + �t� = uB�x,t� + �t · �tu
B�x,t� , �31�

the normalized gradient �tu
B�x , t� / ��tu

B�x , t��� defines the
local orientation of the mean field correction. To alleviate the
computational burden and numerical sensitivity of deriving
the gradient, we appealed to the global POD representation
�30�:

�tu
B�x,t� = �

i=1

NB d

dt
ai

B�t�ui
B�x� , �32�

where �d /dt�ai
B is locally averaged. Examples of three local

shift modes obtained this way are depicted in Fig. 11.

2. LKSM 2: Local POD analysis of base
flow increments

A close variant of LKSM 1 uses a local POD of uB over
a single period, �� �t− �T /2� , t+ �T /2��:

uB�x,�� = uB�x,t� + �
i=1

NB�t�

at,i
B ���ut,i

B �x� . �33�

As seen in Figs. 12 and 13, these approximations are each
strongly dominated by a single, local shift mode ut,1

B .
Comparing Eqs. �33� and �31�, the expected similarity,
ut,1

B ��tu
B�x , t�, was verified by our numerical data. Shift

(a)

(b)

(c)

FIG. 8. Construction of the geometric shift mode. �a� The unstable steady
solution us. �b� The attractor mean flow u0. �c� The geometric shift mode.
According to GKSM 1 this mode is defined as the normalized difference
u� : = �u0−us� / �u0−us��.

(a)

(b)

(c)

(d)

(f)

(e)

FIG. 9. POD modes of the entire natural base flow transient, as used in
definition GKSM 2: the mean of the transient flow is depicted in �a� and the
first five POD modes are �b�–�f�, all visualized by streamlines. Note that the
base flow transient mean �a� is, as expected, an intermediate form between
the steady solution and the attractor’s mean, depicted in Figs. 8�a� and 8�b�.
Here and throughout the base flow is computed according to Eq. �5a�, using
the symmetrized velocity field usym.
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modes computed by this definition for points along the natu-
ral and actuated transient, are shown in Figs. 14 and 15,
respectively.

C. Global dynamic shift mode „GDSM… definition

Here we review shift mode definitions based on dynamic
considerations, appealing to the governing NSE. Since, ulti-
mately, these definitions involve numerical computations and
empirical data as well, their significance is primarily concep-
tual, establishing the ties between kinematic observations
and first principles.

1. GDSM 1: A Reynolds equation based global
shift mode

This definition parallels GKSM 1, using the RANSE in-
stead of measured data to predict the base flow. An estimate
of the attractor mean is produced by solving the RANSE
�16a� with the Reynolds stress �16b�

� · �u� � u�� = K� � · �u1 � u1 + u2 � u2� ,

where u1 and u2 are the attractor’s dominant POD modes,
and K� is the attractor’s fluctuation energy. Using the nota-
tions of Sec. III B, this means that we substitute �2K�u1 and
�2K�u2 for u1

a and u1
b in Eq. �16b�. The steady solution is the

RANSE solution corresponding to none of the Reynolds
stress. By definition, the attractor mean is the precise
RANSE solution when the Reynolds stress is computed in
terms of the exact fluctuation. The strong dominance of the
attractor’s first POD mode pair, representing the first tempo-
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FIG. 10. �a� POD eigenvalues corresponding to Fig. 9, normalized with
respect to �1 �i.e., �i /�1�. ��b� and �c�� The trajectories of the corresponding
three leading Fourier coefficients.

(a)
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(c)

FIG. 11. Kinematic local shift modes obtained according to LKSM 1 as time
derivatives of the three-modes POD approximation of the entire natural base
flow transients. Henceforth, all local shift modes of the natural and forced
transients will be associated both with the mean-period time and with the
period-mean TKE. The figures �a�–�c� represent consecutive increments one
period apart, with the respective period mean times t=36, 41.5, and 46 and
TKE levels of 1.17, 2.23, and 2.66 in Fig. 2. The TKE levels will be used to
parameterize operating points and compare shift modes obtained at similar
TKE levels by the various methods examined here.
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FIG. 12. POD eigenvalues of the natural transient of the base flow uB along
20 single periods of the natural transient marked in Fig. 2. The first nine
POD eigenvalues of each of the 20 periods, normalized relative to the larg-
est eigenvalue of each periods �i.e., for each period we present � j /�1�. The
eigenvalues are plotted as functions of the eigenvalue number j and the
mean TKE level K of the respective period. These are the local kinematic
shift modes described in LKSM 2. The increase in significance of � j, j	1,
near the attractor, is attributed to mean field variations associated with the
changes in stability properties during the small, presettling overshoot in K,
as seen in Fig. 2.
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ral harmonic, translates to a near perfect estimate of the at-
tractor mean. Consequently, the resulting shift mode is es-
sentially identical to the one computed by GKSM 1 and
depicted in Fig. 8�c�.

D. Local dynamic shift mode „LDSM… definitions

1. LDSM 1: Linearized corrections from period means

Motivated by Eq. �7�, the shift mode is defined as the
normalized mean field correction predicted by a linearization
at the period mean, uB�x , t�. An easy approximation is the
orientation of the base flow component of a very short simu-
lation, initiated at uB�x , t�. As will be illustrated in Sec. V,
the weakness of this definition is that the Reynolds stress
� · �u� � u�� is now missing from Eq. �16a�, distorting the
predicted correction. Examples of shift modes computed this
way are depicted in Fig. 16.

2. LDSM 2: Shift mode based on local increments
in solutions of the RANSE

This definition is the one outlined in Sec. III B. The idea
is to define u� as the orientation of the local increment in
RANSE solutions, with the Reynolds stress �16b�. The defi-
nition in Eq. �16b� is equivalent to

� · �u� � u�� = K � · �u1 � u1 + u2 � u2� ,

where K�t� is the mean fluctuation energy over the time win-
dow �t− �T /2� , t+ �T /2��, and u1,2 is the dominant POD
mode pair over that window. Examples of shift modes com-
puted this way are depicted in Fig. 17.

V. QUANTITATIVE COMPARISON

The global shift mode definitions GKSM 1, GKSM 2,
and GDSM 1 lead to nearly identical results, rendering fur-
ther analysis redundant. Quantitative comparisons are thus
focused on local shift modes, representing local mean field
increments. Comparisons are made in terms of geometrical
alignments, as measured by the �absolute value of the� re-
spective inner products. Expectedly, LKSM 1 and LKSM 2
yield essentially identical modes and results are given only
for the latter. To make meaningful comparisons between lo-
cal definitions, especially as we compare the natural and the
actuated transients, we parameterize local shift modes by the
TKE K of the operating points at which they are obtained. It
is recognized, however, that the TKE parameterization is in-
evitably method-dependent and thus leads to some mis-
matched comparisons: in reference to LKSM 2 and LDSM 1,
the TKE at the time t is averaged along the respective tran-
sient over the period �t− �T /2� , t+ �T /2��. In reference to
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FIG. 13. Counterpart of Fig. 12 for the forced transient: POD eigenvalues of
the base flow uB along each of 155 single periods of the forced transient,
normalized with respect of the dominant eigenvalue �i.e., for each period we
present � j /�1�. �a� POD eigenvalues of periods from descending first half of
the forced trajectory, from the attractor toward the steady solution. �b� Same,
for the ascending second half of the forced trajectory, as it is relaxed from
the steady solution to the attractor. Eigenvalues are shown as functions of
the eigenvalue number j and that period’s TKE level K.

(d)

(e)

(a)

(b)

(c)

FIG. 14. First POD modes of five selected analyzed periods indicated in Fig.
2 along the natural base flow transient. The respective mean-period times for
plots �a�–�e� are t=16.4, 26.4, 35, 40.2, and 48.9, and the corresponding
period-mean TKE levels are 0.002, 0.1, 1, 1.97, and 2.81.

034102-15 Mean field representation of the natural and actuated cylinder wake Phys. Fluids 22, 034102 �2010�

Downloaded 12 Mar 2010 to 195.220.223.244. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



LDSM 2, the operating point is identified by the mean TKE
of the two periods that were used in computing the increment
in the RANSE solution. The trajectories used are as de-
scribed in Sec. II B: the natural transient and two parts of a
controlled transient, leading from the attractor to the steady
solution and then, gradually, back to the attractor. The latter
are termed the descending and ascending trajectories, respec-
tively. Correlation matrices are graphically depicted in Figs.
18 and 19 by color code for values in the interval �0,1�. A
�quadratic polynomial� line on each of these representations

provides a smooth estimate of the crest of the correlation
matrix. The main diagonal, marked by a dashed line, pro-
vides a reference comparison.

The first comparisons are between the shift modes de-
fined by LKSM 2 for the natural transient and the two parts
of the actuated transient. The results are presented in Fig. 18.
In interpreting these results, it is necessary to recognize the
contribution of the volume force to the base flow, via the
Reynolds stress. This contribution can be conceptually parti-
tioned into two components. One is the change of the base
flow due to the global attenuation of the fluctuation. The
contribution of the attenuated global fluctuation to the Rey-
nolds stress is plausibly comparable to the effect of the fluc-
tuation along the natural transient, at a comparable TKE
level. The second component is due to the strong local at-
tenuating impact on the vertical fluctuation in a neighbor-
hood of the volume-force support �G, and thus, on the con-
tribution of that change to the Reynolds stress. The latter is

(d)

(f)

(e)

(a)

(b)

(c)

(g)

FIG. 15. POD analysis of 155 periods of the actuated transient, as described
in Sec. II B. ��a�–�g�� The first �dominant� POD modes of the base flow from
seven periods of the actuated transient, computed as in LKSM 2. The re-
spective mean period times are t=5, 147.1, 255.1, 399.7, 556.6, 714.2, and
856.4. The corresponding TKE levels read 2.65, 1.9, 1.49, 0.64, 0.18, 1, and
1.8. POD mode streamlines have opposite signs for periods of the descend-
ing and ascending trajectories. Quantitative comparisons with other compu-
tations in Sec. V take into account the relative proximity to the steady
solution or the natural attractor.

(d)

(f)

(e)

(a)

(b)

(c)

FIG. 16. Six local shift modes computed according to LDSM 1 from short
simulations initiated at points along the natural base flow transient. Relating
to Fig. 2, plots �a�–�f� correspond to trajectories initiated at uB�· , t� with
t=11.5, 19, 26.5, 34, 39, and 61.4, and approximate TKE levels of 0, 0.06,
0.1, 0.8, 1.78, and 2.69. The clear difference from the LDSM 2 modes in
Fig. 17 is explained in the text.
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most felt near the attractor, where naturally caused changes
in the TKE level—and the base flow—over a single period
are relatively slow �recall Fig. 2�. Indeed, the crest of the
correlation between the shift modes associated with the two
components of the forced transient nearly coincides with the
ideal diagonal, accept for the area departing from, or ap-
proaching the attractor. The actuated contribution to the Rey-
nolds stress also explains the fact that local shift modes as-
sociated with the natural transient correspond to local shift
modes at an otherwise lower levels of fluctuation in the ac-
tuated transient. Indeed, this phenomenon is more accentu-
ated in the “descending” actuated trajectory, from the attrac-
tor toward the steady solution, where higher actuation levels
are employed �again, see Fig. 3�, when compared with the
“ascending” transient. Nonetheless, considerable similarity is
found throughout the TKE range.

Two additional comparisons in Fig. 19 are between the
shift modes defined by the kinematic approach of LKSM 2

and the dynamic definitions LDSM 1 and LDSM 2. To avoid
the added distortions due to the volume force, we use here
only the natural transient.

LDSM 1 represents a near linearization at periods’
means. While that is the mean field correction predicted by
the reduced order model �7�, we noted that it removes the
Reynolds stress � · �u� � u�� from the RANSE �16a�, antici-
pating a mismatch with empirical data. Indeed, the peak cor-

(d)

(f)

(e)

(a)

(b)

(c)

FIG. 17. Six local shift modes computed according to LDSM 2 from evalu-
ation of local increments in RANSE solutions. The respective midperiod
times in plots �a�–�f� are the same as the initial times used in the examples
in Fig. 16 above; i.e., they are t=11.5, 19, 26.5, 34, 39, and 61.4, associated
with corresponding approximate TKE levels of 0, 0.06, 0.1, 0.8, 1.78, and
2.69.

FIG. 18. �Color online� The correlation matrices between different local
shift modes computed according to LKSM 2. Color represents the amplitude
of the correlation ���0,1�� between two shift modes. Axes parameterize
local shift modes by the associated periods TKE levels. �a� Correlation
between shift modes of the natural transient �horizontal axis� and those
computed along the descending forced transient �vertical axis�. �b� Correla-
tion between shift modes along the natural transient �horizontal axis� and
along the ascending forced transient �vertical axis�. �c� Correlation between
shift modes along the descending forced transient �horizontal axis� and
along the ascending forced transient �vertical axis�. The solid and dashed
white lines indicate the quadratic polynomial approximations of the lines
connecting peak values in each row and column of the matrix and the equal
TKE levels line, respectively.
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relation between empirical shift modes according to LKSM 2
and those obtained with LDSM 1 occurs when the latter is
associated with a much higher level of fluctuations. This ob-
servation matches an independent observation by the authors
concerning the best match between POD modes of natural
and controlled attractors, on one hand, and linear stability
modes associated with linearizations about the means of at-
tractors, on the other hand: the best match is found when the
stability modes are computed for linearization about a period
mean associated with considerably higher levels of fluctua-
tions than the period from which the POD modes are
extracted.75

In contrast, the correlations of the local kinematic shift
modes according to LKSM 2 with the shift modes associated
with local incremental changes in solutions of the RANSE,
according to LDSM 2, crest much closer to the ideal diago-
nal. The residual mismatch, in this case, might be attributed
simply to a combination of the different associations of each
shift mode with a TKE level in the two methods and to the
suppression of the time derivative in the Reynolds equation
in LDSM 2.

The results presented in Figs. 18 and 19 can be summa-
rized with the following observations:

• First and foremost, indeed, the local shift modes ob-
tained a transient trajectory �here, the natural transient�

either empirically, by LKSM 2 or by LDSM 2, appeal-
ing to first principles, are very similar.

• Second, as predicted by theory, the local shift mode is
affected by the contribution of periodic actuation to
the Reynolds stress. That effect is determined by the
actuation amplitude and is relatively small under low
gain actuation.

• Third, theory predicts a mismatch between observed
local mean field corrections and the shift modes ob-
tained by the approximate linearization method LDSM
1. Interestingly, similarity is regained if an appropriate
shift in the TKE between the respective reference
points is used, in agreement with independent obser-
vation in Ref. 75, regarding the similarity of linear
stability modes and POD modes.

We close this quantitative analysis with a comparison of
one local shift mode, empirically obtained according to
LKSM 2, with best matching local shift modes obtained by
LKSM 2 from the actuated trajectories, and by LDSM 1 and
LDSM 2, from the natural trajectory. The selected LKSM 2
mode is extracted from the natural transient at the interme-
diate point of K=1.463. The modes are depicted in Fig. 20
and the quantitative correlations in Fig. 21. These compari-
sons illustrate the close similarity of the orientation of mean
field corrections across computation methods and even when
factoring the effects of actuation on changes in the transient
trajectory. In fact, that similarity is maintained even when a
simplified version of Reynolds stress incremental modes
LDSM 2 is used, whereby instead of representing local fluc-
tuations by local POD modes, scaled versions of the natural
attractor POD modes are used throughout.

VI. CONCLUDING REMARKS

In the first pioneering POD Galerkin model of wall
turbulence,22 mean flow variations were included as an aux-
iliary stabilizing model by coupling the RANSE with a
Galerkin model. This procedure leads to cubic terms in the
dynamical system for the mode coefficients.83 Such a cou-
pling requires a time-scale separation between base flow and
fluctuation dynamics, which may be questionable or is at
least difficult to achieve.18

The introduction of the shift mode as a representation of
a missing state-space direction in Ref. 17 created a math-
ematically rigorous framework for the inclusion of base flow
variations in POD models. As illustrated in Ref. 17, the in-
clusion of mean field dynamics is an essential enabler for
transient representation in minimal order models of the at-
tractive inertial manifold, connecting the unstable steady so-
lution and the limit cycle. This role has since been demon-
strated in a succession of flow control studies by several
groups.

The present article is focused on the dynamic, NSE roots
of mean field models. In Sec. III B we elaborated the essen-
tial role of the dynamic coupling of mean field corrections
and fluctuation growth rates, in terms of the coupling be-
tween the RANSE and a harmonic fluctuation equation, ob-
tained by the temporal projection of the NSE at the dominant
frequency �or frequency band� of the instability. In these

FIG. 19. �Color online� Same as Fig. 18, but for the natural transient, com-
puted by different methods. Color codes, axes parameterizations, and white/
dashed white lines are as in Fig. 18. �a� Correlation of shift modes computed
according to LKSM 2 �horizontal� and those computed according to LDSM
1 �vertical�. �b� Correlation of shift modes computed according to LKSM 2
�horizontal� and those computed according to LDSM 2 �vertical�.
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terms, the equation governing the amplitude of a shift mode
is viewed as a Galerkin system counterpart of the RANSE,
and the need to include that equation in the Galerkin
model is tied to the essential role of the bilateral coupling
between the mean field and the fluctuation, in the NSE. The
analysis in Sec. III B also reveals the local form of a shift
mode, defined as the tangent direction of local mean field
corrections.

A detailed examination of the transient modal energy
flow in the cylinder wake flow benchmark was introduced in
Sec. III C as a new tool to quantitatively evaluate the dy-
namic role of individual modes. It was used to illustrate and
validate the formal analysis in Sec. III B. Indeed, that analy-
sis demonstrates that the suppression of mean field variations
is the dominant cause of dynamic distortions in least-order
Galerkin representations. Depending on the selected combi-

nation of a fixed base flow and of modes representing the
periodic fluctuation, such distortions can be extreme. Indeed,
they can lead to predictions that are directly contrary to basic
qualitative properties of the flow. Examples include the pre-
dictions of TKE decay near the steady solution, and of fast
TKE growth, in the vicinity of the actual attractor, i.e., in
both cases the prediction is the very opposite of the actual
transient behavior. In contrast, the inclusion of even the sim-
plest mean field representation, rectifies such distortions,
complementing the observations in Ref. 17 and in subse-
quent studies. Transient modal energy flow analysis high-
lighted additional important, albeit secondary sources of dy-
namic distortions in standard POD models. Those include the
truncation of the energy cascade and the dynamic deforma-
tion along transients of coherent structures that dominate the
periodic fluctuation.

The article continues with an exploration and refinement
of a set of natural shift mode definitions, in Sec. IV, based on
analytic-dynamic and geometric-kinematic definitions of
shift modes, as the orientations of local and global mean field
corrections. The quantitative comparisons of these defini-
tions in Sec. V reveal the consistency of the mean field cor-
rection: in a nutshell, the shift mode is no accident; rather, it
is an intrinsic and critical player in system dynamics. Our
analysis also reveals that, much like the deformation of
dominant fluctuation modes,34,49,75 the shift mode is subject
to slow deformation as the system transitions between oper-
ating conditions.

The observation that the simplest and easiest to compute
global kinematic shift mode produced a decent approxima-
tion of the dynamic impact of the exact mean field was made
in Sec. III C, based on quantitative power flow analysis. That
key observation adds a dynamic perspective to the compari-
sons in Sec. V, while the analytical definitions provide the
conceptual bridge to the NSE, the simple kinematic defini-

(d)

(f)

(e)

(a)

(b)

(c)

FIG. 20. Plots of the LKSM 2 mode of the natural transient at K=1.4638
�a�, followed by the best matches of that modes by LKSM 2 modes from the
descending ��b�, K=0.8537� and ascending ��c�, K=0.9668� actuated tran-
sients. Next are the best matches of �a� by local shift modes along the
natural transient, computed according to LDSM 1 ��d�, K=2.6366� and
LDSM 2 ��e�, K=1.5682�. The last plot was computed by a simplified
version of LDSM 2 ��f�, K=1.5319�, where the fluctuation is modeled by
the dominant POD mode pair of the attractor, scaled by the local TKE,
instead of by the POD mode pair of the transient period under consideration.
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FIG. 21. �Color online� Correlations of the best matching shift modes in
Fig. 20. Labels indicate the LKSM 2 mode of the natural transient �LKSM
2 natural�, and the best matches with LKSM 2 modes from the descending
and ascending actuated trajectories �LKSM 2 descending and LKSM 2 as-
cending, respectively�, the shift modes obtained from the natural transient
according to LDSM 1, LDSM 2, and the simplified version of the latter
�LDSM 2 simple�, where the scaled attractor POD modes where used in-
stead of the local POD modes, used in LDSM 2.
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tion is established as an ample, convenient, and easily com-
putable modeling option.

For other flows, however, local shift modes may be
needed to account more accurately for mean field deforma-
tions through the integration of local increments. The discus-
sion in Ref. 34 is a case in point. As elaborated in the Ap-
pendix, an effective feedback policy needs to determine the
control input so that Pa, in Eq. �18�, will be close to balanc-
ing the natural flow components of P, which requires a pre-
cise estimate of the local mean field. Once again, however,
the conceptual inclusion of local mean field deformations in
the Galerkin model does not translate to intractable complex-
ity of control design. To see this point one needs to distin-
guish between the role of the Galerkin model as an encapsu-
lation of the pertinent fundamentals of the flow, guiding
controller structure, and controller realization. The controller
itself can often be realized in terms of far simpler and more
robust combinations of moderately nonlinear filters/adaptors,
and static nonlinearities. That is precisely the case in Ref. 34,
which is focused on the need to account for the transient
deformation of dominant coherent structures.
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APPENDIX: DISSIPATIVE FEEDBACK CONTROL

This appendix reviews the control that yielded the actu-
ated data in Fig. 3 and elucidates the essential role of mean
field variations in feedback flow control.

Let the energy flow equation �17� be abbreviated as

d

dt
K = P = Pn + Pa,

where Pn is the natural power component. In these terms, a
control command is dissipative when

Pa = �f,u�� = G�g,u�� � 0. �A1�

Invoking Eq. �22�, we can write

�g,u�· ,t��� = �Krg�ua,ub�cos�
��t�t + ��t�� .

where rg��t�	0 is slowly varying. Under Sec. III B 1 a, the
control command is a sinusoidal of the form �19�. In particu-
lar, dissipativity requires

G�t� = − G̃�t�cos�
��t�t + ��t��, G̃ 	 0. �A2�

This leads to the period average of Pa=−�1 /2�G̃�Krg.
A complete information control does not restrict actua-

tion levels, as long as Eq. �A1� is satisfied. Sensor feedback,
however, must maintain the model’s validity envelope,29,53

restricting actuation to

1
2G̃�Krg = − Pa = Pn � � ⇔ P = � � , �A3�

where �	0 is small relative to Pn.
Conditions �A2� and �A3� are universal in the sense that

any realistic, model-based stabilizing sensor feedback, using
essentially any actuation, must be both nearly periodic and
slowly dissipate period-averaged TKE. Two conclusions
from these observations are that the data in Fig. 3, which was
generated under these constraints, is generic, and that an ex-
act account for the reflection of base flow variations in the
value of Pn is vital for feedback wake attenuation.

The significance of a low order Galerkin model is pre-
cisely in exposing and encapsulating these conditions. Feed-
back realization can actually be much simpler34 �see also
Ref. 88�, and include a moderately nonlinear filter that esti-
mates the operating point and oscillation phase, and a static
nonlinearity that translates the estimate of the operating point

to the balancing value of G̃.
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